JPH03199850A - Indoor unit of air conditioner - Google Patents

Indoor unit of air conditioner

Info

Publication number
JPH03199850A
JPH03199850A JP1342005A JP34200589A JPH03199850A JP H03199850 A JPH03199850 A JP H03199850A JP 1342005 A JP1342005 A JP 1342005A JP 34200589 A JP34200589 A JP 34200589A JP H03199850 A JPH03199850 A JP H03199850A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
motor
voltage
blowoff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1342005A
Other languages
Japanese (ja)
Inventor
Masahiro Ohama
昌宏 尾浜
Masao Noguchi
野口 正夫
Kunihiro Suga
菅 邦弘
Shigeru Iwanaga
茂 岩永
Ryuta Kondo
龍太 近藤
Koichi Takemura
晃一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1342005A priority Critical patent/JPH03199850A/en
Publication of JPH03199850A publication Critical patent/JPH03199850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To reduce a change in a blowoff temperature even when a room temperature changes by increasing an initial voltage applied to a fan driving motor as the room temperature rises and controlling a voltage applied to the motor so that a refrigerant temperature is between upper limit and lower limit refrigerant temperatures. CONSTITUTION:After an initial voltage is applied to a motor 3, when a blowoff temperature calculated from a refrigerant temperature obtained from refrigerant temperature detecting means 6 is equal to or above an upper limit blowoff temperature, a voltage higher than the one applied now is applied to the motor 3. When the blowoff temperature is below a lower limit blowoff temperature, the voltage lower than that applied now is applied to the motor 3. Therefore, the width of a change in the blowoff temperature can be restricted within a prescribed range even when the room temperature changes. Further, when the temperature width of a divided temperature zone is reduced by making an upper limit blowoff temperature TOL approach the maximum blowoff temperature T1 at a design point as near as possible and making a lower limit blowoff temperature TOS approach the minimum blowoff temperature (T1- T1) at a design point as near as possible, the width of a change in the blowout temperature can be reduced, so that it is easy to remove the sense of the change from a body sense.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷媒を作動流体として暖房する空気調和機の
室内機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an indoor unit of an air conditioner that performs heating using a refrigerant as a working fluid.

従来の技術 従来のこの種の室内機は、第5図に示すように熱交換器
lとファン2とモータ3などからなり、前記熱交換器1
の伝熱管4の表面には冷媒温度検出手段5が設けである
。暖房運転する場合には、熱交換器1は凝縮器となるが
、運転開始直後は前記ファン2及びモータ3は停止して
おり、前記冷媒温度検出手段5がある設定温度以上の温
度を検出すると前記モータ3に電圧が印加され、ファン
2が回転する。
2. Description of the Related Art A conventional indoor unit of this type consists of a heat exchanger 1, a fan 2, a motor 3, etc., as shown in FIG.
A refrigerant temperature detection means 5 is provided on the surface of the heat exchanger tube 4 . In the case of heating operation, the heat exchanger 1 functions as a condenser, but the fan 2 and motor 3 are stopped immediately after the start of operation, and when the refrigerant temperature detection means 5 detects a temperature higher than a certain set temperature, the heat exchanger 1 functions as a condenser. A voltage is applied to the motor 3, and the fan 2 rotates.

発明が解決しようとする課題 一般に暖房開始後しばらくは室温は低い。しかしながら
、第4図に示すような構成では、冷媒温度検出手段5が
ある設定温度以上の温度を検出するとすぐにモータ3に
電圧が印加されファン2はその時に選択されている設定
風量モードで回転する。この時にはまだ室温が低いため
吹き出し温度も低い。特に風量の多い設定風量モードが
選択されている場合には、室温と余りかわらない冷風感
のある温風が吹き出され快適性に非常に問題があった。
Problems to be Solved by the Invention Generally, the room temperature is low for a while after heating starts. However, in the configuration shown in FIG. 4, as soon as the refrigerant temperature detection means 5 detects a temperature higher than a certain set temperature, voltage is applied to the motor 3 and the fan 2 rotates in the set air volume mode selected at that time. do. At this time, the room temperature is still low, so the blowing temperature is also low. In particular, when a set air volume mode with a large air volume is selected, warm air with a cool air feeling that is not much different from room temperature is blown out, causing a serious problem in comfort.

又、暖房開始しばらくの間は前述のように室温と余りか
わらない冷風感のあるIJL風が吹き出され、室温が上
昇してはしめて、暖房感のある温風が吹き出される。こ
のように、暖房感のある温風が出るまでに時間がかかり
即暖性に問題があった。又、フィルターの目づまりや各
要素機器のバラツキによって性能が変化するという問題
もあった。
Further, for a while after the heating starts, IJL air with a feeling of cold air, which is not much different from the room temperature, is blown out as described above, and as the room temperature rises, it cools down and warm air with a feeling of heating is blown out. As described above, it takes time for hot air with a heating feeling to come out, and there is a problem in immediate heating. There was also the problem that the performance changed due to clogging of the filter and variations in each component device.

さらに、風量の少ない設定風量モードが選択されている
場合には、室温が若干上昇すると機器の保護のため、暖
房能力が変化(小さくなる)する。
Furthermore, when a set air volume mode with a small air volume is selected, the heating capacity changes (reduces) to protect the equipment when the room temperature rises slightly.

このため吹き出し温度が変化したり、暖房能力が不足し
たりして快適性に問題があった。
As a result, the temperature of the air outlet changes, the heating capacity is insufficient, and there are problems with comfort.

第6図は、横軸に暖房開始後の室温をとり、縦軸に冷媒
温度検出手段5から得られた検出冷媒温度TR,モータ
3への印加電圧V、ファン2の回転数n、暖房能力Qお
よび吹き出し温度T0をとって、暖房開始後の室温の変
化にともなう検出冷媒温度、モータ3への印加電圧5フ
アン2の回転数、暖房能力および吹き出し温度の変化を
示したものである。同図において、実線は、複数の風量
モードが選択可能な場合で大きな風量モードを選択した
時であり、点線は小さな風量を選択した時である。先ず
、実線で示す大きな風量の場合には、同図かられかるよ
うに、ファン2が回転をはしめると検出温度TRつまり
、凝l1i1度が急激に低下する。このため、吹き出し
温度が低く、暖房感のある温風が出るまでに時間がかか
ることになり、前述のような問題点が発生することにな
る。
In FIG. 6, the horizontal axis shows the room temperature after the start of heating, and the vertical axis shows the detected refrigerant temperature TR obtained from the refrigerant temperature detection means 5, the voltage V applied to the motor 3, the rotation speed n of the fan 2, and the heating capacity. Q and the blowout temperature T0 are taken, and the detected refrigerant temperature, the voltage applied to the motor 3, the rotation speed of the fan 2, the heating capacity, and the change in the blowout temperature are shown as the room temperature changes after heating starts. In the figure, the solid line indicates when a large air volume mode is selected when a plurality of air volume modes are selectable, and the dotted line indicates when a small air volume mode is selected. First, in the case of a large air volume shown by the solid line, as can be seen from the figure, when the fan 2 starts rotating, the detected temperature TR, that is, the temperature 11 degrees, drops rapidly. For this reason, the blowing temperature is low and it takes a long time for warm air with a feeling of heating to come out, resulting in the above-mentioned problems.

次に、点線で示す小さな風量の場合には、同図かられか
るように、ファン2が回転をはしめても急激に吹き出し
温度が低下するということはないが、室温の上昇にとも
ない熱交換器1の内部の冷媒の圧力と温度が上昇する。
Next, in the case of a small air volume as shown by the dotted line, as can be seen from the figure, even if the fan 2 starts rotating, the blowing temperature does not drop suddenly, but as the room temperature rises, the heat exchanger The pressure and temperature of the refrigerant inside 1 increase.

このため、空気調和機全体の保護のため、暖房運転を停
止するか、又は、暖房能力を落として運転することにな
る。そのため同図に示すように、暖房能力が大きく変化
し、さらに、吹き出し温度も大きく変化することになり
、前述のような課題が発生することになる。
Therefore, in order to protect the entire air conditioner, the heating operation must be stopped or the heating capacity must be reduced. As a result, as shown in the figure, the heating capacity changes significantly, and the blowout temperature also changes significantly, resulting in the above-mentioned problems.

本発明はかかる従来の問題点を解消するもので、室温及
び冷媒温度に応して、ファンを駆動するモータへの印加
電圧を制御することによって、快適性の向上、即暖性の
向上を目的とする。
The present invention solves such conventional problems, and aims to improve comfort and quick heating by controlling the voltage applied to the motor that drives the fan according to the room temperature and refrigerant temperature. shall be.

課題を解決するための手段 上記課題を解決するために本発明の空気調和機の室内機
は、室温検出手段から得られた室温と比較する温度帯を
あらかしめ適当に分割し、各分割温度帯では、分割温度
帯が高温側になるほど前記モータへの初期印加電圧を大
きくなるように、あらかしめ設定された初期設定印加電
圧を前記モータに印加し、さらに、あらかしめ設定され
た冷媒上限温度および冷媒下限温度と、熱交換器の伝熱
管又は冷媒入口管の表面に設けられた冷媒温度検出手段
から得られた冷媒温度とを比較して、冷媒温度が冷媒上
限温度よりも高ければ前記モータへの印加電圧を大きく
し、前記冷媒温度が前記冷媒下限温度よりも低ければ前
記モータへの印加電圧を小さくする制御手段を備えたも
のである。
Means for Solving the Problems In order to solve the above problems, the indoor unit of the air conditioner of the present invention roughly and appropriately divides the temperature range to be compared with the room temperature obtained from the room temperature detection means, and divides each divided temperature range. Now, a preset initial applied voltage is applied to the motor such that the initial applied voltage to the motor increases as the temperature of the divided temperature range increases, and furthermore, the preset refrigerant upper limit temperature and The refrigerant lower limit temperature is compared with the refrigerant temperature obtained from the refrigerant temperature detection means provided on the surface of the heat exchanger tube or refrigerant inlet pipe of the heat exchanger, and if the refrigerant temperature is higher than the refrigerant upper limit temperature, the refrigerant is transferred to the motor. The control means increases the voltage applied to the motor, and decreases the voltage applied to the motor when the refrigerant temperature is lower than the lower limit temperature of the refrigerant.

作用 本発明は上記構成によって、ファンを駆動するモータへ
の初期印加電圧を室温が高くなるほど大きくし、さらに
、冷媒温度を冷媒上Ill温度と冷媒下限温度との間に
なるように前記モータへの印加電圧を制御するので、室
温が変化しても、吹き出し温度の変化を小さくすること
ができるものである。
Effect of the Invention With the above configuration, the present invention increases the initial voltage applied to the motor that drives the fan as the room temperature increases, and further increases the voltage applied to the motor so that the refrigerant temperature is between the upper refrigerant temperature and the refrigerant lower limit temperature. Since the applied voltage is controlled, even if the room temperature changes, the change in the blowing temperature can be reduced.

実施例 以下、本発明の実施例を添付図面にもとづいて説明する
Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.

第1図において、1は熱交換器、2はファンであり、こ
のファン2を駆動させるのがモータ3である。さらに、
前記熱交換器1の伝熱管4の表面又は前記熱交換器1の
冷媒入口管5の表面には冷媒温度検出手段6が設けられ
ており、又、前記熱交換器1の風上側には室温を検出す
る室温検出手段7が設けられている。そして、この冷媒
温度検出手段6と室温検出手段7とからの信号によって
、制御手段8は前記モータ3にかかる印加電圧を発生さ
せるモータ駆動手段9を制御する構成としたものである
In FIG. 1, 1 is a heat exchanger, 2 is a fan, and a motor 3 drives this fan 2. In FIG. moreover,
A refrigerant temperature detection means 6 is provided on the surface of the heat transfer tube 4 of the heat exchanger 1 or on the surface of the refrigerant inlet pipe 5 of the heat exchanger 1, and a refrigerant temperature detection means 6 is provided on the windward side of the heat exchanger 1. A room temperature detection means 7 is provided for detecting the temperature. The control means 8 is configured to control the motor drive means 9 that generates the voltage applied to the motor 3 based on the signals from the refrigerant temperature detection means 6 and the room temperature detection means 7.

先ず、暖房運転を開始すると、第5図に示す従来例の場
合と同様冷媒温度検出手段6がある設定温度以上の温度
を検出するとファン2を駆動するモータ3に電圧が印加
され、ファン2が回転する。
First, when heating operation is started, as in the case of the conventional example shown in FIG. Rotate.

ただし、この時にモータ3に印加する初期電圧は次のよ
うにして決定する。
However, the initial voltage applied to the motor 3 at this time is determined as follows.

第2図は横軸に暖房開始後の室温をとり、縦軸に検出冷
媒温度TR,モータ3への印加電圧■。
In FIG. 2, the horizontal axis shows the room temperature after heating starts, and the vertical axis shows the detected refrigerant temperature TR and the voltage applied to the motor 3.

ファン2の回転数n、暖房能力Qおよび吹き出し温度T
。をとって、暖房開始後の室温変化にともなう検出冷媒
温度、モータ3への印加電圧、ファン2の回転数、暖房
能力および吹き出し温度の変化を示したものである。
Fan 2 rotation speed n, heating capacity Q and blowout temperature T
. This shows the changes in the detected refrigerant temperature, the voltage applied to the motor 3, the rotation speed of the fan 2, the heating capacity, and the blowout temperature as the room temperature changes after heating starts.

第2図において、横軸である室温を点線で示すように適
当に分割し、又、吹き出し温度の最高温度をT1と設定
する。同図に示す室温T、とT。
In FIG. 2, the room temperature, which is the horizontal axis, is divided appropriately as shown by dotted lines, and the maximum temperature of the air outlet temperature is set as T1. Room temperature T, and T shown in the same figure.

で決まる分割温度帯ΔT、を例にとって説明する。The explanation will be given by taking as an example the divided temperature zone ΔT determined by .

一般に暖房能力に次式で表わされる。Generally, heating capacity is expressed by the following formula.

Q=CpXV、Xδx (T、 −Tr )   −(
1)ただし、Qは暖房能力、Cpは定圧比熱、Vaは風
量、δは比重量、Toは吹き出し温度およびT8は吸い
込み温度(室温)である。
Q=CpXV, Xδx (T, -Tr) -(
1) However, Q is the heating capacity, Cp is the specific heat at constant pressure, Va is the air volume, δ is the specific weight, To is the blowout temperature, and T8 is the suction temperature (room temperature).

だから、分割温度帯ΔT8の上限温度T、及び吹き出し
最高温度T1を用いれば、この分割温度帯ΔT、での必
要風量は次のようになる。
Therefore, using the upper limit temperature T of the divided temperature zone ΔT8 and the maximum blowout temperature T1, the required air volume in this divided temperature zone ΔT is as follows.

L =Q/ (Cpxδx (TI  TL ) l 
 (2)同一分割温度帯ΔT、では式(2)で示される
風量で一定とすると、室温が分割温度帯ΔT8の下限温
度Tsでは吹き出し温度T。は弐(1)および式(2)
を用いると次のようになる。
L = Q/ (Cpxδx (TI TL ) l
(2) In the same divided temperature zone ΔT, if the air volume shown in equation (2) is constant, the room temperature is the blowout temperature T at the lower limit temperature Ts of the divided temperature zone ΔT8. is (1) and equation (2)
Using , it becomes as follows.

T0=、T1  (Tt  Ts )        
(3)つまり、最高吹き出し温度T1よりも分割温度帯
の温度幅(TL−Ts)だけ低くなる。結局、分割温度
帯の温度幅を小さくすれば、吹き出し温度の温度差も小
さくできる。
T0=, T1 (Tt Ts)
(3) In other words, the temperature is lower than the maximum blowing temperature T1 by the temperature width of the divided temperature zone (TL-Ts). After all, by reducing the temperature width of the divided temperature zones, the temperature difference in the blowout temperatures can also be reduced.

ところで、第3図は横軸に風量v8をとり、縦軸にモー
タ3にかける印加電圧をとって、風量とモータ3の印加
電圧の関係を示したものである。
By the way, FIG. 3 shows the relationship between the air volume and the voltage applied to the motor 3, with the horizontal axis representing the air volume v8 and the vertical axis representing the voltage applied to the motor 3.

すなわち、あらかしめ第3図に示す関係を求めておけば
、必要風量に対する必要印加電圧はすぐにわかる。
That is, if the relationship shown in FIG. 3 is determined in advance, the required applied voltage for the required air volume can be easily determined.

しかしながら、実際には前述の計算どおりに常に運転す
ることは困難である。つまり、空気調和機の設計の段階
では前述の計算どおり設計しても、実際には空気調和機
を構成する各要素機器の性能のバラツキ、及び、フィル
タや熱交換器にゴミ等がついて経時的な性能の変化があ
るため、第2図。
However, in reality, it is difficult to always operate according to the above calculation. In other words, even if the air conditioner is designed according to the above calculations, in reality, there may be variations in the performance of each element that makes up the air conditioner, and there may be dust or other particles on the filter or heat exchanger that may accumulate over time. Figure 2.

第3図に示す特性図どおりのものを得ることができない
場合がある。
In some cases, it may not be possible to obtain the characteristics shown in the characteristic diagram shown in FIG.

ところで、吹き出し温度が大きく変化する場合や吹き出
し温度が低かったり、高すぎたりした場合に、快適性や
運転保証がそこなわれたりする。
By the way, if the blowing temperature changes significantly or if the blowing temperature is too low or too high, comfort and operation guarantee may be impaired.

今、熱交換器1の冷媒の凝縮温度をTR1吹き出し温度
をT。とすると TR#To+K       □(4)という関係が近
似的に成立する。Kは定数ではないが、その変化は人の
体感上一定と見なしてもさしつかえない。だから、この
Kの値をあらかしめ実験で求めておけば吹き出し温度T
。はT、 !=i T、 −K       −(5)
結局、吹き出し温度T0を制御するのに、冷媒の凝縮温
度T、を制御すれば良いということになる。
Now, the condensation temperature of the refrigerant in heat exchanger 1 is TR1, and the blowout temperature is T. Then, the relationship TR#To+K□(4) approximately holds true. Although K is not a constant, it is safe to assume that its change is constant based on human experience. Therefore, if you roughly determine the value of K by experiment, the blowout temperature T
. T, ! =i T, −K −(5)
In the end, in order to control the blowout temperature T0, it is sufficient to control the condensation temperature T of the refrigerant.

第4図は横軸に室温T、をとり、縦軸に吹き出し温度(
T、=TR−K)とモータ印加電圧をとって、室温に対
する吹き出し温度とモータ印加電圧の変化を示したもの
である。同図においてTは設計点における吹き出し最高
温度、T1−Δ丁。
In Figure 4, the horizontal axis shows the room temperature T, and the vertical axis shows the air outlet temperature (
The figure shows the change in the blowout temperature and the motor applied voltage with respect to room temperature, taking the motor applied voltage as T, =TR-K) and the motor applied voltage. In the figure, T is the maximum blowout temperature at the design point, T1-ΔT.

は分割温度帯ΔT、の下限温度における吹き出し温度(
設計点における吹き出し最低温度)である。
is the blowout temperature (
(minimum blowout temperature at the design point).

さらに、TOL、 Tosはそれぞれ吹き出し上限温度
および吹き出し下限温度である。空調機の運転開始直後
は室温検出手段7から得られた室温に応して制御手段8
はモータ駆動手段9を動作させ、第2図に示す初期印加
電圧がモータ3にかかりファン2が駆動する。そして、
吹き出し温度が前記吹き出し上限温度と吹き出し下限温
度との間にあれば第2図に示す各分割温度帯に対する初
期印加電圧がモータ3に印加される。しかし、第4図に
おける点Aや点Bのように冷媒温度検出手段6から得ら
れた冷媒温度から算出した吹き出し温度が吹き出し上限
温度T。L以上になれば、制御手段8はモータ駆動手段
9を動作させて、現在印加されている電圧よりも一段階
高い電圧を印加し、さらに、同図における点Cのように
冷媒温度検出手段6から得られた冷媒温度から算出した
吹き出し温度が吹き出し下限温度T。、以下になれば、
制御手段8はモータ駆動手段9を動作させて、現在印加
されている電圧よりも一段低い電圧を印加する。
Furthermore, TOL and Tos are an upper limit temperature and a lower limit temperature, respectively. Immediately after the start of operation of the air conditioner, the control means 8 is activated according to the room temperature obtained from the room temperature detection means 7.
The motor drive means 9 is operated, and the initial applied voltage shown in FIG. 2 is applied to the motor 3, thereby driving the fan 2. and,
If the blowing temperature is between the blowing upper limit temperature and the blowing lower limit temperature, the initial applied voltage for each divided temperature zone shown in FIG. 2 is applied to the motor 3. However, the blowout temperature calculated from the refrigerant temperature obtained from the refrigerant temperature detection means 6 as at points A and B in FIG. 4 is the blowout upper limit temperature T. If the temperature exceeds L, the control means 8 operates the motor drive means 9 to apply a voltage one level higher than the currently applied voltage, and furthermore, as shown at point C in the figure, the control means 8 operates the motor drive means 9 to apply a voltage one step higher than the voltage currently applied. The blowout temperature calculated from the refrigerant temperature obtained from is the blowout lower limit temperature T. , if it is less than
The control means 8 operates the motor drive means 9 to apply a voltage one step lower than the currently applied voltage.

ここで、吹き出し上限温度T。Lを設計点における吹き
出し最高温度TIに出来るだけ近づけ(等しくてもよい
)、さらに、吹き出し下限温度T。3を設計点における
吹き出し最低温度(T1−ΔTi)に出来るだけ近づけ
、又、前述のように分割温度帯の温度幅ΔT、を小さく
すれば、吹き出し温度の温度差も小さくできる。
Here, the blowout upper limit temperature T. Make L as close as possible to the maximum blowout temperature TI at the design point (may be equal to it), and further set the blowout minimum temperature T. 3 as close as possible to the minimum blowout temperature (T1-ΔTi) at the design point, and by reducing the temperature width ΔT of the divided temperature zones as described above, the temperature difference in the blowout temperatures can also be reduced.

以上の説明かられかるように、分割温度帯の上限温度T
L及び吹き出し最高温度T、から決定される風量Vs 
(式(2))を得るために第3図の関係から求まる初期
印加電圧をモータに印加した後に、冷媒温度検出手段6
から得られた冷媒温度から算出した吹き出し温度が吹き
出し上限温度以上であれば現在印加されている電圧より
も一段高い電圧を印加し、さらに、前記吹き出し温度が
吹き出し下限温度以下であれば現在印加されている電圧
よりも一段低い電圧を印加するので、室温が変化しても
吹き出し温度の変化幅をある一定幅以内におさえること
が可能である。さらに、吹き出し上限温度と設計点ムこ
おける吹き出し最高温度に出来るだけ近づけ、又、吹き
出し下限温度と設計点における吹き出し最低温度に出来
るだけ近づけて、分割温度帯の温度幅を小さくすれば、
吹き出し温度の変化幅を小さくできるので、体感上その
変化を感しなくすることは容易である。又、吹き出し最
高温度T、の設定値を高くすると、十分な高温風吹き出
しが得られる。
As can be seen from the above explanation, the upper limit temperature T of the divided temperature zone
Air volume Vs determined from L and maximum blowout temperature T
After applying the initial applied voltage determined from the relationship shown in FIG. 3 to the motor in order to obtain (Equation (2)),
If the blowout temperature calculated from the refrigerant temperature obtained from the refrigerant temperature is equal to or higher than the blowout upper limit temperature, a voltage one step higher than the currently applied voltage is applied, and if the blowout temperature is below the blowout lower limit temperature, the currently applied voltage is Since a voltage one step lower than the current voltage is applied, even if the room temperature changes, the range of change in the blowout temperature can be kept within a certain range. Furthermore, if the upper limit temperature of the air outlet is as close as possible to the maximum temperature of the air outlet at the design point, and the lower limit temperature of the air outlet is as close as possible to the minimum temperature of the air outlet at the design point, the temperature width of the divided temperature bands is reduced.
Since the range of change in the blowout temperature can be made small, it is easy to make the change not perceivable. Furthermore, by increasing the set value of the maximum blowout temperature T, a sufficiently high temperature air blowout can be obtained.

1 結局、分割温度帯の温度幅、設計点における吹き出し最
高温度、吹き出し上限温度および吹き出し下限温度とを
適当に設定すれば、室温が変化しても十分に暖房感のあ
る温風が保たれるという効果がある。さらに、暖房運転
直後についても同様のことが言えるので即暖性が良いと
いう効果もある。又、室温が上昇すると風量も大きくな
るので暖房能力が保証され快適性の向上という効果もあ
る。そして、空調機を槽底する各要素機器のバラツキや
フィルターや熱交換器にたまるゴミ等の影響もなくなる
ようにモータ印加電圧を制御するので、運転の保証及び
快適性の向上という効果もある。
1 In the end, if the temperature width of the divided temperature zone, the maximum blowout temperature, the blowout upper limit temperature, and the blowout lower limit temperature at the design point are set appropriately, warm air with a sufficient heating feeling can be maintained even if the room temperature changes. There is an effect. Furthermore, since the same can be said immediately after heating operation, there is also the effect of good immediate heating. Furthermore, as the room temperature rises, the air volume also increases, which guarantees heating capacity and improves comfort. In addition, since the voltage applied to the motor is controlled so as to eliminate the influence of variations in the various elemental devices that make up the air conditioner, as well as dust that accumulates in the filter and heat exchanger, it also has the effect of guaranteeing operation and improving comfort.

発明の効果 以上のように本発明の空気調和機の室内機によれば次の
効果が得られる。
Effects of the Invention As described above, the indoor unit of the air conditioner of the present invention provides the following effects.

(1)室温の各分割温度帯の温度幅と設計点における吹
き出し最高温度と吹き出し上限温度と吹き出し下限温度
を適当に設定さえすれば、室温に関係なく十分に高温の
吹き出し温度が得られ、なおか2 つ、体感上はぼ等しい吹き出し温度が得られるので、暖
房感が十分にあり快適性が向上するという効果がある。
(1) As long as the temperature width of each divided temperature zone of the room temperature and the maximum blowout temperature, upper limit temperature, and lower limit temperature of the blowout at the design point are appropriately set, a sufficiently high blowout temperature can be obtained regardless of the room temperature. Second, since the temperature of the air outlet is approximately the same in terms of sensation, it has the effect of providing a sufficient feeling of heating and improving comfort.

(2)さらに、暖房開始直後についても同様であるので
、即暖性が良いという効果もある。
(2) Furthermore, since the same applies immediately after heating starts, there is also the effect of good immediate heating.

(3)室温が上昇するとともに風量も基本的には大きく
なるので、常に最大の暖房能力が保証され、快適性が向
上するという効果もある。
(3) Since the air volume basically increases as the room temperature rises, maximum heating capacity is always guaranteed and comfort is improved.

(4)又、空調機の各要素のバラツキ及びフィルターや
熱交換器にたまるゴミ等の影響もなくなるようにモータ
印加電圧を制御するので、運転保証及び快適性の向上と
いう効果がある。
(4) Furthermore, since the voltage applied to the motor is controlled so as to eliminate the effects of variations in each element of the air conditioner and the effects of dust accumulated on the filter and heat exchanger, there is an effect of guaranteeing operation and improving comfort.

【図面の簡単な説明】 第1図は本発明の一実施例を示す空気調和機の室内機内
部の構成図、第2図は同実施例の暖房運転開始後の室温
に対する検出冷媒温度5モ一久初期印加電圧、ファンの
回転数、暖房能力および吹き出し温度の変化を示す説明
図、第3図は風量とモータ印加電圧の関係を示す説明図
、第4図は同実施例の暖房運転開始後の室温に対する吹
き出し温度、モータ印加電圧の変化を示す説明図、第5
図は従来の空気調和機の室内機内部の構成図、第6図は
同従来例の暖房運転開始後の室温に対する検出冷媒温度
、モータ印加電圧、ファンの回転数暖房能力および吹き
出し温度の変化を示す説明図である。 1・・・・・・熱交換器、2・・・・・・ファン、3・
・・・・・モータ、4・・・・・・伝熱管、5・・・・
・・冷媒人口管、6・・・・・・冷媒温度検出手段、7
・・・・・・室温検出手段、8・・・・・・制御手段、
9・・・・・・モータ駆動手段。
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a configuration diagram of the interior of an indoor unit of an air conditioner showing an embodiment of the present invention, and Fig. 2 shows 5 models of detected refrigerant temperatures with respect to room temperature after the start of heating operation in the same embodiment. An explanatory diagram showing changes in the initial applied voltage, fan rotation speed, heating capacity, and outlet temperature. Figure 3 is an explanatory diagram showing the relationship between air volume and motor applied voltage. Figure 4 is after the heating operation of the same example starts. Explanatory diagram showing changes in blowout temperature and motor applied voltage with respect to room temperature, 5th
The figure shows the internal configuration of the indoor unit of a conventional air conditioner, and Figure 6 shows the changes in the detected refrigerant temperature, motor applied voltage, fan rotation speed heating capacity, and blowout temperature with respect to the room temperature after the start of heating operation in the conventional example. FIG. 1...Heat exchanger, 2...Fan, 3.
... Motor, 4 ... Heat exchanger tube, 5 ...
... Refrigerant artificial pipe, 6 ... Refrigerant temperature detection means, 7
...Room temperature detection means, 8...Control means,
9...Motor drive means.

Claims (1)

【特許請求の範囲】[Claims] 熱交換器、室温検出手段、ファン、モータおよび多段階
に印加電圧を切りかえられるモータ駆動手段、前記熱交
換器の冷媒入口管又は伝熱管表面に設けられた冷媒温度
検出手段などから成り、前記室温検出手段から得られた
室温と比較する温度帯をあらかじめ適当に分割し、各分
割温度帯では、分割温度帯が高温側になるほど前記モー
タへの初期印加電圧を大きくなるように、あらかじめ設
定された初期設定印加電圧を前記モータに印加する構成
とした空気調和機で、前記各分割温度帯において、あら
かじめ設定された冷媒上限温度および冷媒下限温度と、
前記冷媒温度検出手段から得られた冷媒温度とを比較し
て、前記冷媒温度が前記冷媒上限温度よりも高ければ前
記モータへの印加電圧を大きくし、前記冷媒温度が前記
冷媒下限温度よりも低ければ前記モータへの印加電圧を
小さくする制御手段を有する空気調和機の室内機。
It consists of a heat exchanger, room temperature detection means, a fan, a motor, a motor drive means that can switch the applied voltage in multiple stages, a refrigerant temperature detection means provided on the surface of the refrigerant inlet pipe or heat transfer tube of the heat exchanger, etc. The temperature zone to be compared with the room temperature obtained from the detection means is divided into appropriate sections in advance, and in each divided temperature zone, the initially applied voltage to the motor is set to be larger as the divided temperature zone becomes higher. An air conditioner configured to apply an initial setting applied voltage to the motor, wherein a refrigerant upper limit temperature and a refrigerant lower limit temperature are set in advance in each divided temperature zone;
Comparing the refrigerant temperature obtained from the refrigerant temperature detection means, if the refrigerant temperature is higher than the upper limit temperature of the refrigerant, increase the voltage applied to the motor, and if the temperature of the refrigerant is lower than the lower limit temperature of the refrigerant. For example, an indoor unit of an air conditioner having a control means for reducing the voltage applied to the motor.
JP1342005A 1989-12-27 1989-12-27 Indoor unit of air conditioner Pending JPH03199850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1342005A JPH03199850A (en) 1989-12-27 1989-12-27 Indoor unit of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1342005A JPH03199850A (en) 1989-12-27 1989-12-27 Indoor unit of air conditioner

Publications (1)

Publication Number Publication Date
JPH03199850A true JPH03199850A (en) 1991-08-30

Family

ID=18350442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1342005A Pending JPH03199850A (en) 1989-12-27 1989-12-27 Indoor unit of air conditioner

Country Status (1)

Country Link
JP (1) JPH03199850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100566003B1 (en) * 2004-08-23 2006-03-30 위니아만도 주식회사 Method for controlling cool operation of air-conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100566003B1 (en) * 2004-08-23 2006-03-30 위니아만도 주식회사 Method for controlling cool operation of air-conditioner

Similar Documents

Publication Publication Date Title
JP2723339B2 (en) Heat pump heating equipment
JPS6078823A (en) Air conditioner for vehicle
US4795089A (en) Room air conditioner
JPS60188743A (en) Control of heat pump type air conditioner
JP3282719B2 (en) Indoor ventilation control device for air conditioner
JP2000297970A (en) Controller for heat pump
JPH03199850A (en) Indoor unit of air conditioner
JPH03199849A (en) Indoor apparatus of air conditioner
JPH03213947A (en) Indoor device of air conditioner
JP3189101B2 (en) Air conditioner
KR0140569B1 (en) Cooling control method of air conditioner at rapid rise of room temperature
JP2870928B2 (en) Air flow control method for air conditioner
JPH0665940B2 (en) Refrigerant control method for heat pump type air conditioner
JPS63219412A (en) Air conditioning device for vehicle
JPH03156248A (en) Air conditioner and its controlling method
JPS60165450A (en) Heating operation control device for air conditioner
JPH0642791A (en) Air conditioner machine
JPS5977245A (en) Air conditioner
JPH01252827A (en) Hot water heating type air conditioner
JP2794978B2 (en) Control device for air conditioner
JP2960418B2 (en) Air conditioner
JPH04344056A (en) Conditioner
JPS586345A (en) Temperature controlling device of air conditioner
JPS5835531Y2 (en) Automotive air conditioning control device
JPH0195248A (en) Heating control device for air conditioner