JPH03198952A - Method for supplying molten metal in continuous casting - Google Patents

Method for supplying molten metal in continuous casting

Info

Publication number
JPH03198952A
JPH03198952A JP34168689A JP34168689A JPH03198952A JP H03198952 A JPH03198952 A JP H03198952A JP 34168689 A JP34168689 A JP 34168689A JP 34168689 A JP34168689 A JP 34168689A JP H03198952 A JPH03198952 A JP H03198952A
Authority
JP
Japan
Prior art keywords
nozzle
porous refractory
horizontal cross
submerged nozzle
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34168689A
Other languages
Japanese (ja)
Inventor
Nobufumi Kasai
宣文 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP34168689A priority Critical patent/JPH03198952A/en
Publication of JPH03198952A publication Critical patent/JPH03198952A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent drift of molten steel in a submerged nozzle and to improve the quality of cast slab by blowing gas through a porous refractory fitted as projecting from inner wall face at pushing-out side of a slider at upper part of inner hole in the submerged nozzle to restrain the drift of pouring stream. CONSTITUTION:The porous refractory 9 for blowing Ar gas 10, etc., from almost perpendicular direction to the drift of molten steel is fitted at upper part of inner hole in the submerged nozzle 7. As the molten steel stream poured into the submerged nozzle 7 through sliding gate 3 has tendency to drift to pushing- out side of the slider, the porous refractory 9 is fitted as projecting to the inner hole only at the pushing-out side of slider on inner wall face at the upper part of submerged nozzle. Shape and area of horizontal cross section of outlet hole of lower fixed plate 6 in the sliding nozzle 3 and the submerged nozzle pouring hole fitting the porous refractory 9 are desirable to be same. Further, the areas are desirable to be 60-80% the horizontal cross sectional area in the inner hole at straight barrel part of the submerged nozzle without the porous refractory.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、スライディングゲートおよび浸漬ノズルを
用いる連続鋳造方法において、浸漬ノズル内の溶鋼流の
偏流を防止する給湯方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hot water supply method for preventing drift of molten steel in a submerged nozzle in a continuous casting method using a sliding gate and a submerged nozzle.

(従来の技術) 連続鋳造においては、タンデイシュから鋳型へ供給され
る溶湯量の制御や供給停止のためにストッパーまたはス
ライディングゲートが使用される。
(Prior Art) In continuous casting, a stopper or a sliding gate is used to control the amount of molten metal supplied from the tundish to the mold and to stop the supply.

ストッパーはノズルとの嵌合部が少ないため場止めを確
実に行えるという利点を有する。しかし、ストッパーは
オン−オフ制御しかできないうえ、そのヘッドが溶損し
たり割れたりすると制御不能になることがある。一方、
スライディングゲートは溶m流量制御を自由に行うこと
ができ、鋳造速度に合わせて作動するようにすれば自動
制御nが可能となるので、最近ではストッパーに替わっ
て広く使用されるようになったきた。
The stopper has the advantage that it can be reliably stopped because there are few fitting parts with the nozzle. However, the stopper can only be used for on-off control, and the stopper may become uncontrollable if its head melts or breaks. on the other hand,
Sliding gates can freely control the flow rate of the melt, and automatic control is possible if they operate according to the casting speed, so they have recently become widely used in place of stoppers. .

第1図は、従来のスライディングゲート方式の注湯装置
の代表的な例を示す縦断面図である0図示のとおり、装
置はスライディングゲート3とその下に取りつけられた
浸漬ノズル7とからなり、スライディングゲート3は上
固定盤4と下固定盤6およびこれらの固定盤の間を矢印
方向に摺動するスライダー5から構成されている。溶鋼
2it8は、タンデイシュ底部耐火物1に取り付けたタ
ンデイシュノズル2からスライディングゲート3を経て
、浸漬ノズル7を下降し吐出口1a、7bから鋳型内に
出て行くのであるが、その際、注入流の直進を妨げるス
ライダー5の影響を受けて、溶鋼流8は図示のようにノ
ズルセンターからずれて、浸漬ノズル内で偏流が起こり
鋳型内への片流れを起こす。
FIG. 1 is a vertical cross-sectional view showing a typical example of a conventional sliding gate type pouring device. As shown in FIG. The sliding gate 3 includes an upper fixed plate 4, a lower fixed plate 6, and a slider 5 that slides between these fixed plates in the direction of the arrow. The molten steel 2it8 flows from the tundish nozzle 2 attached to the tundish bottom refractory 1, passes through the sliding gate 3, descends through the immersion nozzle 7, and exits into the mold from the discharge ports 1a and 7b. Under the influence of the slider 5 that prevents the flow from moving straight, the molten steel flow 8 deviates from the nozzle center as shown in the figure, causing a drift in the submerged nozzle and a one-sided flow into the mold.

この片流れが生じると場面変動やパウダー巻き込み等に
起因する欠陥が鋳片に生じ易くなる。
When this one-sided flow occurs, defects due to scene changes, powder entrainment, etc. are likely to occur in the slab.

このため、従来から浸漬ノズル中の溶鋼流の偏流を防止
する対策が講じられており、例えば[銖と鋼’ 84−
5923 Jでは浸漬ノズル内孔下端をプール状にして
溶鋼偏流を抑制するとともに、左右に吐出孔(上端より
左右側々にArを吹き込める)をもつ浸漬ノズルを使用
して左右のA「吹き込み量を個別に調整して偏流を抑制
する方法が示されている。しかしながら、Ar吹き込み
鼠を左右独立に制御するとノズル内へのA「吹き込み量
が増加する。
For this reason, measures have been taken to prevent the drift of the molten steel flow in the immersion nozzle.
In 5923 J, the lower end of the inner hole of the immersed nozzle is shaped into a pool to suppress drifting of molten steel, and the immersed nozzle with discharge holes on the left and right sides (argon can be injected from the upper end to the left and right sides) is used to increase the amount of injection into the left and right A. However, if the left and right Ar blowers are controlled independently, the amount of A blowing into the nozzle increases.

そうすると鋳型内の溶鋼場面の変動が増し、パウダーの
不均一流入、鋳片表面のオツシレーションマークの乱れ
、中炭素鋼では縦割れの増加など好ましくない影響が多
々出てくる。
This increases fluctuations in the molten steel scene within the mold, resulting in many undesirable effects such as uneven inflow of powder, disordered oscillation marks on the slab surface, and increased vertical cracking in medium carbon steel.

また、[特開昭57−130745号公報」には、浸漬
ノズル直胴部にラセン状の溝または突起を設け、溶鋼に
ノズルの中心軸を軸とする旋回流を与える方法が提案さ
れている。しかし、この方法の主目的は、旋回流をノズ
ル内壁への剪断力として働かせ、内壁にAlzOxが付
着するのを防止することにあり、浸漬ノズル内の溶鋼の
偏流は旋回流によって抑制されたとしても左右吐出孔の
吐出量を等しくするという目的に対しては十分とは言え
ない。
Furthermore, [JP-A-57-130745] proposes a method in which spiral grooves or protrusions are provided in the straight body of a submerged nozzle to give molten steel a swirling flow centered on the central axis of the nozzle. . However, the main purpose of this method is to cause the swirling flow to act as a shearing force on the inner wall of the nozzle and to prevent AlzOx from adhering to the inner wall. However, it cannot be said that this is sufficient for the purpose of equalizing the discharge amount of the left and right discharge holes.

さらに、ノズル直管部において耐火物厚みが不均一とな
り、ヒートショックによる割れが生し易くなる。
Furthermore, the thickness of the refractory material becomes uneven in the straight pipe portion of the nozzle, making it more likely that cracks will occur due to heat shock.

(発明が解決しようとするi!l!IJi)本発明の目
的は、従来のスライディングゲートおよび浸漬ノズルを
用いる連続鋳造給湯法の問題点、即ち、スライディング
ゲートから浸漬ノズルに給湯された溶融金属の偏流を抑
制して、鋳型内湯面レベル差を解消し、パウダーの巻き
込みや介在物の偏在を防止して品質のよい鋳片を製造す
ることができる給湯方法を提供することにある。
(i!l!IJi to be solved by the invention) The purpose of the present invention is to solve the problems of the conventional continuous casting metal supply method using a sliding gate and an immersion nozzle. It is an object of the present invention to provide a hot water supply method capable of producing high-quality slabs by suppressing drifting, eliminating differences in the level of hot water in a mold, and preventing entrainment of powder and uneven distribution of inclusions.

(課題を解決するための手段) 本発明者は、スライディングゲートから浸漬ノズルにか
けて生じる偏流の生成と、その抑制法について水を用い
たコールドモデルテストならびに連続鋳造装置による実
機試験で検討を進め、次のような知見を得た。
(Means for Solving the Problems) The present inventor has conducted a cold model test using water and an actual machine test using a continuous casting machine to investigate the generation of drifting flow that occurs from the sliding gate to the immersion nozzle and how to suppress it. We obtained the following knowledge.

(al前述の第1図に示すように、タンデイツシュノズ
ル2から吐出される流れ8は、スライディングゲートの
スライダー5の影響で中心から外れ、浸漬ノズル内では
スライダー5の閉塞側に偏流し、浸漬ノズルの吐出ロア
aの流量8aは吐出ロアbの流量8bより大きくなり、
流量差を生ずる。
(AlAs shown in FIG. 1 mentioned above, the flow 8 discharged from the tundish nozzle 2 deviates from the center due to the influence of the slider 5 of the sliding gate, and in the submerged nozzle, it flows toward the closed side of the slider 5, The flow rate 8a of the discharge lower a of the immersion nozzle is larger than the flow rate 8b of the discharge lower b,
This causes a difference in flow rate.

(b)浸漬ノズルの左右吐出孔から分岐する流れ8aお
よび8bには、後に説明する第3図に示すように、短周
期と長周期の流速(流量)の変動がある。このうち短周
期で発生する変動を抑制することは不可能であるが、長
周期で発生するマクロ的な変動は、ノズル内の偏流に対
してほぼ垂直の方向からガスを吹き込み、偏流の中心を
浸漬ノズル中心軸に向けることにより解消し得る。
(b) The flows 8a and 8b branching from the left and right discharge holes of the immersion nozzle have short-cycle and long-cycle flow velocity (flow rate) fluctuations, as shown in FIG. 3, which will be described later. Of these, it is impossible to suppress fluctuations that occur in short periods, but macroscopic fluctuations that occur in long periods can be suppressed by blowing gas from a direction almost perpendicular to the drifting flow in the nozzle. This can be resolved by directing the immersion nozzle toward the central axis.

(C)マクロ的な変動を抑制することにより場面変動と
、それに伴うパウダー巻き込み、介在物の偏在は大幅に
減少させることができる。
(C) By suppressing macroscopic fluctuations, scene fluctuations, accompanying powder entrainment, and uneven distribution of inclusions can be significantly reduced.

本発明は上記の知見に基づいてなされたものであり、そ
の要旨は、「スライディングゲートおよび浸漬ノズルを
用いる連続給湯法であって、浸漬ノズルの内孔上部のス
ライダー押し出し側内壁面から張り出させて取り付けた
ポーラス耐火物を介して、ガスを吹き込み、注入量の偏
流を制御することを特徴とする連続鋳造給湯法」にある
The present invention has been made based on the above findings, and the gist thereof is ``a continuous hot water supply method using a sliding gate and an immersed nozzle, in which a continuous hot water supply method using a sliding gate and an immersed nozzle protrudes from the inner wall surface of the slider extrusion side at the upper part of the inner hole of the immersed nozzle. ``Continuous casting hot water supply method'' characterized by blowing gas through a porous refractory installed in a continuous casting method to control uneven flow of the injection amount.

本発明方法の実施に際しては、 ■ ガスの吹き込みゲージ圧力を1〜4 kg/cm”
の範囲とし、かつ吹き込み流量を5〜10 Q /wi
nの範囲とすること、 ■ ポーラス耐火物の取り付け範囲が浸漬ノズル内孔の
上端から長手方向に50MIm以」二であり、ポーラス
耐火物取り付け部の注入孔水平断面積が浸漬ノズル直胴
部の水平断面積の60〜80%である浸漬ノズルを使用
すること、 ■ ポーラス耐火物を取り付りた浸漬ノズル1人孔の形
状および水平断面積が、スライディングゲート下固定盤
の出口孔の形状および水平断面積と等しい浸漬ノズルを
用いること、 が望ましい、上記の■〜■はそれぞれ独立に実施しても
よいが、全てを合わせて実施するのが最も望ましい。
When carrying out the method of the present invention, (1) set the gas blow gauge pressure to 1 to 4 kg/cm.
and the blowing flow rate is 5 to 10 Q/wi.
■ The installation range of the porous refractory is 50 MIm or more in the longitudinal direction from the upper end of the inner hole of the immersion nozzle, and the horizontal cross-sectional area of the injection hole of the porous refractory attachment part is within the straight body of the immersion nozzle. Use an immersed nozzle with a horizontal cross-sectional area of 60 to 80%; ■ The shape and horizontal cross-sectional area of the single hole of the immersed nozzle fitted with porous refractories should be the same as the shape of the exit hole of the lower fixed plate of the sliding gate and It is desirable to use an immersion nozzle with a horizontal cross-sectional area equal to the horizontal cross-sectional area.Although each of the above (1) to (4) may be carried out independently, it is most desirable to carry out all of them together.

ポーラス耐火物から吹き込むガスとしては、偏流防止と
いう目的では何でもよいが、溶鋼組成への影響等を考慮
すれば、不活性ガス、特にArガスが望ましい。
Any gas may be used to blow in from the porous refractory for the purpose of preventing drift, but in consideration of the influence on the composition of molten steel, inert gas, especially Ar gas, is preferable.

(作用) 以下、本発明の給湯方法を図面によって説明する。(effect) Hereinafter, the hot water supply method of the present invention will be explained with reference to the drawings.

第2図(a)は、本発明方法で用いる給湯装置の要部の
縦断面を示す図、第2図Φ)は第2図(a)のA−A断
面を示す図である。
FIG. 2(a) is a longitudinal cross-sectional view of a main part of a water heater used in the method of the present invention, and FIG. 2(Φ) is a cross-sectional view taken along line AA in FIG. 2(a).

図に示すように、浸漬ノズル内孔上部に溶鋼偏流に対し
て、はぼ垂直な方向から、例えば^rガス10を吹き込
めるポーラス耐火物9が取り付けられている。スライデ
ィングゲート3を経て、浸漬ノズル7内へ注入される溶
鋼流は前述した第1図に示したようにスライダー押出し
側に偏流してくるので、ポーラス耐火物9は第2図(b
)に示すように浸漬ノズル上部内壁面のスライダー押出
し側にだけ内孔に張り出させて取り付ければよい。
As shown in the figure, a porous refractory 9 into which, for example, ^r gas 10 can be injected is attached to the upper part of the inner hole of the immersion nozzle from a direction substantially perpendicular to the drift of molten steel. The molten steel flow injected into the immersion nozzle 7 through the sliding gate 3 is biased toward the slider extrusion side as shown in FIG.
), it is sufficient to attach the immersion nozzle so that it protrudes into the inner hole only on the slider extrusion side of the upper inner wall surface.

スライディングゲート3の下固定盤6の出口孔ならびに
ポーラス耐火物9を取り付けた浸漬ノズル注入孔の水平
断面の形状および面積は同一であるのが望ましく、また
、その面積はポーラス耐火物のない浸漬ノズル直胴部の
内孔の水平断面積の60〜80%であるのが好ましい。
It is desirable that the horizontal cross-sectional shape and area of the outlet hole of the lower fixed plate 6 of the sliding gate 3 and the injection hole of the immersion nozzle to which the porous refractory 9 is attached are the same; It is preferably 60 to 80% of the horizontal cross-sectional area of the inner hole of the straight body.

この値が60%未満では、鋳造初期に吐出流鼠を増加さ
せていく過程での吐出流量制御が困難となり、場面変動
が生じ易くなる。また、80%を超えると浸漬ノズル内
壁面からのポーラス耐火物9の張り出しが小さすぎ、溶
鋼偏流に対するガス吹き込みの作用が弱くなり、ノズル
内の偏流が抑制されない。
If this value is less than 60%, it becomes difficult to control the discharge flow rate during the process of increasing the discharge flow rate in the initial stage of casting, and scene fluctuations tend to occur. On the other hand, if it exceeds 80%, the protrusion of the porous refractory 9 from the inner wall surface of the immersion nozzle is too small, the effect of gas blowing on the drifting of molten steel becomes weak, and the drifting inside the nozzle is not suppressed.

また、浸漬ノズル外部から浸漬ノズル内孔へのガス吹き
込みはポーラス耐火物を介し、長平方向50m−以上の
範囲で均一にガスを供給することが望ましい。50Il
l1未満だと吹き込み気泡は流れを直進させるのに不十
分であり、ノズル内の偏流は充分には抑制されない。
Further, it is desirable that gas is blown from the outside of the immersion nozzle into the inner hole of the immersion nozzle through a porous refractory, and the gas is uniformly supplied over a range of 50 m or more in the longitudinal direction. 50Il
If it is less than 11, the blown bubbles are insufficient to make the flow go straight, and the drift in the nozzle is not sufficiently suppressed.

次に、本発明のガス吹き込み条件を説明する。Next, gas blowing conditions of the present invention will be explained.

前述の第2図に示す給湯装置を用いて、第1表に示す条
件でスラブの連続鋳造を行った。
Slabs were continuously cast under the conditions shown in Table 1 using the water heater shown in FIG. 2 described above.

第1表 第3図は、ノズル内の偏流と吐出流の流速および場面変
動との関係を模式的に説明する図である。
Table 1 and FIG. 3 are diagrams schematically illustrating the relationship between the drifted flow in the nozzle, the flow velocity of the discharged flow, and scene fluctuations.

即ち、第3図(a)のように、左右のノズルからでる湯
の流速をそれぞれ■。1、VOIとし、左右の場面高さ
をHL、Hっとすれば、鋳造の時間に対して流速は第3
図(b)のように、また場面は第3図(C)のように変
動する。そして浸漬ノズル内の偏流の程度が大きいほど
、ノズル下端左右の吐出口の流量差も大となり、スラブ
用鋳型の左右両短辺側の場面レベル差も大きくなる。す
なわら、この左右両短辺側の湯面レベル差が浸漬ノズル
内の偏流の程度を示す尺度となる。
That is, as shown in Fig. 3(a), the flow velocity of the hot water coming out of the left and right nozzles is 2, respectively. 1. If VOI is set and the left and right scene heights are HL and H, then the flow velocity is 3rd with respect to the casting time.
The scene changes as shown in FIG. 3(b) and as shown in FIG. 3(c). The greater the degree of drift in the immersion nozzle, the greater the difference in flow rate between the left and right discharge ports at the lower end of the nozzle, and the greater the difference in scene level between the left and right short sides of the slab mold. In other words, the difference in the level of the hot water on both the left and right short sides is a measure of the degree of drift in the immersion nozzle.

第4図(a)は、吹き込みガスとしてA「を用い、その
吹き込みゲージ圧力と左右両短辺側の湯面レベル差との
関係を調べた結果である。ゲージ圧力が1 kg/cm
”未満では吹き込み側に流れは偏流し、4kg/cm”
を趙えると吹き込みの反対側に偏流し、いずれの場合も
湯面レベル差は大きくなる。
Figure 4(a) shows the results of investigating the relationship between the blowing gauge pressure and the hot water level difference on both the left and right short sides using A'' as the blowing gas.When the gauge pressure is 1 kg/cm
``If it is less than 4kg/cm, the flow will be biased towards the blowing side.''
If the water is turned over, the flow will be diverted to the opposite side of the blower, and in either case, the difference in hot water level will become larger.

第4図(b)は、Ar吹き込み法要と左鋳型短辺側の場
面レベル差との関係を示す、 Ar流鼠が5 P/mi
n未満だと均一な吹き込みができず、吹き込み側に流れ
は偏流し、101 /winを超えると鋳型内での場面
変動が増加し、吹き込みの反対側に偏流する。
Figure 4 (b) shows the relationship between the Ar blowing memorial service and the scene level difference on the short side of the left mold.
If it is less than n, uniform blowing will not be possible and the flow will be biased toward the blowing side, and if it exceeds 101/win, the scene variation within the mold will increase and the flow will be biased toward the opposite side of the blowing.

第4図(a)および(ト))の結果から、ガス吹き込み
ゲージ圧力はl kg/cm”〜4 kg/cm”の範
囲とし、ガス吹き込み流量ば51 /5in−101/
■inの範囲にずれば、溶鋼流の中心をほぼノズル中心
に制御できることになる。そしてこの場合、偏流に起因
する場面変動が小さくなり、鋳片の欠陥が殆ど無くなる
From the results in Figures 4(a) and (g)), the gas blowing gauge pressure was set in the range of 1 kg/cm" to 4 kg/cm", and the gas blowing flow rate was 51/5in-101/
(2) If it is shifted to the in range, the center of the molten steel flow can be controlled to be approximately centered on the nozzle. In this case, fluctuations in the scene due to drifting flow are reduced, and defects in the slab are almost eliminated.

(実施例) 前記の第1表に示した条件での連続鋳造において、Ar
ガス吹き込み(流1 : 7 f/win、圧カニ3.
5kg/c+e”G)を行って鋳型内左右両短辺側の場
面レベル差および全酸素含有量(以下、T−(0)と略
す)を調査するとともに、次の(1)式に示す鋳片にお
ける介在物偏在指数ならびに(2)式に示す製品表面欠
陥発生指数を調査した。
(Example) In continuous casting under the conditions shown in Table 1 above, Ar
Gas blowing (flow 1: 7 f/win, pressure crab 3.
5kg/c+e”G) to investigate the scene level difference between the left and right short sides of the mold and the total oxygen content (hereinafter abbreviated as T-(0)), and also The uneven distribution index of inclusions in the piece and the product surface defect occurrence index shown in equation (2) were investigated.

(ただし、左側よりAr吹き込みの場合)製品表面欠陥
発生指数 製品全圧延量 (比較例) Arガス吹き込みを行わなかったこと以外は、実施例と
同様の方法で連続鋳造を行った。
(However, in the case of Ar injection from the left side) Product surface defect occurrence index Product total rolling amount (Comparative example) Continuous casting was performed in the same manner as in the example except that Ar gas injection was not performed.

第5図は、鋳型長辺方向のT−(0)の偏在の程度を実
施例と比較例を対比して示す図である。
FIG. 5 is a diagram illustrating the degree of uneven distribution of T-(0) in the long side direction of the mold in an example and a comparative example.

実施例(・)では左右の鋳型短辺側のT−(0)はほと
んど同じであるのに対し、比較例(○)では右鋳型短辺
側のT−(0)が左鋳型短辺側より高くなっている。
In the example (・), the T-(0) on the short side of the left and right molds is almost the same, whereas in the comparative example (○), the T-(0) on the short side of the right mold is the same on the short side of the left mold. It's higher.

第6図は、鋳型長辺方向の介在物の偏在の程度を示す介
在物偏在指数を対比して示す図である。
FIG. 6 is a diagram showing a comparison of the inclusion uneven distribution index indicating the degree of uneven distribution of inclusions in the long side direction of the mold.

実施例の介在物の偏在の程度は比較例の約1/4に減少
している。
The degree of uneven distribution of inclusions in the example is reduced to about 1/4 of that in the comparative example.

上記の結果から、本発明方法を実施することにより浸漬
ノズル内の偏流が防止され、浸漬ノズル左右の吐出口流
量差が解消し、左右の鋳型短辺側の場面レベル差の変動
がなくなって介在物の偏差がない均質な鋳片を製造でき
ることがわかる。
From the above results, by carrying out the method of the present invention, drifting in the immersed nozzle is prevented, the difference in flow rate between the left and right discharge ports of the immersed nozzle is eliminated, and the fluctuation in the scene level difference between the short sides of the left and right molds is eliminated. It can be seen that homogeneous slabs with no material deviation can be manufactured.

第7図は、製品表面欠陥発生指数を実施例と比較例を対
比して示す図である。
FIG. 7 is a diagram illustrating product surface defect occurrence index in comparison between Examples and Comparative Examples.

本発明方法の実施により介在物、場面変動およびパウダ
ー巻き込みに起因する製品表面欠陥が大幅に減少するこ
とがわかる。
It can be seen that product surface defects due to inclusions, scene variations and powder entrainment are significantly reduced by implementing the method of the invention.

(発明の効果) 本発明方法によれば、スライディングゲートを用いる給
湯法で不可避的に発生する浸漬ノズル内の溶鋼偏流を防
止することができ、左右の吐出口からの流量差が解消さ
れる。その結果、介在物の偏在、パウダーの巻き込み、
場面変動がなくなり、鋳片品質が向上し、製品表面欠陥
を大幅に減少させることができる。
(Effects of the Invention) According to the method of the present invention, it is possible to prevent the drift of molten steel in the submerged nozzle that inevitably occurs in the hot water supply method using a sliding gate, and the difference in flow rate from the left and right discharge ports is eliminated. As a result, uneven distribution of inclusions, powder entrainment,
Scene fluctuations are eliminated, slab quality is improved, and product surface defects can be significantly reduced.

本発明方法は、鋼の連続鋳造だけでなくあらゆる金属の
連続鋳造に通用できることはいうまでもない。
It goes without saying that the method of the present invention is applicable not only to continuous casting of steel but also to continuous casting of all metals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のスライディングゲート方式の給湯装置
の縦断面と溶鋼流れを模式的に示す図、第2図(a)は
、本発明方法で用いる給湯装置の要部の縦断面と溶鋼流
れを模式的に示す図、第2図Φ)は、第2図(a)のA
−A断面図、第3図は、浸漬ノズルの左右吐出孔からの
溶鋼の流速と場面の変動を説明する図で、(a)はノズ
ル付近の模式図、(b)は吐出流の流速の推移、(C)
は湯面変動の推移を示す。 第4図(a)は、鋳型内左右両短辺の湯面レベル差とA
r吹き込みゲージ圧力の関係を示す図、第4図(b)は
、同じ<Ar吹き込み流量との関係を示す図、 第5図は、鋳型長辺方向のT−(01の偏在の程度を実
施例と比較例を対比して示す図、第6図は、同しく介在
物偏在指数を実施例と比較例を対比して示す図、 第7図は、製品表面欠陥発生指数を実施例と比較例を対
比して示す図、 である。
Fig. 1 is a diagram schematically showing the longitudinal cross section and molten steel flow of a conventional sliding gate type water heater, and Fig. 2 (a) is a longitudinal cross section of the main part of the water heater used in the method of the present invention and the molten steel flow. Figure 2 Φ) schematically shows A in Figure 2 (a).
-A sectional view, Figure 3 is a diagram explaining the flow velocity of molten steel from the left and right discharge holes of the immersion nozzle and the fluctuation of the scene, (a) is a schematic diagram of the vicinity of the nozzle, and (b) is a diagram of the flow velocity of the discharge flow. Transition, (C)
indicates the transition of hot water level fluctuation. Figure 4 (a) shows the difference in the level of the molten metal on both the left and right short sides of the mold and the A
Figure 4(b) is a diagram showing the relationship between r blow gauge pressure, Figure 4(b) is a diagram showing the relationship with the same <Ar blowing flow rate, and Figure 5 is a diagram showing the degree of uneven distribution of T-(01 in the long side direction of the mold). Figure 6 is a diagram comparing the example and comparative example. Figure 6 is a diagram comparing the inclusion uneven distribution index between the example and the comparative example. Figure 7 is a diagram comparing the product surface defect occurrence index with the example. This is a diagram showing a comparison of examples.

Claims (1)

【特許請求の範囲】 (1)スライディングゲートおよび浸漬ノズルを用いる
連続鋳造の給湯方法であって、浸漬ノズルの内孔上部の
スライダー押し出し側内壁面から張り出させて取り付け
たポーラス耐火物を介して、ガスを吹き込み、注入流の
偏流を抑制することを特徴とする給湯方法。(2)ガス
の吹き込みゲージ圧力を1〜4kg/cm^2の範囲と
し、かつ吹き込み流量を5〜10l/minの範囲とす
ることを特徴とする請求項(1)記載の給湯方法。 (3)ポーラス耐火物の取り付け範囲が浸漬ノズル内孔
の上端から長手方向に50mm以上であり、ポーラス耐
火物取り付け部の注入孔水平断面積が浸漬ノズル直胴部
の水平断面積の60〜80%である浸漬ノズルを使用す
ることを特徴とする請求項(1)または(2)に記載の
給湯方法。 (4)ポーラス耐火物を取り付けた浸漬ノズル注入孔の
形状および水平断面積が、スライディングゲート下固定
盤の出口孔の形状および水平断面積と等しい浸漬ノズル
を用いることを特徴とする請求項(1)から(3)まで
に記載のいずれかの給湯方法。
[Claims] (1) A continuous casting method using a sliding gate and an immersion nozzle, in which hot water is supplied through a porous refractory attached to the inner wall surface of the slider extrusion side at the upper part of the inner hole of the immersion nozzle. , a hot water supply method characterized by blowing gas and suppressing uneven flow of the injection flow. (2) The hot water supply method according to claim 1, characterized in that the gas blowing gauge pressure is in the range of 1 to 4 kg/cm^2 and the blowing flow rate is in the range of 5 to 10 l/min. (3) The installation range of the porous refractory is 50 mm or more in the longitudinal direction from the upper end of the inner hole of the immersion nozzle, and the horizontal cross-sectional area of the injection hole of the porous refractory attachment part is 60 to 80 mm of the horizontal cross-sectional area of the straight body of the immersion nozzle. %. The hot water supply method according to claim 1 or 2, characterized in that a submerged nozzle is used. (4) An immersed nozzle with a porous refractory attached; the shape and horizontal cross-sectional area of the injection hole are equal to the shape and horizontal cross-sectional area of the outlet hole of the lower fixed plate of the sliding gate; ) to (3).
JP34168689A 1989-12-27 1989-12-27 Method for supplying molten metal in continuous casting Pending JPH03198952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34168689A JPH03198952A (en) 1989-12-27 1989-12-27 Method for supplying molten metal in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34168689A JPH03198952A (en) 1989-12-27 1989-12-27 Method for supplying molten metal in continuous casting

Publications (1)

Publication Number Publication Date
JPH03198952A true JPH03198952A (en) 1991-08-30

Family

ID=18348000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34168689A Pending JPH03198952A (en) 1989-12-27 1989-12-27 Method for supplying molten metal in continuous casting

Country Status (1)

Country Link
JP (1) JPH03198952A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040358A1 (en) * 1999-01-06 2000-07-13 Vesuvius Crucible Company Refractory assembly
KR100398622B1 (en) * 1996-12-09 2004-02-05 주식회사 포스코 Non-straight line type sliding gate for continuous casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398622B1 (en) * 1996-12-09 2004-02-05 주식회사 포스코 Non-straight line type sliding gate for continuous casting
WO2000040358A1 (en) * 1999-01-06 2000-07-13 Vesuvius Crucible Company Refractory assembly

Similar Documents

Publication Publication Date Title
US6435385B1 (en) Immersion nozzle
JPH03198952A (en) Method for supplying molten metal in continuous casting
KR20090126625A (en) Tundish and continuous casting method using the same
KR960005883B1 (en) Continuous casting method of steel slab
JP2017064778A (en) Upper nozzle for continuous casting
JPS632539A (en) Molten metal vessel having molten metal flowing-out hole
CN113857434A (en) Metal separation sheet pouring basin device
ITMI20000458A1 (en) PERFECTED UNLOADER FOR CONTINUOUS CASTING
KR101316912B1 (en) Submerged nozzle for continuous casting device
JPH03110048A (en) Tundish stopper
KR20130046718A (en) Stopper for tundish
JPH0422538A (en) Method for continuously casting beam blank
JP2901983B2 (en) Immersion nozzle for continuous casting
JPS63212052A (en) Production of complex material by continuous casting
JPS63303666A (en) Submerged nozzle for continuous casting
KR101481602B1 (en) Continuous casting tundish and continuous casting apparatus
KR100379603B1 (en) Continuous casting method in tundish with sliding gate control method
JPH04238658A (en) Immersion nozzle for continuous casting
KR101969105B1 (en) Nozzle
JP3408319B2 (en) Nozzle for casting to prevent drift
JPH03297545A (en) Method for continuously casting aluminum-killed steel
JPS6099460A (en) Device for discharging molten metal
JPH05146858A (en) Method for adjusting discharging quantity of molten steel by using nozzle gas in beam blank continuous casting
JPS63303665A (en) Submerged nozzle for continuous casting
KR20030054625A (en) Submerged entry nozzle for reducing nozzle clogging