JPH03198363A - Dicing method of semiconductor unit - Google Patents

Dicing method of semiconductor unit

Info

Publication number
JPH03198363A
JPH03198363A JP1339483A JP33948389A JPH03198363A JP H03198363 A JPH03198363 A JP H03198363A JP 1339483 A JP1339483 A JP 1339483A JP 33948389 A JP33948389 A JP 33948389A JP H03198363 A JPH03198363 A JP H03198363A
Authority
JP
Japan
Prior art keywords
whose
dicing
semiconductor
semiconductor unit
specific heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1339483A
Other languages
Japanese (ja)
Inventor
Satoshi Komori
小森 敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1339483A priority Critical patent/JPH03198363A/en
Publication of JPH03198363A publication Critical patent/JPH03198363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dicing (AREA)

Abstract

PURPOSE:To prevent rapid cooling of a cutting surface and improve reliability of a unit, by using organic compound based cutting liquid whose boiling point, resistance, and specific heat are in specified ranges, on the occasion of dicing a semiconductor unit composed of a thin film semiconductor on an insulating substrate. CONSTITUTION:Compound, e.g. ethylene glycol, glycerol, etc., whose hydrophilic nature is very large, or organic compound based cutting liquid like propyl benzene whose boiling point is at least 150-300 deg.C, whose resistance is larger than or equal to 1X10<-6>OMEGAcm<-1>, and whose specific heat is lower than or equal to 0.6cal.g<-1>.K<-1>, is used. A semiconductor unit fixed on a vacuum chuck table 33 with a tape 32 is subjected to dicing by using a diamomd blade. Thereby the width of chipping is reduced, excellent result is obtained in a water resistance test after cutting, cracks of a thin plate glass are not present, and a semiconductor device, an image sensor, etc., of high reliability can be obtained.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、薄膜半導体を含む絶縁基板等をダイシングす
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for dicing an insulating substrate or the like containing a thin film semiconductor.

〔従来技術〕[Prior art]

石英−薄膜半導体一接着剤一薄板ガラスといったような
層構成をもつ半導体やイメージセンサは1通常、大型基
板上に多数個のユニットを一度に形成しておき、これを
ダイヤモンドブレード等を用いて切削し、個々のユニッ
トを得ている。
Semiconductors and image sensors that have a layered structure such as quartz - thin film semiconductor - adhesive - thin glass 1. Normally, many units are formed on a large substrate at once and then cut using a diamond blade or the like. And we are getting individual units.

ダイシングのさいには、ブレードと切削面は摩擦により
高温(例えば800℃)となるので、従来、この個所に
純水を流して冷却していた。
During dicing, the blade and the cutting surface reach high temperatures (for example, 800° C.) due to friction, so conventionally, pure water was poured into these areas to cool them down.

半導体装置においては、目にみえないヒビ割れから湿分
や水が侵入し、これが半導体の機能低下や不良をひきお
こすことは知られていたし、またチッピングを最小限に
抑えるという課題も存在していたが、これらの原因が純
水の冷却によるものであることは知られていなかった。
It has been known that moisture and water can enter through invisible cracks in semiconductor devices, causing deterioration in semiconductor functionality and failure, and there is also the issue of minimizing chipping. However, it was not known that these causes were due to cooling of pure water.

ところが、本発明者の研究によれば、予想だにしないこ
とであるが従来、ブレードと切削面の高温を下げるため
に使用されていた水がヒビ割れ発生やチッピング等の原
因の1つになっていることが判明した。
However, according to research conducted by the present inventor, unexpectedly, water, which was conventionally used to lower the high temperature of the blade and cutting surface, is one of the causes of cracking and chipping. It turned out that

そこで、その原因についてさらに研究を進めた結果、水
は沸点が100℃であるため、切断面は100℃以下ま
で急冷され、この急冷の結果、ヒビ割れやチッピングが
おこったり、接着剤やガラス等の破損がおこっているこ
とがわかった。
As a result of further research into the cause, we found that since the boiling point of water is 100°C, the cut surface is rapidly cooled to below 100°C, and as a result of this rapid cooling, cracking and chipping occur, and adhesives, glass, etc. It was found that damage had occurred.

〔目  的〕〔the purpose〕

本発明の目的は、切削面の急冷をおこさないで、ダイシ
ングを行う方法を提供する点に−ある。
An object of the present invention is to provide a method for performing dicing without rapidly cooling the cutting surface.

〔構  成〕〔composition〕

本発明は、絶縁基板上に形成された薄膜半導体よりなる
半導体ユニットをダイシングするにさいし、 a)沸点が少くとも150〜300℃ b)抵抗力I X 10−” Q am−”以上C)比
熱が0.6cal・g−14−1以下である有機化合物
系切削液を使用することを特徴とするダイシング方法に
関する。
When dicing a semiconductor unit made of a thin film semiconductor formed on an insulating substrate, the present invention provides: a) a boiling point of at least 150 to 300°C, b) a resistive force of I x 10-"Q am-" or more, and c) a specific heat. The present invention relates to a dicing method characterized in that an organic compound-based cutting fluid having a particle diameter of 0.6 cal·g-14-1 or less is used.

本発明の切削液の例としては、 1.3−ピロパンジオール(B、P、214℃)、ジエ
チレングリコールモノブチルエーテル(B、P、230
℃)、 ジエチレングリコール(B 、 P 、245℃)、ト
リエチレングリコール(B、P、276℃)、グリセリ
ン(B 、 P 、290℃)、等の水と親和性が極め
て大きい化合物や。
Examples of cutting fluids of the present invention include 1,3-pyropanediol (B, P, 214°C), diethylene glycol monobutyl ether (B, P, 230°C).
℃), diethylene glycol (B, P, 245℃), triethylene glycol (B, P, 276℃), glycerin (B, P, 290℃), and other compounds that have extremely high affinity for water.

プロピルベンゼン(B、P、160℃)ブチルベンゼン
(第1級ブチルB、P、183℃。
Propylbenzene (B, P, 160°C) Butylbenzene (primary butyl B, P, 183°C.

第2級B、P、 173℃、第3級169℃)、メチル
ナフタレン(B、P、245℃)エチルナフタレン(B
、P、258℃)ビフェニル(B、P、256℃) ジフェニルメタン(B、P、266℃)トリフェニルメ
タン(B、P、358℃)等を挙げることができる。
Secondary B, P, 173℃, tertiary 169℃), Methylnaphthalene (B, P, 245℃) Ethylnaphthalene (B
, P, 258°C) biphenyl (B, P, 256°C), diphenylmethane (B, P, 266°C), triphenylmethane (B, P, 358°C), and the like.

なお、これら切削液のうち、水溶性のものは水洗による
後処理のみでよいが、非水溶性のものは、例えばトリク
レン→アセトン→アルコールという順次洗浄を行うこと
が好ましい。
Note that among these cutting fluids, those that are water-soluble need only be post-treated by washing with water, but those that are not water-soluble are preferably washed in the order of trichlene, acetone, and alcohol, for example.

〔実施例〕〔Example〕

ダイシングに使用した装置の概略図を第1図に示す。 A schematic diagram of the apparatus used for dicing is shown in FIG.

31はダイヤモンドブレード、20は実施例のダイシン
グに使用した半導体ユニットで、その層構成は第3図に
示す、32は半導体ユニットを保持するためのテープ、
33は半導体ユニットを確保するための真空チャックテ
ーブルである。
31 is a diamond blade; 20 is a semiconductor unit used for dicing in the example, the layer structure of which is shown in FIG. 3; 32 is a tape for holding the semiconductor unit;
33 is a vacuum chuck table for securing the semiconductor unit.

実施例における半導体ユニットの層構成は、1が石英基
板、2は多結晶シリコン膜、3はゲート絶縁膜、4は多
結晶シリコン膜よりなるゲート、5は5insよりなる
層間絶趣膜。
The layer structure of the semiconductor unit in the example is as follows: 1 is a quartz substrate, 2 is a polycrystalline silicon film, 3 is a gate insulating film, 4 is a gate made of a polycrystalline silicon film, and 5 is an interlayer insulation film made of 5ins.

6はAQ電極、7はパッシベーション膜(Si□N4)
、8はエポキシ系接着剤、9は薄板ガラスである。
6 is an AQ electrode, 7 is a passivation film (Si□N4)
, 8 is an epoxy adhesive, and 9 is a thin plate glass.

実施例1 前記半導体ユニットを前記装置により切削液としてジエ
チレングリコール(B、P、245℃)を使用し、ダイ
ヤモンドブレードの回転数600Or、p、m、カッテ
ィングスピード60!IIl/l1inでダイシングし
た。
Example 1 The semiconductor unit was processed using the device using diethylene glycol (B, P, 245° C.) as the cutting fluid, the number of rotations of the diamond blade was 600 Or, p, m, and the cutting speed was 60! Dicing was carried out at IIl/l1in.

その結果を第1表に示す。The results are shown in Table 1.

実施例2 切削液として、アルキルベンゼン(B、P、176℃)
を使用する以外は実施例1と同様である。
Example 2 Alkylbenzene (B, P, 176°C) as cutting fluid
This is the same as in Example 1 except that .

実施例3 切削液として、アルキルナフタレン(B、P。Example 3 Alkylnaphthalenes (B, P) are used as cutting fluids.

326℃)を使用する以外は実施例1と同様である。The procedure was the same as in Example 1 except that a temperature of 326°C was used.

対   照 切削液として純水を使用する以外は実施例1と同様であ
る。
It is the same as Example 1 except that pure water is used as the control cutting fluid.

第1表 ものである。Table 1 It is something.

〔効  果〕〔effect〕

本発明によりチッピングの幅を減少させることができ、
又、切断後のデバイスの耐水性テストでも良好な結果か
えられ、薄板ガラス等の割れもなく、信頼性のある半導
体装置、イメージセンサ等を提供できる。
The present invention can reduce the width of chipping,
In addition, good results were obtained in the water resistance test of the device after cutting, and reliable semiconductor devices, image sensors, etc., could be provided without cracking of the thin glass or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法を実施するときに使用するダイ
シング装置の1例を示す断面図である。 第2図は、最大チッピング幅の測定方法を説明するため
のものである。 第3図は、本発明の実施例で用いた半導体ユニットの層
構成を示す断面図である。 1・・・絶縁基板    2・・・多結晶シリコン膜3
・・・ゲート絶縁膜  4・・・ゲート5・・・層間絶
縁膜   6・・・AQ電極7・・・パッシベーション
膜 8・・・接着剤     9・・・薄板ガラス20・・
・半導体ユニット 31・・・ブレード32・・・テー
プ 33・・・真空チャックテーブル
FIG. 1 is a sectional view showing one example of a dicing apparatus used when carrying out the method of the present invention. FIG. 2 is for explaining the method of measuring the maximum chipping width. FIG. 3 is a cross-sectional view showing the layer structure of a semiconductor unit used in an example of the present invention. 1... Insulating substrate 2... Polycrystalline silicon film 3
...Gate insulating film 4...Gate 5...Interlayer insulating film 6...AQ electrode 7...Passivation film 8...Adhesive 9...Thin glass 20...
・Semiconductor unit 31...Blade 32...Tape 33...Vacuum chuck table

Claims (1)

【特許請求の範囲】 1、絶縁基板上に形成された薄膜半導体よりなる半導体
ユニットをダイシングするにさいし、a)沸点が少くと
も150〜300℃ b)抵抗が1×10^−^8Ωcm^−^1以上c)比
熱が0.6cal・g^−^1・K^−^1以下である
有機化合物系切削液を使用することを特徴とするダイシ
ング方法。
[Claims] 1. When dicing a semiconductor unit made of a thin film semiconductor formed on an insulating substrate, a) a boiling point of at least 150 to 300°C b) a resistance of 1×10^-^8 Ωcm^- A dicing method characterized by using an organic compound cutting fluid having a specific heat of ^1 or more and c) a specific heat of 0.6 cal/g^-^1/K^-^1 or less.
JP1339483A 1989-12-27 1989-12-27 Dicing method of semiconductor unit Pending JPH03198363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1339483A JPH03198363A (en) 1989-12-27 1989-12-27 Dicing method of semiconductor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1339483A JPH03198363A (en) 1989-12-27 1989-12-27 Dicing method of semiconductor unit

Publications (1)

Publication Number Publication Date
JPH03198363A true JPH03198363A (en) 1991-08-29

Family

ID=18327893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1339483A Pending JPH03198363A (en) 1989-12-27 1989-12-27 Dicing method of semiconductor unit

Country Status (1)

Country Link
JP (1) JPH03198363A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1011077C2 (en) * 1999-01-19 2000-07-20 Meco Equip Eng Method and device for separating products formed with a common carrier along a cutting line (s).
KR20230034885A (en) 2021-09-03 2023-03-10 가부시기가이샤 디스코 Diamond wafer dividing method and chip manufacturing method
KR20230039546A (en) 2021-09-13 2023-03-21 가부시기가이샤 디스코 Protective film agent, and method for processing workpiece

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1011077C2 (en) * 1999-01-19 2000-07-20 Meco Equip Eng Method and device for separating products formed with a common carrier along a cutting line (s).
EP1022779A1 (en) * 1999-01-19 2000-07-26 Meco Equipment Engineers B.V. Method and device for separating products, mounted on a common substrate, from each other, along (a) cutting line(s)
SG85684A1 (en) * 1999-01-19 2002-01-15 Meco Equip Eng Method and device for separating products, mounted on a common substrate, from each other along (a) cutting line (s)
KR20230034885A (en) 2021-09-03 2023-03-10 가부시기가이샤 디스코 Diamond wafer dividing method and chip manufacturing method
KR20230039546A (en) 2021-09-13 2023-03-21 가부시기가이샤 디스코 Protective film agent, and method for processing workpiece

Similar Documents

Publication Publication Date Title
Chen et al. Morphology and bond strength of copper wafer bonding
CN102167875B (en) High-temperature, spin-on, bonding compositions for temporary wafer bonding using sliding approach
Bravman et al. The preparation of cross‐section specimens for transmission electron microscopy
US3152939A (en) Process for preparing semiconductor members
JPS6051700A (en) Bonding method of silicon crystalline body
Esser et al. Improved Low-Temperature Si Si Hydrophilic Wafer Bonding
JPH03198363A (en) Dicing method of semiconductor unit
US4081819A (en) Mercury cadmium telluride device
JPS60121715A (en) Bonding method for semiconductor wafer
Anantha et al. Homogeneous chip to wafer bonding of InP-Al2O3-Si using UV/O3 activation
CN106935480A (en) A kind of cleaning method implemented after cmp copper metal interconnection layer
CN201450007U (en) Bidirectional trigger diode chip
JP2008544945A (en) Oxygen-sensitive silicon layer and method for obtaining the silicon layer
JPH02170514A (en) Method of mutually bonding silicon wafer for manufacturing semiconductor device
Utsumi et al. Bonding of SiO2 and SiO2 at room temperature using Si ultrathin film
Suu et al. Formation of GdSi2 under UHV evaporation and in situ annealing
LoVecchio et al. PLANAR Pb0· 8Sn0· 2Te PHOTODIODE ARRAY DEVELOPMENT AT THE NIGHT VISION LABORATORY
Tao et al. Electromigration characteristics of TiN barrier layer material
JPH0636407B2 (en) Semiconductor wafer bonding method
Zakzouk Time dependent MOS gate oxide defects using liquid crystals
JP4153814B2 (en) Method for manufacturing photoelectric conversion device
JP2566657B2 (en) Method for manufacturing semiconductor device
CN115901864B (en) Array type multi-temperature-zone gas sensor and preparation method thereof
JP6557325B2 (en) Semiconductor structure, manufacturing method and use thereof
Spry et al. Processing Choices for Achieving Long Term IC Operation at 500 C