JPH03199810A - Stable combustion method in fluidized bed type incinerator - Google Patents

Stable combustion method in fluidized bed type incinerator

Info

Publication number
JPH03199810A
JPH03199810A JP33826989A JP33826989A JPH03199810A JP H03199810 A JPH03199810 A JP H03199810A JP 33826989 A JP33826989 A JP 33826989A JP 33826989 A JP33826989 A JP 33826989A JP H03199810 A JPH03199810 A JP H03199810A
Authority
JP
Japan
Prior art keywords
fluidizing
fluidization
fluidized bed
incinerated
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33826989A
Other languages
Japanese (ja)
Other versions
JPH07111245B2 (en
Inventor
Takeyuki Naito
内藤 剛行
Mitsuyoshi Takami
高見 三義
Yutaka Furuta
裕 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP1338269A priority Critical patent/JPH07111245B2/en
Publication of JPH03199810A publication Critical patent/JPH03199810A/en
Publication of JPH07111245B2 publication Critical patent/JPH07111245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To perform a slow and stable combustion of ignited substance and reduce a discharging of non-ignited gas by a method wherein an ignited substance feeding direction changing- over device is cooperatively operated in such a way as the ignited substance is fed into a part of fluidizing medium where its fluidizing is weakened. CONSTITUTION:A gas dispersion plate 2 or a group of gas dispersion pipes 5 and 6 at a lower part of a bed of a fluidized bed type incinerator 1 are divided into a plurality of segments. A part 10 of the fluidizing medium in the fluidized bed is highly fluidized, another part 9 for its fluidizing action is weakened and then the high fluidizing part 10 is changed over to a weakened fluidizing state and at the same time an ignited substance feeding direction changing-over device 12 is cooperatively operated in such a way as the ignited substance is fed into the part where the fluidization is weakened just after its changing-over operation. In this way, the ignited substance is fed into a part where the weak fluidizing state of the fluidizing bed is found, thereby a thermal decomposition, gasification and combustion of the ignited substance are carried out smoothly, the fluidizing operation is intensified at a time when its volatile component is almost eliminated, a circulating mixing of the substance in the fluidized bed is sufficiently carried out and then a stable combustion is carried out while the rapid generation of gas is being restricted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は都市ごみ等を流動床焼却炉により焼却する方法
に係り、特に、流動床を、流動化の強い部分と流動化の
弱い部分を順次切り替えるようにし、流動化の弱い部分
に被焼却物を投入する流動床焼却炉の安定燃焼法である
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method of incinerating municipal waste, etc. in a fluidized bed incinerator, and in particular, the present invention relates to a method of incinerating municipal waste, etc. in a fluidized bed incinerator, and in particular, the fluidized bed is divided into a strongly fluidized part and a weakly fluidized part. This is a stable combustion method for fluidized bed incinerators in which the materials to be incinerated are placed in the areas where fluidization is weak, by switching sequentially.

〔従来の技術〕[Conventional technology]

流動床焼却炉は、その燃焼性能が良いため残渣中の未燃
分が少ないので、都市ごみや産業廃棄物の焼却炉として
多く利用されている。
Fluidized bed incinerators are often used as incinerators for municipal waste and industrial waste because their combustion performance is good and the amount of unburned matter in the residue is small.

燃焼性能が良い理由は、流動媒体である大量の熱い砂に
よって被焼却物が極めて短時間のうちに乾燥・熱分解さ
れるためであるが、これが逆に欠点となることもある。
The reason for the good combustion performance is that the material to be incinerated is dried and thermally decomposed in a very short time by the large amount of hot sand that is the fluidizing medium, but this can also be a drawback.

即ち、都市ごみ等の性質から、投入量、発熱量を一定に
して供給することは難かしいため、供給条件の変動がほ
ぼそのまま可燃ガスの発生量の変動となる。
That is, due to the nature of municipal waste, etc., it is difficult to supply it with a constant amount of input and calorific value, so fluctuations in supply conditions almost directly result in fluctuations in the amount of combustible gas generated.

従って、−遍に、大量の被焼却物が投入された直後には
、発生可燃ガス量に見合う二次空気の供給が追いつかず
空気不足となり未燃ガス発生の問題が生ずる。
Therefore, immediately after a large amount of material to be incinerated is thrown in, the supply of secondary air cannot keep up with the amount of combustible gas generated, resulting in an air shortage and the problem of unburned gas generation.

これらの問題を改善する方法としては、例えば散気管か
ら吹き出す流動化用空気量が交互に大小となるように、
一定時間毎に吹込み量を交互に切り替えることにより流
動層の攪拌混合効果を維持しつつ、熱分解・ガス化速度
を抑制して燃焼の安定化を図る方法、あるいは散気管群
を複数に分割して、分割された各グループ毎に流動化に
大、中、小の差をつけ、これらを一定時間毎にゆっくり
切り替えていく方法等が提案されているが、これらの方
法では、流動化の強い部分から発生する可燃ガスの影響
が無視できず、十分に有効な解決策とはなっていない。
As a way to improve these problems, for example, the amount of fluidizing air blown out from the diffuser pipe can be alternately increased or decreased.
A method of stabilizing combustion by suppressing the rate of thermal decomposition and gasification while maintaining the agitation and mixing effect of the fluidized bed by alternating the blowing amount at regular intervals, or dividing the diffuser tube group into multiple sections. A method has been proposed in which the fluidization is differentiated into large, medium, and small for each divided group, and these are slowly switched at regular intervals. This is not a sufficiently effective solution because the influence of flammable gas generated from strong parts cannot be ignored.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記の問題を解決するためになされたもので
あって、流動床焼却炉において、被焼物の燃焼を常時ゆ
るやかに且つ安定的に行なわせ、未燃ガスの排出を最小
限とする方法を提供することを目的とするものである。
The present invention has been made in order to solve the above problems, and aims to ensure that burnable materials are always burned slowly and stably in a fluidized bed incinerator, and to minimize the emission of unburned gas. The purpose is to provide a method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、流動床焼却炉の炉床下部の散気板又は散気管
群を複数に分割し、炉床内における流動媒体の一部の流
動化を強くし、他の部分の流動化を弱くし、その流動化
の大きな部分を適当な周期で流動化を弱くするように切
替えると共に、流動化が弱くなるように切替えた直後に
該流動化を弱くした部分に被焼却物を投入するように被
焼却物の投入方向切替装置を連動させることを特徴とす
る、流動床の流動化の弱い部分に被焼却物を投入するこ
とにより被焼却物熱分解・ガス化並びに燃焼をゆるやか
に行なわせ、揮発分を殆んどなくした時点で流動化を強
くして流動層内の循環混合を十分に行うことにより急激
なガス発生を抑制しつつ安定した燃焼を行う方法である
The present invention divides the diffuser plate or the diffuser tube group in the lower part of the hearth of a fluidized bed incinerator into a plurality of parts, so that part of the fluidized medium in the hearth is more fluidized, and the other part is less fluidized. Then, the large part of the fluidization is switched to weaken the fluidization at appropriate intervals, and immediately after switching to the weak fluidization, the material to be incinerated is put into the part where the fluidization is weakened. It is characterized by interlocking a device for switching the direction of incineration of the incinerated material, and by introducing the incinerated material into the weakly fluidized part of the fluidized bed, the thermal decomposition, gasification, and combustion of the incinerated material are performed slowly. This is a method to achieve stable combustion while suppressing rapid gas generation by increasing fluidization and sufficient circulation mixing within the fluidized bed when most of the volatile matter has been eliminated.

以下、図面に基いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第1図は炉床下部の散気板を2分割した本発明を実施す
るための焼却炉の断面図を示すもので、符号1は焼却炉
、2は散気板、3は散気板(空気室〉を二分割するため
の隔壁、4は流動用(燃焼用)空気供給管、5.6は夫
々第1分割及び第2分割への空気供給管、7及び8は夫
々空気供給管5及び6上に設けられている空気供給量調
節弁、9は流動化の弱い部分、10は流動化の強い部分
、11はごみ(被焼却物〉投入口、12はごみの投入方
向切換装置、13は二次空気供給管、14は排ガス導出
管を示す。
FIG. 1 shows a cross-sectional view of an incinerator for implementing the present invention in which the diffuser plate at the lower part of the hearth is divided into two parts, where 1 is the incinerator, 2 is the diffuser plate, and 3 is the diffuser plate ( 4 is a flow (combustion) air supply pipe, 5.6 is an air supply pipe to the first division and the second division, respectively, and 7 and 8 are air supply pipes 5 to each. and an air supply amount adjustment valve provided on 6, 9 is a weakly fluidized part, 10 is a strong fluidized part, 11 is a garbage (material to be incinerated) input port, 12 is a garbage input direction switching device, 13 is a secondary air supply pipe, and 14 is an exhaust gas discharge pipe.

先ず図示してない補助燃料供給管から燃料を供給すると
同時に流動用空気供給管4,5.6及び分散板2を経て
空気を供給し、流動媒体を流動化せしめながら加熱し、
流動媒体が所定の温度に達した場合には空気供給管5上
の空気供給量調節弁を絞り、第1分割部へ分散板2を経
て供給される空気量を小として9の部分の流動媒体の流
動化を弱くすると同時に流動化の小さい9の部分にごみ
が投入されるようにごみ投入方向切換装置を切換える。
First, fuel is supplied from an auxiliary fuel supply pipe (not shown), and at the same time, air is supplied via the fluidizing air supply pipes 4, 5.6 and the distribution plate 2, and the fluidized medium is heated while being fluidized.
When the fluidizing medium reaches a predetermined temperature, the air supply amount control valve on the air supply pipe 5 is throttled down, and the amount of air supplied to the first division part via the distribution plate 2 is reduced to reduce the amount of fluidizing medium to a portion of 9. At the same time, the garbage input direction switching device is switched so that the fluidization is weakened and the garbage is input into the portion 9 where the fluidization is small.

一定時間に一定量のごみを投入し終った後もしばらくゆ
るやかな流動を継続した後空気供給管5の空気量調節弁
7を大きく開き9の部分の流動化を強くし、流動化の弱
い時点で炭化した被燃物を酸化し完全に燃焼せしめる。
After a certain amount of waste has been put in for a certain period of time, the flow continues slowly for a while, and then the air volume control valve 7 of the air supply pipe 5 is opened wide to strengthen the fluidization at the part 9, and the point at which the fluidization is weak is increased. oxidizes and completely burns the carbonized materials.

一方、流動化の大きい第2分割部の流動床10の部分に
ついては、流動化の弱い部分9へごみの投入が終った段
階で空気調整弁8を絞って10の部分の流動化を弱くす
ると同時に、ごみ投入方向切換装置を切換えてごみを流
動化の弱くなった流動化部分10へ投入する。
On the other hand, regarding the part of the fluidized bed 10 in the second division part where fluidization is large, when the waste has been input to the part 9 where fluidization is weak, the air adjustment valve 8 is throttled down to weaken the fluidization in the part 10. At the same time, the garbage input direction switching device is switched to input the garbage into the fluidization section 10 where the fluidization is weakened.

流動化の弱い部分の空気吹込量は0.5〜2 Gmfの
範囲とし、流動化の強い部分の空気吹込量は3〜7 G
mfの範囲のものとするのが好ましい。
The amount of air blown into areas where fluidization is weak is in the range of 0.5 to 2 Gmf, and the amount of air blown into areas where fluidization is strong is 3 to 7 Gmf.
Preferably, it is in the range of mf.

前記のごみ投入サイクルと流動層の切換を図式化したの
が第2図である。
FIG. 2 is a diagram illustrating the above-mentioned waste input cycle and fluidized bed switching.

即ち、第1分割部9の流動の弱い部分にごみを投入し、
aの時点でごみ投入を第2分割部10に切り換えると同
時に第2分割部の流動を弱くする。一方、第1分割部9
はbの時点で流動が大となるように空気供給量を切りか
え、Cの時点で流動が小となるように空気供給量を切替
えると同時に、ごみの供給を第1分割部に切りかえ、d
の時点で第2分割部10への空気供給量を大とし第2分
割部10の流動媒体の流動が大となるように切りかえ、
以下、上記の作動を繰り返す。
That is, garbage is thrown into the part of the first dividing section 9 where the flow is weak,
At time a, the garbage input is switched to the second dividing section 10, and at the same time, the flow in the second dividing section is weakened. On the other hand, the first division part 9
At time b, the air supply amount is changed so that the flow becomes large, and at the time C, the air supply amount is changed so that the flow becomes small, and at the same time, the garbage supply is switched to the first dividing section, and d
At the point in time, the amount of air supplied to the second divided section 10 is increased so that the flow of the fluid medium in the second divided section 10 is increased,
Thereafter, the above operation is repeated.

このような作動を繰り返すことにより、被焼却物を連続
的に焼却炉に投入することが可能となる。
By repeating such operations, it becomes possible to continuously charge the materials to be incinerated into the incinerator.

第3図は、1つの分割部における被焼却物の投入と流動
化の状態の変化、入熱量(すなわちごみの投入量×発熱
量)の変化、及び、ガス化並びに燃焼量の変化を図示し
たものである。
Figure 3 illustrates changes in the state of input and fluidization of the material to be incinerated, changes in heat input (i.e. amount of waste input x calorific value), and changes in gasification and combustion amount in one divided section. It is something.

第3図は、ごみ(被焼却物)を流動化の小さい分割部分
に投入することにより安定したガス化及び燃焼が行なわ
れることを示している。
FIG. 3 shows that stable gasification and combustion can be achieved by charging the waste (material to be incinerated) into divided sections where fluidization is small.

被焼却物は、流動媒体の流動化が弱い時にのみ、即ち流
動化用空気の吹込み量が少ない時にのみ、該流動化の弱
い部分に投入されるため、入熱が大であっても被燃焼物
の表面からゆっくりと熱分解・ガス化が行なわれるので
、揮発分の多い被焼却物が投入されても急激なガス化が
抑制されつつ安定した燃焼が行なわれ、被燃焼物の投入
が他の分割に切り替った後、適当な時間をおいて流動化
を大としても、この時点においては、大部分の揮発性成
分の分解は終了しており、セルロースや固定炭素の如き
それ自身燃焼速度の遅い成分が可燃物の大半を占めてい
るため流動化を大としても、即ち流動用空気供給量を大
としても安定した燃焼を継続することができ、しかも該
可燃物は流動層内で燃焼されるため、流動層を強く循環
混合しても燃焼熱により流動媒体が十分に加熱され、次
の被焼却物の投入に備えることができる。
The material to be incinerated is thrown into the weakly fluidized area only when the fluidizing medium is weakly fluidized, that is, only when the amount of fluidizing air blown is small, so even if the heat input is large, it will not be incinerated. Thermal decomposition and gasification occur slowly from the surface of the combustible material, so even if combustible material with a high volatile content is thrown in, rapid gasification is suppressed and stable combustion takes place. Even if fluidization is increased after a suitable time after switching to another division, most of the volatile components have already been decomposed at this point, and some of the volatile components themselves, such as cellulose and fixed carbon, are combustible. Since slow-velocity components account for most of the combustibles, stable combustion can be maintained even if the fluidization is increased, that is, even if the fluidizing air supply amount is increased, and the combustibles remain in the fluidized bed. Since it is burned, even if the fluidized bed is strongly circulated and mixed, the fluidized medium is sufficiently heated by the heat of combustion and can be prepared for the next charge of the material to be incinerated.

第4図及び第5図は、被焼却物の入熱が100%±10
0%、即ち0から200%まで繰り返し変動したものと
して、夫々2分割の場合と4分割の場合の全ガス化量を
シミュレーションしたものである。この結果から分割が
多い方がガス化量の変動を小さくすることができること
が判る。
Figures 4 and 5 show that the heat input of the material to be incinerated is 100% ± 10
The total gasification amount in the case of 2 divisions and the case of 4 divisions is simulated, assuming that it repeatedly fluctuates from 0%, that is, 0 to 200%. From this result, it can be seen that the more divisions there are, the smaller the fluctuation in the amount of gasification can be.

なお、第4図及び第5図において鎖線は熱大量を、実線
は全ガス化量を示す。
In addition, in FIGS. 4 and 5, the chain line indicates the amount of heat, and the solid line indicates the total amount of gasification.

そして、2分割でも100%±30〜40%位、4分割
で100%±20%位までガス化を安定化できるので、
二次空気の調節により十分に燃焼用空気を補なうことが
可能となる。
In addition, gasification can be stabilized to 100% ± 30 to 40% with two divisions, and 100% ± 20% with four divisions.
Adjustment of the secondary air makes it possible to sufficiently supplement the combustion air.

第6図及び第7図は、4分割の場合の被焼却物の投入切
替装置の例を示すもので、第7図は第6図のA−A線に
おける断面図を、また、第8図及び第9図は4分割の場
合の被焼却物の投入切替装置の別の例を示すもので、第
9図は第8図のB−B線における断面図を示す。
Figures 6 and 7 show an example of a switching device for inputting materials to be incinerated in the case of dividing into four parts. 9 shows another example of a switching device for inputting materials to be incinerated in the case of four divisions, and FIG. 9 shows a cross-sectional view taken along the line B--B in FIG. 8.

第6図、第7図に示す例においては、ごみ投入口1工よ
り投入されたごみは、エアシリンダー13により傾斜方
向を切り替え可能なシュートノズル12′を介し下方の
シュートのうち12−1又は12−2の何れかへ投入さ
れる。
In the example shown in FIGS. 6 and 7, the garbage inputted from the garbage input port 1 is passed through the chute nozzle 12' whose inclination direction can be changed by the air cylinder 13 to the lower chute 12-1 or 12-1. 12-2.

さらにシュート12もエアシリンダ13′により傾斜方
向を切り替え可能なため、ごみはC方向またはD方向の
何れかへ投入される。この2段シュー)12’、12の
傾斜方向の組み合わせを変えることによりごみは4分割
された流動化の弱い分割へ投入される。
Furthermore, since the direction of inclination of the chute 12 can be switched by the air cylinder 13', the garbage can be thrown in either the C direction or the D direction. By changing the combination of the inclination directions of these two-stage shoes 12' and 12, the waste is thrown into four divided sections where fluidization is weak.

第8図、第9図に示す例においては、ごみ投入口重1よ
り投入されたごみは、エアシリンダ15〜17によりご
み滑り板18〜21を夫々所定の角度に回転させること
により対応する流動化の弱い分割へ投入できるように作
動する。
In the example shown in FIGS. 8 and 9, the garbage thrown in from the garbage input port 1 is moved into a corresponding flow by rotating the garbage sliding plates 18 to 21 at predetermined angles by the air cylinders 15 to 17, respectively. It operates in such a way that it can be input into a division with a weaker ratio.

つぎに、本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.

第10図は、焼却炉101の中央部に不燃物引出し口を
設け、2枚の分散板102.102’を不燃物引出し口
側が低くなるように傾斜して設けると共に分散板102
及び102′の下部を夫々3分割し、夫々内側部分の配
管104゜108から導入される空気量□が、外側配管
105.106及び109.110から導入される空気
量より大となるようにし、第1分割90 及び第2分割10において夫々矢印方向の旋回流を生ぜ
しめつつ、第1分割及び第2分割において流動化の弱い
部分9と流動化の強い部分10を形成させ、流動化の弱
い部分にごみを投入し、投入終了後適当な時間経過後に
該部分の流動化を強くし、流動化の強かった部分10へ
の空気吹込量を小として流動化を弱くすると共にごみ投
入を10の部分に切り替えるようにしたものであって、
その作動は第1図に基いて説明したのと同様である。
In FIG. 10, a noncombustible material outlet is provided in the center of an incinerator 101, and two dispersion plates 102 and 102' are provided at an angle so that the noncombustible material outlet side is lower.
and 102' are divided into three parts, so that the amount of air □ introduced from the inner pipes 104 and 108 is larger than the amount of air introduced from the outer pipes 105, 106 and 109, 110, A swirling flow in the direction of the arrow is generated in the first division 90 and the second division 10, respectively, and a weakly fluidized part 9 and a strongly fluidized part 10 are formed in the first and second divisions. Garbage is put into the part, and after an appropriate time has elapsed after the end of the charging, the fluidization of the part is strengthened, and the amount of air blown into the part 10 where the fluidization was strong is reduced to weaken the fluidization, and the garbage is added to the part 10. It is designed to switch between parts,
Its operation is similar to that described with reference to FIG.

また、第11図に示す例においては、焼却炉201の下
部に山型の分散板を備え、山型分散板の両裾部に不燃物
引出し口を設けると共に、各分割において外側の配管2
06及び210から導入される空気量を内側の配管20
5゜204及び209,210より導入される空気量よ
り順次大とし、第1分割部分9、第2分割部分10に夫
々旋回流を形成させるようにすると共に、第1分割9と
第2分割10の部分を流動化の弱い部分と流動化の強い
部分とするようにした点において第10図に示す実施例
と異なるのみであって、その作動は第1図に基いて説明
したのと同様である。
In addition, in the example shown in FIG. 11, a mountain-shaped dispersion plate is provided at the bottom of the incinerator 201, incombustible material draw-out openings are provided at both skirts of the mountain-shaped distribution plate, and outer piping 2 is provided in each division.
The amount of air introduced from 06 and 210 is transferred to the inner pipe 20.
5. The amount of air introduced from 204, 209, and 210 is made larger in order to form a swirling flow in the first divided portion 9 and the second divided portion 10, respectively, and the first divided portion 9 and the second divided portion 10 are The only difference from the embodiment shown in FIG. 10 is that the parts are made into a weakly fluidized part and a strongly fluidized part, and its operation is the same as that explained based on FIG. 1. be.

なお、第11図において空気吹込量の大きい分散板の上
に設けた傾斜壁211,211’は流動媒体の旋回流の
形成を容易にするためである。
Incidentally, in FIG. 11, the inclined walls 211 and 211' provided on the dispersion plate that blows a large amount of air are provided to facilitate the formation of a swirling flow of the fluid medium.

以上本発明の構成について、本発明の運転方法をまとめ
て説明する。
The configuration of the present invention and the operating method of the present invention will be described above.

1)流動床部分が平面的に複数に分割された流動床炉に
おいて、任意の一つの分割部の所定の位置に被焼却物を
投入可能な投入切替装置を備え、又、各分割毎に流動状
態を調節出来るようにした焼却炉を用いて次の条件で運
転する。
1) A fluidized bed furnace in which the fluidized bed section is divided into a plurality of parts in a plane, is equipped with a charging switching device that can charge the material to be incinerated at a predetermined position in any one divided part, and An incinerator with adjustable conditions is used and operated under the following conditions.

(1)各分割部の流動状態は全体を弱くして被燃物が緩
慢に熱分解・ガス化するような状態にしておき、分割の
うち一分割づつ順番にパルス状又はノコギリ状に流動を
一時的強めるようにする。
(1) The flow condition in each divided section is weakened as a whole so that the combustible material is thermally decomposed and gasified slowly, and the flow is made pulsed or sawtooth in one section at a time. Try to strengthen it temporarily.

1 2 (2)被焼却物は、上記の強い流動が終了した直後の分
割部分のみに投入し、決して強い流動状態にある分割部
分に投入しないようにしながら、流動の低い(弱い〉状
態から強い状態に順次切替えるようにする。
1 2 (2) The material to be incinerated should be placed only in the divided section immediately after the above-mentioned strong flow has ended, and never be placed in the divided section that is in a strong flow state. The state should be changed sequentially.

(3)  どの分割部においても、流動の弱い場合にの
み被焼却物の投入が行なわれるが被焼却物の投入が他の
部分に切り替っても一定時間弱い流動を続けた後で強い
流動に切り替える。
(3) In any divided section, materials to be incinerated are introduced only when the flow is weak, but even if the material to be incinerated is switched to another section, the flow continues to be weak for a certain period of time and then becomes a strong flow. Switch.

すなわち、どの分割においても 弱い流動持続時間≧被焼却物投入持続時間となるように
運転する。
That is, the operation is performed so that the weak flow duration≧the incineration material input duration in any division.

2)前記の方式における各分割を更に小分割し、この小
分割の各部における吹込み空気量を順次大きくなるよう
にして各分割において流動媒体の旋回運動を生じさせ、
投入した被焼却物の砂中への呑み込みを効果的にして燃
焼を効率的に行なう(第10図及び第11図参照)。
2) Each division in the above method is further divided into smaller parts, and the amount of air blown into each part of the smaller divisions is gradually increased to cause swirling motion of the fluid medium in each division,
The input material to be incinerated is effectively engulfed in the sand to efficiently burn it (see Figs. 10 and 11).

(発明の効果) (1)  流動の弱い流動床部に投入された被焼却物(
ごみ)は、まず、砂上面からの接触伝熱及び炉壁並びに
周囲の燃焼ガスからの輻射熱を受は表層からガス化及び
着火するが、核部は流動が弱いとはいえ小規模なバブリ
ングを伴う流砂状態にあり、重いごみは次第に砂中に沈
降し、軽いごみでも引続き投入されるごみの下積みとな
って大半は順次砂中へ重力で沈降して行く。
(Effects of the invention) (1) Materials to be incinerated (
Garbage) first receives contact heat transfer from the upper surface of the sand and radiant heat from the furnace wall and surrounding combustion gas, and is gasified and ignited from the surface layer, but the core part causes small-scale bubbling, although the flow is weak. The heavy garbage gradually settles into the sand, and even the lighter garbage becomes a pile of garbage that is subsequently thrown in, and most of it gradually settles into the sand by gravity.

一部の軽いごみや燃え易く乾いたごみは沈降することな
く燃え尽きてしまうが、酸素が比較的少ない還元雰囲気
で、しかも激しい流動による攪拌もないので、表層から
進むゆっくりとした燃焼を受け、焼却炉の上部のフリー
ボード部の容量を超えるガスの発生は防止される。
Some light garbage and dry combustible garbage burn up without settling, but since the reducing atmosphere is relatively low in oxygen and there is no agitation caused by vigorous flow, they are subject to slow combustion that progresses from the surface layer and are incinerated. Gas generation exceeding the capacity of the freeboard section at the top of the furnace is prevented.

また、砂中に呑み込まれたごみは徐々に沈降しながら周
囲の砂の熱を受けつつ還元雰囲気でゆっくりと水分が蒸
発し、且つ熱分解・ガス化し、次第に固定炭素の多い状
態へと移3 4 行する。
In addition, the garbage swallowed up in the sand gradually sinks while receiving heat from the surrounding sand, slowly evaporates water in a reducing atmosphere, and is thermally decomposed and gasified, gradually shifting to a state with a large amount of fixed carbon. 4 rows.

この状態で、ごみの投入が他の分割へ切り替わるが、な
お一定時間流動の弱い状態を継続するので、殆んどの水
分及び揮発分は無くなり、固定炭素を中心とした燃焼へ
移行する。
In this state, the waste input is switched to another division, but since the state of weak flow continues for a certain period of time, most of the moisture and volatile matter disappear, and the combustion shifts to mainly fixed carbon.

この時点で強い流動に切り替えるので、砂中での攪拌の
促進及び十分な酸素の供給の下で固定炭素を中心とした
残留物は過大な未燃ガスを発生することなく完全燃焼さ
れる。
At this point, the flow is switched to strong flow, so that the residue mainly consisting of fixed carbon is completely combusted without generating excessive unburned gas under the promotion of agitation in the sand and the supply of sufficient oxygen.

(2) ごみのような不均一な性状並に形状を有するも
のは、その投入量及び質の時間的変動を避けることは困
難であるが、このような変動要因を持った投入物を流動
化の弱い部分のみに投入することにより、投入量が過剰
な時でもガス化量は抑制され、又、投入量が過少の時或
いはとぎれた時には、それ以前に砂中に保留されている
ごみのガス化が継続しているため、流動の弱い部分は一
種のアキュムレータの機能を果たし、フリーボード部へ
放出される未燃ガスの量は時間的に均一化される。
(2) It is difficult to avoid temporal fluctuations in the input quantity and quality of items such as garbage that have non-uniform properties and shapes, but it is possible to fluidize inputs with such fluctuation factors. By injecting only into weak areas of the sand, the amount of gasification can be suppressed even when the amount of input is excessive, and when the amount of input is too low or interrupted, the gas from the garbage previously retained in the sand can be suppressed. As the gas continues to flow, the weakly flowing portion acts as a kind of accumulator, and the amount of unburned gas released into the freeboard portion becomes uniform over time.

5 この結果、フリーボード部での後燃焼は2次空気の補助
的調節で十分追従でき、未燃有害ガスの発生を防止でき
る。
5. As a result, after-combustion in the freeboard section can be sufficiently followed by supplementary adjustment of the secondary air, and generation of unburned harmful gases can be prevented.

(3)一般にごみから生ずる揮発分は、砂中においては
ガス化によるものが主で、これは砂上に出た後炎を上げ
て燃える。従って、この場合発生する熱の砂への還元率
は比較的小さい。
(3) In general, volatile matter generated from garbage is mainly gasified in sand, and after reaching the surface of the sand, it ignites a flame and burns. Therefore, the rate of reduction of the heat generated in this case to the sand is relatively small.

一方固定炭素のようなものは砂中でも酸素の供給さえあ
れば固体燃焼するので砂への熱の還元率は大きい。
On the other hand, fixed carbon burns as a solid even in sand as long as oxygen is supplied, so the rate of heat reduction to sand is high.

従って、新しいごみが供給される流動化の弱い部分では
揮発分のガス化と水分の蒸発が主に行なわれるので、砂
への熱還元が少なく、砂の温度は次第に低下して行くが
、この間砂中は次第に固定炭素が多い状態となり、この
状態で所定時間後に流動化を強めることにより砂中にお
ける固定炭素の燃焼が活発に行なわれ、その燃焼熱が砂
へ還元されて砂の温度は再び高い温度を回復する。
Therefore, gasification of volatile matter and evaporation of water mainly take place in the weakly fluidized part where new waste is supplied, so there is little heat reduction to the sand, and the temperature of the sand gradually decreases. The amount of fixed carbon in the sand gradually increases, and in this state, by increasing fluidization after a predetermined period of time, the fixed carbon in the sand is actively burned, and the heat of combustion is returned to the sand, causing the temperature of the sand to rise again. Recover high temperature.

各分割が連続的にこの温度サイクルを繰り6 返すので、平均炉床温度は安定したレベルとなり、流動
床炉の長所の一つであるバッチ運転の容易性を損うこと
なく安定した運転を行なうことができる。
Since each division continuously repeats this temperature cycle6, the average hearth temperature remains at a stable level, allowing stable operation without compromising the ease of batch operation, which is one of the advantages of fluidized bed furnaces. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を説明するための本発明で用
いる焼却炉の縦断面図、第2図は、第1分割部と第2分
割部におけるごみの投入と流動化の状態を示す図、第3
図は、ごみの供給と流動床の流動状態、入熱、ガス化及
び燃焼量の関係を示す図、第4図及び第5図は夫々2分
割ベツド及び4分割ベツドにおける全熱入力と全ガス化
の経時的変化を示す図、第6図〜第9図は4分割の場合
の投入方向切替装置の異なる2つの例を示す断面図であ
って、第7図は第6図のA−A線における断面図を、第
9図は第8図のB−B線における断面図、第10図及び
第11図は夫々第1図に示す焼却炉とは異なる本発明を
実施する焼却炉の断面図を示すものである。 1.101.201・・・焼却炉、 2.102,202,202’  ・・・散気板、4、
 103. 107. 203. 207  ・ ・ 
・流動用(燃焼用)空気導入管、 9・・・第−分割部、 10・・・第2分割部、 11・・・ごみ投入口、 12・・・ごみ投入方向切替装置。
Fig. 1 is a longitudinal cross-sectional view of an incinerator used in the present invention for explaining one embodiment of the present invention, and Fig. 2 shows the state of garbage input and fluidization in the first dividing section and the second dividing section. Figure shown, 3rd
The figure shows the relationship between the supply of waste and the fluidized state of the fluidized bed, heat input, gasification, and combustion amount. FIGS. 6 to 9 are cross-sectional views showing two different examples of the input direction switching device in the case of four divisions, and FIG. 9 is a cross-sectional view taken along line B-B in FIG. 8, and FIGS. 10 and 11 are cross-sectional views of an incinerator implementing the present invention that is different from the incinerator shown in FIG. 1. The figure is shown below. 1.101.201...Incinerator, 2.102,202,202'...Diffuser plate, 4,
103. 107. 203. 207 ・ ・
- Flowing (combustion) air introduction pipe, 9...-th division part, 10... second division part, 11... garbage input port, 12... garbage input direction switching device.

Claims (1)

【特許請求の範囲】[Claims] 1、炉床下部の散気板又は散気管群から流動用空気を供
給し、散気板又は散気管群上の流動媒体及び被焼却物を
流動化させて被焼却物を焼却する流動床焼却炉において
、散気板又は散気管群を複数に分割し、炉床内における
流動媒体の一部の流動化を強くし、他の部分の流動化を
弱くし、その流動化の強い部分を適当な周期で他の部分
に切替えると共に、流動化が弱くなるように切替えた直
後に流動化を弱くした部分に被焼却物を投入するように
被焼却物の投入方向切替装置を連動させることにより、
流動化の弱い部分に被焼却物を投入し、被焼却物の熱分
解ガス化並びに燃焼をゆるやかに行わせ、揮発分が殆ん
ど無くなった時点で流動化を大きくして流動層内の循環
混合を十分に行うことを特徴とする流動床炉の安定燃焼
方法。
1. Fluidized bed incineration, in which fluidized air is supplied from a diffuser plate or a group of diffuser tubes in the lower part of the hearth, and the fluidized medium and the material to be incinerated on the diffuser plate or group of diffuser tubes are fluidized and the material to be incinerated is incinerated. In a furnace, a diffuser plate or a group of diffuser tubes is divided into a plurality of parts, and the fluidization of a part of the fluidized medium in the hearth is strengthened, while the fluidization of other parts is weakened. By interlocking the incineration material input direction switching device so that the material to be incinerated is switched to another part at a certain cycle, and immediately after switching to the part where the fluidization is weakened, the incineration material is put into the part where the fluidization is weakened.
The material to be incinerated is put into the area where fluidization is weak, and the material to be incinerated is slowly pyrolyzed, gasified, and burned, and when the volatile matter is almost gone, fluidization is increased and circulation within the fluidized bed is started. A stable combustion method for a fluidized bed furnace characterized by sufficient mixing.
JP1338269A 1989-12-28 1989-12-28 Stable combustion method in fluidized bed incinerator Expired - Lifetime JPH07111245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1338269A JPH07111245B2 (en) 1989-12-28 1989-12-28 Stable combustion method in fluidized bed incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1338269A JPH07111245B2 (en) 1989-12-28 1989-12-28 Stable combustion method in fluidized bed incinerator

Publications (2)

Publication Number Publication Date
JPH03199810A true JPH03199810A (en) 1991-08-30
JPH07111245B2 JPH07111245B2 (en) 1995-11-29

Family

ID=18316535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1338269A Expired - Lifetime JPH07111245B2 (en) 1989-12-28 1989-12-28 Stable combustion method in fluidized bed incinerator

Country Status (1)

Country Link
JP (1) JPH07111245B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141079A (en) * 1976-05-19 1977-11-25 Kurashiki Boseki Kk Fluidizing apparatus for fluidized bed incinerator
JPS60103214A (en) * 1983-11-10 1985-06-07 Mitsubishi Heavy Ind Ltd Fluidized bed burning device
JPS62169915A (en) * 1986-01-22 1987-07-27 Ishikawajima Harima Heavy Ind Co Ltd Stable combustion method for fluidized bed furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141079A (en) * 1976-05-19 1977-11-25 Kurashiki Boseki Kk Fluidizing apparatus for fluidized bed incinerator
JPS60103214A (en) * 1983-11-10 1985-06-07 Mitsubishi Heavy Ind Ltd Fluidized bed burning device
JPS62169915A (en) * 1986-01-22 1987-07-27 Ishikawajima Harima Heavy Ind Co Ltd Stable combustion method for fluidized bed furnace

Also Published As

Publication number Publication date
JPH07111245B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
WO2004092648A1 (en) Method of controlling combustion of waste incinerator and waste incinerator
JPH03274309A (en) Incinerator for polymer material to be incinerated
JP3582710B2 (en) Combustion method of stoker type incinerator and stoker type incinerator
JPS62169914A (en) Stable combustion method for fluidized bed furnace
CA1290988C (en) Method of combustion for fluidized bed incinerators
JPH03199810A (en) Stable combustion method in fluidized bed type incinerator
JP2004239509A (en) Combustion control method of refuse incinerator, and refuse incinerator
JPS61205720A (en) Lateral type fluidized bed type incinerator
JPH11270816A (en) Method and apparatus for reducing dioxin in melting furnace
JPH03199811A (en) Stable combustion process in fluidized bed type incinerator
JP3442521B2 (en) Combined fluidized bed waste combustion boiler
JP3790418B2 (en) Operating method of external circulating fluidized bed furnace for waste incinerator with high water content and high volatility such as sewage sludge
JPH03125808A (en) Fluidized-bed type refuse incinerator
JP2948872B2 (en) Fluidized bed combustion of waste
JP2955943B2 (en) Arrangement structure of diffuser pipe in fluidized incinerator
JP2948876B2 (en) Fluidized bed combustion of waste
JP3372526B2 (en) Waste treatment method and apparatus
JP2948868B2 (en) Fluidized bed combustion of waste
JP3310853B2 (en) Superheated steam production equipment using waste incineration heat
JP2004163009A (en) Operation method of waste incineration system and waste incineration system
JP2937737B2 (en) Fluidized bed combustion method and apparatus with partial combustion
JP2004301448A (en) Fluid bed incinerator and its operating method
JP2002206717A (en) Fluidized bed type incinerator
EP1500875A1 (en) Method of operating waste incinerator and waste incinerator
JP3172751B2 (en) Fluidized bed combustion method