JPH0319809A - Method and apparatus for manufacturing long fiber resin composition - Google Patents

Method and apparatus for manufacturing long fiber resin composition

Info

Publication number
JPH0319809A
JPH0319809A JP1152260A JP15226089A JPH0319809A JP H0319809 A JPH0319809 A JP H0319809A JP 1152260 A JP1152260 A JP 1152260A JP 15226089 A JP15226089 A JP 15226089A JP H0319809 A JPH0319809 A JP H0319809A
Authority
JP
Japan
Prior art keywords
resin
glass fibers
contact
glass
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1152260A
Other languages
Japanese (ja)
Other versions
JP2633358B2 (en
Inventor
Teruo Hosokawa
細川 輝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1152260A priority Critical patent/JP2633358B2/en
Publication of JPH0319809A publication Critical patent/JPH0319809A/en
Application granted granted Critical
Publication of JP2633358B2 publication Critical patent/JP2633358B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To fully impregnate glass fibers with material having high molecular weight and low fluidity so as to maintain the strength and impact resistance, which resin has originally, by a method wherein the twisting of glass fibers and the impregnation of the resin are performed by introducing a plurality of the glass fibers from the sides of a covering die 1, at the central part of which a contact passage is provided and which has a rotating mechanism about the axis line of the contact passage, and molten resin on the direction of said axis line. CONSTITUTION:A covering die 1 consists of a supporting device 2 and a rotatingly driving device 3. In the covering die 1, a contact course 4, which brings glass fibers G and molten resin P into contact with each other, is provided at the tip of the die. In the contact course 4, a plurality of glass fiber introducing paths 5, through which glass fibers G are introduced, and a resin introducing path 6, through which molten resin P is introduced, are provided. The contact course 4 is provided in the covering die 1 in the direction of the axis line of the rotating shaft of the covering die 1. The glass fiber introducing path 5 guides the glass fibers G, which are delivered from bobbins 8, to the contact course 4. The resin introducing path 6 introduces the molten resin P into the contact course 4. A tachometer 11 is provided on the covering die 1 so as to control the rotational frequency of the covering die 1 and the take-off speed of a take-off machine 12 by means of a controller 13 in order to manufacture the predetermined multiplexed long fiber resin composition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、長繊維樹脂組成物の製造方法およびその製造
装置に関し、詳しくは、ホットフロースタンビング威形
あるいは射出成形用の材料として好適な、高強度の長繊
維樹脂組或物を製造する方法およびその装置に関するも
のである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing a long fiber resin composition and an apparatus for producing the same. The present invention relates to a method and apparatus for producing a high-strength long fiber resin composition.

〔従来の技術及び発明が解決しようとする課題〕ガラス
複合化された長繊維樹脂組成物は、樹脂単独のものに比
べて機械的強度が高いため、各種の部材の材料として用
いられている。従来、ガラス繊維に樹脂を含浸させる複
合化は、一般に単軸あるいは二輪のスクリューを用いた
押出し機によりマトリックス樹脂物とガラス繊維とを混
練するとともに押出し、押出し後に冷却して所定の長さ
に切断してペレットを製造する押出し法が用いられてい
た。
[Prior Art and Problems to be Solved by the Invention] Glass-compounded long fiber resin compositions have higher mechanical strength than resins alone, and are therefore used as materials for various members. Conventionally, composite resin impregnation of glass fibers has generally involved kneading and extruding the matrix resin material and glass fibers using an extruder using a single or two-wheel screw, and after extrusion, cooling and cutting into predetermined lengths. An extrusion method was used to produce pellets.

しかし、この押出し法においては、押出機内での高い剪
断力によって、ガラス繊維に破損(切断)を生ずること
が多い。このようにガラス繊維に破損を生じた状態で複
合化されたブレンド材は、ガラス繊維の破損のために高
温での引張り強度の低下が著しく、これを補うためには
樹脂そのものに耐熱度の高いものを用いる必要があった
However, in this extrusion method, the glass fibers often break (cut) due to high shear forces within the extruder. Blend materials that are composited with glass fibers damaged in this way have a significant drop in tensile strength at high temperatures due to the glass fibers being damaged.To compensate for this, the resin itself must have high heat resistance. I needed to use something.

このため、ガラス繊維の破損を改善する目的で、樹脂と
ガラス繊維とを含浸ダイスで接触させながら押出して、
それをカッターにて任意のストランド長に切断する方法
、いわゆるプルトルージョン法が考案された。この方法
は、複合化する際に、押出機でのスクリュー混練の場合
のような大きな剪断力がかからないため、ガラス繊維の
破損が少なく、高温での引張り強度の高い樹脂組戒物を
製造することが可能である。
For this reason, in order to improve the breakage of glass fibers, resin and glass fibers are extruded while being in contact with each other using an impregnation die.
A method, the so-called pultrusion method, was devised in which the strands are cut into arbitrary strand lengths using a cutter. This method does not apply large shearing forces during compounding, as is the case with screw kneading in an extruder, so there is less damage to the glass fibers and it is possible to produce resin composites with high tensile strength at high temperatures. is possible.

しかしながら、この方法においては、ガラス繊維がダイ
ス内を通過する際の引取り張力が大きいために大きな剪
断力が得られず、結束剤処理をしたガラス繊維に、樹脂
をその流動性のみを利用して含浸させるには余りにも小
さい剪断力であり、樹脂を充分に含浸させることができ
なかった.さらに、引取り速度を上げた場合には、樹脂
とガラス繊維との接触時間が短くなり、ガラス繊維に樹
脂が含浸しない状態になってしまう。
However, in this method, a large shearing force cannot be obtained because the pulling tension when the glass fiber passes through the die is large, and the resin is applied only to the fluidity of the glass fiber treated with a binding agent. The shear force was too small to impregnate the resin, and the resin could not be sufficiently impregnated. Furthermore, when the take-up speed is increased, the contact time between the resin and the glass fibers becomes shorter, resulting in a state in which the glass fibers are not impregnated with the resin.

このような状熊でダイスから出た樹脂組戒吻の断面にお
ける樹脂の含漫性を見ると、ガラス繊維が中心にあって
、その外側に樹脂が被覆されているだけで、ガラス繊維
中への樹脂の含漫性が充分ではない.このような樹脂組
成物を任意の長さにストランドカッターで切ってペレッ
トにすると、ガラスストランドと中空パイプ状になった
樹脂とに分離してしまい、射出或形あるいはスタンピン
グ戒形を行った際にガラスストランドが均一に分散した
製品を得ることができなかった。
If you look at the inclusion of resin in the cross section of the resin composite proboscis that comes out of the die in this type of bear, you will find that the glass fiber is in the center and the resin is only coated on the outside, but it does not penetrate into the glass fiber. The inclusion properties of the resin are not sufficient. If such a resin composition is cut into pellets with a strand cutter to any desired length, the glass strands and the hollow pipe-shaped resin will be separated, and when injection molding or stamping molding is performed, It was not possible to obtain a product in which the glass strands were uniformly dispersed.

従って、上記方法で樹脂をガラス繊維の束に充分に含浸
させるためには、樹脂とガラス繊維との接触経路を長く
して両者の接触時間を長くしたり、高流動性の樹脂材料
を用いて樹脂の含漫性を高めたりする必要があった。し
かし接触時間を長くした場合には生産性を上げることが
困難であり、高流動性の樹脂材料を用いた場合には、得
られる樹脂組或物の高温での引張り強度は大きいものの
、分子量が始めから小さいものを利用せざるを得ないた
めに、耐熱性や耐衝撃が著しく低下し、製品としての適
応分野が限られるという問題が生ずる.そこで、本発明
者は、樹脂本来の強度や耐衝撃性を有する高い分子量で
流動性の低い材料でも、ガラス繊維へ充分に含浸するこ
とが可能で、樹脂本来の特性を生かすことのできる長繊
維樹脂組或物の製造方法およびその製造装置を開発すべ
く鋭意研究を重ねた。
Therefore, in order to sufficiently impregnate a bundle of glass fibers with resin using the above method, it is necessary to lengthen the contact path between the resin and glass fibers to increase the contact time between the two, or to use a highly fluid resin material. It was necessary to increase the inclusion property of the resin. However, it is difficult to increase productivity when the contact time is increased, and when a highly fluid resin material is used, although the resulting resin composite has high tensile strength at high temperatures, the molecular weight Since it is necessary to use a small product from the beginning, the heat resistance and impact resistance are significantly reduced, resulting in a problem that the field of application of the product is limited. Therefore, the present inventor has developed a long fiber that can be sufficiently impregnated into glass fibers even with a material with high molecular weight and low fluidity that has the inherent strength and impact resistance of resin, and that can take advantage of the inherent properties of resin. We have conducted extensive research to develop a method and equipment for manufacturing resin composites.

〔課題を解決するための手段〕[Means to solve the problem]

その結果、ガラス繊維と樹脂とを特定の経路で接触させ
ることにより上記課題を解決できることを見出した。本
発明はかかる知見に基いて完威したものである。
As a result, the inventors have found that the above problems can be solved by bringing the glass fibers and the resin into contact through a specific route. The present invention has been achieved based on this knowledge.

すなわち本発明は、中心部に接触経路を有しかつ該接触
経路の軸線を回転軸とする回転機構を有する被覆ダイス
の側方から、前記接触経路に複数のガラス繊維を導入す
るとともに、該接触経路の軸線方向から溶融樹脂を導入
し、被覆ダイスを回転させてガラス繊維の捻糸及び樹脂
の含浸を行うことを特徴とする長繊維樹脂Ill戒物の
製造方法を提供するものである。また本発明は、回転機
構を有する被覆ダイスの中心部に設けた接触経路と、該
被覆ダイスの側方から前記接触経路にガラス繊維を導入
する複数のガラス繊維導入路と、前記接触経路の軸線方
向から溶融樹脂を導入する樹脂導入路とを備えたことを
特徴とする長繊維樹脂組或物の製造装置を提供するもの
である。
That is, the present invention introduces a plurality of glass fibers into the contact path from the side of a coating die that has a contact path in the center and has a rotation mechanism with the axis of the contact path as the rotation axis, and The present invention provides a method for producing a long fiber resin Ill sacrificial article characterized by introducing molten resin from the axial direction of the path and rotating a coating die to twist the glass fibers and impregnate the resin. The present invention also provides a contact path provided at the center of a coating die having a rotation mechanism, a plurality of glass fiber introduction paths for introducing glass fibers into the contact path from the sides of the coating die, and an axis of the contact path. The present invention provides an apparatus for producing a long fiber resin assembly, characterized in that it is equipped with a resin introduction path for introducing molten resin from the direction.

まず本発明の対象となる長繊維樹脂組成物は、前述の如
くガラス繊維と樹脂とを複合化させたものである。ここ
で、ガラス繊維や樹脂としては、従来からこの種の長繊
維樹脂組成物用の材料として用いられているものをその
まま用いることが可能であり、特に限定されるものでは
ない。樹脂の例をあげれば、ポリプロピレン,ボリアミ
ド,ポリフェニレンサルファイド,ポリエステル.ボリ
カーボネート,ポリブチレンフタレート,ポリオキシメ
チレンあるいはこれらの二種またはそれ以上の混合物な
どがある。
First, the long fiber resin composition to which the present invention is directed is a composite of glass fiber and resin as described above. Here, as the glass fibers and resins, those conventionally used as materials for this type of long fiber resin composition can be used as they are, and are not particularly limited. Examples of resins include polypropylene, polyamide, polyphenylene sulfide, and polyester. Examples include polycarbonate, polybutylene phthalate, polyoxymethylene, or a mixture of two or more of these.

図は本発明の方法によって上記長繊維樹脂組或物を製造
する際に用いる本発明の装置の好適な一例を示すもので
あって、第1図は被覆ダイスの断面図、第2図は第1図
の1−1断面図、第3図は長繊維樹脂組成物を製造する
工程図である。
The figures show a preferred example of the apparatus of the present invention used when manufacturing the above-mentioned long fiber resin composite by the method of the present invention, in which Figure 1 is a cross-sectional view of a coated die, and Figure 2 is a cross-sectional view of a coated die. 1-1 sectional view of FIG. 1 and FIG. 3 are process diagrams for manufacturing a long fiber resin composition.

被覆ダイスlは、適宜な支持装置2と回転駆動装置3か
らなる回転機構により回転可能に形威されている。この
被覆ダイス1の内部には、その先端部にガラス繊維Gと
溶融樹脂Pとを接触させる接触経路4と、該接触経路4
にガラス繊維Gを導入する複数のガラス繊維導入路5と
、溶融樹脂Pを導入する樹脂導入路6とが形威されてい
る。また被覆ダイス1の基端部にはフランジ7が形威さ
れており、該フランジ7にガラス繊維Gを巻回した複数
のボビン8が装着されている. 上記接触経路4は、被覆ダイス1の回転軸の軸線方向に
設けられるもので、ガラス繊維Gの種類,径,本数、溶
融樹脂Pの種類や流動性、あるいは崩望する長繊維樹脂
組戒物の性能などにより、その直径,長さなどを適宜に
設定することができる。
The coating die 1 is configured to be rotatable by a rotation mechanism consisting of a suitable support device 2 and a rotary drive device 3. Inside this coating die 1, there is a contact path 4 for bringing the glass fiber G into contact with the molten resin P at the tip thereof, and the contact path 4.
A plurality of glass fiber introduction paths 5 for introducing glass fibers G into the glass fibers and a resin introduction path 6 for introducing molten resin P are formed. A flange 7 is formed at the base end of the coating die 1, and a plurality of bobbins 8 around which glass fibers G are wound are attached to the flange 7. The contact path 4 is provided in the axial direction of the rotating shaft of the coating die 1, and is determined by the type, diameter, and number of the glass fibers G, the type and fluidity of the molten resin P, or the long-fiber resin composition that is to be disintegrated. Its diameter, length, etc. can be set as appropriate depending on the performance of the tube.

この接触長さが短いとガラス繊維に樹脂を充分に含浸さ
せることが困難になることがあり、また、長すぎると流
動抵抗が増すために生産性が低下することがある。
If this contact length is short, it may be difficult to sufficiently impregnate the glass fibers with the resin, and if it is too long, flow resistance may increase, resulting in a decrease in productivity.

一方ガラス繊維導入路5は、前記フランジ7に装着され
たボビン8から繰り出されるガラス繊維Gを接触経路4
に案内するもので、ガラス繊維Gを円滑に導入すること
ができるように、軸線に対して斜めに形成されている。
On the other hand, the glass fiber introduction path 5 allows the glass fiber G unwound from the bobbin 8 attached to the flange 7 to pass through the contact path 5.
It is formed obliquely to the axis so that the glass fiber G can be introduced smoothly.

このガラス繊維導入路5の傾斜角度は、軸線に対して1
0度から60度の範囲が好ましい。この角度が10度よ
り小さいとガラス繊維導入路5の長さが必要以上に長く
なり、角度が60度を越えるとガラス繊維Gの導入抵抗
が大きくなるため好ましくない。
The inclination angle of this glass fiber introduction path 5 is 1 with respect to the axis.
A range of 0 degrees to 60 degrees is preferred. If this angle is smaller than 10 degrees, the length of the glass fiber introduction path 5 will become longer than necessary, and if the angle exceeds 60 degrees, the introduction resistance of the glass fibers G will increase, which is not preferable.

次に樹脂導入路6は、押出機9から供給される溶融樹脂
Pを被覆ダイス1の基端部から接触経路4に向けて導入
するものであり、この樹脂導入路6と前記ガラス繊維導
入路5とは、前記接触経路4の直前で合流するように形
威されている。また樹脂導入路6と押出機9との間には
、被覆ダイス1の回転時に溶融樹脂Pが漏れないように
するためのシールリング10が設けられている。
Next, the resin introduction path 6 is for introducing the molten resin P supplied from the extruder 9 from the base end of the coating die 1 toward the contact path 4, and this resin introduction path 6 and the glass fiber introduction path 5 is configured to merge with the contact path 4 just before the contact path 4. Further, a seal ring 10 is provided between the resin introduction path 6 and the extruder 9 to prevent the molten resin P from leaking when the coating die 1 is rotated.

さらに被覆ダイス1には回転計11が設けられており、
被覆ダイス1の回転数と引取り機l2の引き取り速度と
を制御器13で予め決められた設定値と比較演算して制
御することにより、所定の状態で複合化した長繊維樹脂
組成物を製造することができる。
Furthermore, the coating die 1 is provided with a tachometer 11.
A composite long fiber resin composition is produced in a predetermined state by controlling the rotational speed of the coating die 1 and the take-up speed of the take-off machine 12 by comparing them with a predetermined setting value using the controller 13. can do.

なお長繊維樹脂組戒物のガラス繊維含有量を、単純な引
取り速度と押出量との比で決定することは困難である.
そのため、予め引取り速度と押出量およびガラス繊維の
総本数との関係を明らかにしたパラメーターを用意して
おくことが望ましい.このように被覆ダイス1を形成す
ることにより、上記樹脂導入路6から被覆ダイスlの接
触経路4に導入される溶融樹脂Pを、ガラス繊維導入路
5から接触経路4に導入され被覆ダイス1の回転により
捻糸される複数のガラス繊維Gの内側からにじみ出すよ
うな状態で含浸させることができる.また、この際に溶
融樹脂Pとガラス繊維Gとの間に大きな剪断力が発生す
るので、溶融樹脂Pをガラス繊維Gに、効率よくかつ充
分に含浸させることができる. このようにして溶融樹脂Pをガラス繊維Gに含浸させる
が、この場合被覆ダイス1内での捻りによりガラス繊維
Gに大きな剪断力が加えられることとなる.しかし、複
数のガラス繊維Gを導入して樹脂の含浸を行うので、ガ
ラス繊維一本当たりにかかる剪断力が従来の押出法に比
べて小さくなり、ガラス繊維の破損も防止することがで
きる。
It is difficult to determine the glass fiber content of long-fiber resin composite materials simply by the ratio of take-up speed and extrusion rate.
Therefore, it is desirable to prepare parameters that clarify the relationship between take-up speed, extrusion amount, and total number of glass fibers in advance. By forming the coating die 1 in this way, the molten resin P introduced from the resin introduction path 6 to the contact path 4 of the coating die 1 is introduced from the glass fiber introduction path 5 to the contact path 4 of the coating die 1. It can be impregnated in such a way that it oozes out from the inside of multiple glass fibers G that are twisted by rotation. Furthermore, since a large shearing force is generated between the molten resin P and the glass fibers G at this time, the molten resin P can be efficiently and sufficiently impregnated into the glass fibers G. In this way, the glass fibers G are impregnated with the molten resin P, but in this case, a large shearing force is applied to the glass fibers G due to twisting within the coating die 1. However, since a plurality of glass fibers G are introduced and impregnated with resin, the shearing force applied to each glass fiber is smaller than that in the conventional extrusion method, and breakage of the glass fibers can be prevented.

さらに溶融樹脂Pをガラス繊維Gに含浸させるために必
要な剪断力、および溶融樹脂Pとガラス繊維Gとの接触
面積を、プルトルージョン法に比べて大きくできるので
、被覆ダイスlを短く形成することができ、流動性の低
い樹脂材料でもガラス繊維への含浸が可能となる。した
がって樹脂本来の強度や耐衝撃性を得られる高い分子量
の樹脂材料を使用することができ、機械的強度を向上さ
せることができる。またプルトルージョン法に比べて、
より太い長繊維樹脂組或物を製造することができるので
経済的でもある。
Furthermore, since the shearing force required to impregnate the glass fiber G with the molten resin P and the contact area between the molten resin P and the glass fiber G can be made larger than in the pultrusion method, the covering die L can be formed short. This allows even resin materials with low fluidity to be impregnated into glass fibers. Therefore, it is possible to use a high molecular weight resin material that provides the strength and impact resistance inherent to the resin, and it is possible to improve the mechanical strength. Also, compared to the pultrusion method,
It is also economical because thicker long fiber resin compositions can be produced.

このようにして製造した長繊維樹脂組或物は、従来と同
様にカッター14で切断して長繊維コンパウンドを得る
ことができる。
The long fiber resin composition produced in this manner can be cut with a cutter 14 in the same manner as in the past to obtain a long fiber compound.

なお、被覆ダイス1の製作は、従来から行われわれでい
る方法により行うことができ、押出機や引取り機なども
適宜なものを使用することができる。
The coated die 1 can be manufactured by a conventional method, and an appropriate extruder, take-off machine, etc. can be used.

〔実施例〕〔Example〕

次に、本発明を実施例および比較例によりさらに詳しく
説明する。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 前記第1図に示す構或の被覆ダイスを用いて、第2図に
示す構或の製造工程で樹脂を含浸したガラスストランド
を製造した。用いた被覆ダイスの接触経路の長さは40
0ai,経路直径は3.0mm,ガラス繊維導入路の取
り付け角度は押出方向に45度である。また使用したガ
ラス繊維は(径2μm.束数700)、溶融樹脂はボリ
プロビレン〈数平均分子量2X10’,メルトフローレ
ート60g/10分)である.この際の平均押し出し圧
力は1 8 0 kg/cd,平均回転数は3Qrpm
であった。
Example 1 A glass strand impregnated with resin was manufactured using a coating die having the structure shown in FIG. 1 and a manufacturing process having the structure shown in FIG. 2. The length of the contact path of the coated die used was 40
0ai, the path diameter is 3.0 mm, and the installation angle of the glass fiber introduction path is 45 degrees in the extrusion direction. The glass fibers used were (diameter 2 μm, number of bundles 700), and the molten resin was polypropylene (number average molecular weight 2×10′, melt flow rate 60 g/10 min). The average extrusion pressure at this time was 180 kg/cd, and the average rotation speed was 3Qrpm.
Met.

得られたガラスストランドのガラス含有率は40%であ
った。このガラスストランドをカッターで13mmに切
断し、得られた長繊維コンパウンドを用いて射出戒形を
行い試験片を戒形し、機械的強度を測定したところ第1
表に示す結果が得られた。また試験片を焼成して灰分中
に残留したガラス繊維の長さを測定したところ、長さ1
3aunのものの残量は44重量%であった。
The glass content of the obtained glass strand was 40%. This glass strand was cut into 13 mm pieces with a cutter, and the obtained long fiber compound was used for injection molding to form test pieces.The mechanical strength of the test pieces was measured.
The results shown in the table were obtained. In addition, when we fired the test piece and measured the length of the glass fibers remaining in the ash, we found that the length was 1.
The remaining amount of 3 aun was 44% by weight.

実施例2 実施例1において得られた長繊維コンパウンドを用いて
ホットフロースタンピンクによりプレス圧縮或形を行い
、この成形品から試験片を打ち抜き機械的強度を測定し
たところ第l表に示す結果が得られた。また試験片を焼
威して灰分中に残留したガラス繊維の長さを測定したと
ころ、長さ13園のものの残量は78重景%であった。
Example 2 The long fiber compound obtained in Example 1 was pressed and shaped using hot flow stamping, and test pieces were punched out from this molded product to measure its mechanical strength. The results are shown in Table 1. Obtained. In addition, when the length of the glass fibers remaining in the ash after burning the test pieces was measured, the remaining amount of the glass fibers with a length of 13 was 78%.

比較例1 長さ13mmのガラス繊維とボリプロビレン樹脂(メル
トフローレート60g/10分)とをドライブレンドし
た後に、ホッパーより2軸同方向の押出機に投入して2
 3 0 ’Cで混練を行い、得られた押し出し品を1
31llI1にカットして長繊維コンバウンドを得た。
Comparative Example 1 Glass fibers with a length of 13 mm and polypropylene resin (melt flow rate 60 g/10 minutes) were dry blended and then fed into a hopper into a twin-shaft extruder with the same direction.
Kneading was carried out at 30'C, and the obtained extrudate was
A long fiber compound was obtained by cutting into 31llI1 pieces.

これを実施例1と同じ方法で射出成形して試験片を威形
し、機械的強度を測定したところ第1表に示す結果が得
られた。また試験片を焼威して灰分中に残留したガラス
繊維の長さを測定したが、長さ13mmのものを見出す
ことができず、ガラス繊維の破損が著しいことが判った
This was injection molded in the same manner as in Example 1 to form a test piece, and the mechanical strength was measured, and the results shown in Table 1 were obtained. In addition, the length of the glass fibers remaining in the ash after burning the test pieces was measured, but none with a length of 13 mm could be found, indicating that the glass fibers were significantly damaged.

比較例2 比較例1で得た長繊維コンパランドを、実施例2と同様
にホットフロースタンピングで或形した後に試験片を打
ち抜き機械的強度を測定したところ、第1表に示す結果
が得られた。また試験片を焼成して灰分中に残留したガ
ラス繊維の長さを測定したが、長さ13mmのものを見
出すことはできなかった。
Comparative Example 2 The long fiber comparand obtained in Comparative Example 1 was shaped by hot flow stamping in the same manner as in Example 2, and then a test piece was punched out and its mechanical strength was measured. The results shown in Table 1 were obtained. Ta. In addition, the length of the glass fibers remaining in the ash after firing the test pieces was measured, but no glass fibers with a length of 13 mm could be found.

(以下余白) 〔発明の効果] 以上説明したように、本発明の方法によれば、ガラス繊
維に充分に樹脂を含浸させた長繊維樹脂組戒物を容易に
製造することができる。
(The following is a blank space) [Effects of the Invention] As explained above, according to the method of the present invention, it is possible to easily produce a long-fiber resin composite material in which glass fibers are sufficiently impregnated with resin.

また本発明の装置は、ダイス内に解繊維機構を持つもの
に比べて、製作が容易であるとともに保守も容易である
。さらに太い長繊維樹脂組戒物を製造することができる
ので経済的でもある。。
Furthermore, the apparatus of the present invention is easier to manufacture and easier to maintain than an apparatus having a defibration mechanism within the die. Furthermore, it is also economical since it is possible to produce a thick long fiber resin composite. .

したがって、本発明は長繊維樹脂&[l或物の工業的な
製造方法として有効な利用が期待される。
Therefore, the present invention is expected to be effectively utilized as an industrial manufacturing method for long fiber resins and other products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は被覆ダイスの断面図、第2図は第1図のI−■
断面図、第3図は長繊維樹脂m戒物を製造する工程図で
ある。 1:被覆ダイス,     2:支持装置,3:回転駆
動装置,    4;接触経路.5:ガラス繊維導入路
.  6:樹脂導入路,7:フランジ  8:ポビン,
  9;押出機.lO:シールリング,  11:回転
計.12:引取り機,    13:制御器,14:カ
ッター G:ガラス繊維 :溶融樹脂
Figure 1 is a cross-sectional view of the coated die, Figure 2 is I-■ in Figure 1.
The cross-sectional view and FIG. 3 are process diagrams for manufacturing long fiber resin m-kaimono. 1: Covering die, 2: Support device, 3: Rotation drive device, 4: Contact path. 5: Glass fiber introduction path. 6: Resin introduction path, 7: Flange 8: Pobin,
9; Extruder. lO: Seal ring, 11: Tachometer. 12: Taking machine, 13: Controller, 14: Cutter G: Glass fiber: Molten resin

Claims (2)

【特許請求の範囲】[Claims] (1)中心部に接触経路を有しかつ該接触経路の軸線を
回転軸とする回転機構を有する被覆ダイスの側方から、
前記接触経路に複数のガラス繊維を導入するとともに、
該接触経路の軸線方向から溶融樹脂を導入し、被覆ダイ
スを回転させてガラス繊維の捻糸及び樹脂の含浸を行う
ことを特徴とする長繊維樹脂組成物の製造方法。
(1) From the side of a coating die that has a contact path in the center and has a rotation mechanism with the axis of the contact path as the rotation axis,
Introducing a plurality of glass fibers into the contact path,
A method for producing a long fiber resin composition, which comprises introducing molten resin from the axial direction of the contact path and rotating a coating die to twist the glass fibers and impregnate the resin with the resin.
(2)回転機構を有する被覆ダイスの中心部に設けた接
触経路と、該被覆ダイスの側方から前記接触経路にガラ
ス繊維を導入する複数のガラス繊維導入路と、前記接触
経路の軸線方向から溶融樹脂を導入する樹脂導入路とを
備えたことを特徴とする長繊維樹脂組成物の製造装置。
(2) A contact path provided at the center of the coating die having a rotation mechanism, a plurality of glass fiber introduction paths for introducing glass fibers into the contact path from the sides of the coating die, and a plurality of glass fiber introducing paths from the axial direction of the contact path. 1. An apparatus for producing a long fiber resin composition, comprising a resin introduction path for introducing molten resin.
JP1152260A 1989-06-16 1989-06-16 Method and apparatus for producing long fiber resin composition Expired - Lifetime JP2633358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1152260A JP2633358B2 (en) 1989-06-16 1989-06-16 Method and apparatus for producing long fiber resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1152260A JP2633358B2 (en) 1989-06-16 1989-06-16 Method and apparatus for producing long fiber resin composition

Publications (2)

Publication Number Publication Date
JPH0319809A true JPH0319809A (en) 1991-01-29
JP2633358B2 JP2633358B2 (en) 1997-07-23

Family

ID=15536597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1152260A Expired - Lifetime JP2633358B2 (en) 1989-06-16 1989-06-16 Method and apparatus for producing long fiber resin composition

Country Status (1)

Country Link
JP (1) JP2633358B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354783A (en) * 2000-06-12 2001-12-25 Nitto Boseki Co Ltd Twist rope pellet
EP1584740A1 (en) * 2002-11-25 2005-10-12 Bridgestone Corporation Twisting machine, twisted wire manufacturing method, ply, and pneumatic tire
JP2010188732A (en) * 2010-03-31 2010-09-02 Nitto Boseki Co Ltd Method for manufacturing twisted rope pellet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354783A (en) * 2000-06-12 2001-12-25 Nitto Boseki Co Ltd Twist rope pellet
JP4524865B2 (en) * 2000-06-12 2010-08-18 日東紡績株式会社 Paper rope pellets
EP1584740A1 (en) * 2002-11-25 2005-10-12 Bridgestone Corporation Twisting machine, twisted wire manufacturing method, ply, and pneumatic tire
EP1584740A4 (en) * 2002-11-25 2007-04-25 Bridgestone Corp Twisting machine, twisted wire manufacturing method, ply, and pneumatic tire
US7665290B2 (en) 2002-11-25 2010-02-23 Bridgestone Corporation Twister, method for producing twisted wire, ply, and pneumatic tire
JP2010188732A (en) * 2010-03-31 2010-09-02 Nitto Boseki Co Ltd Method for manufacturing twisted rope pellet

Also Published As

Publication number Publication date
JP2633358B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
US5358680A (en) Process for manufacturing a composite product by moulding
US6090319A (en) Coated, long fiber reinforcing composite structure and process of preparation thereof
US5110275A (en) Extruder for the preparation of plastic material with the introduction of at least one fibre strand
US6444153B1 (en) In-line compounding/extrusion deposition and molding apparatus and method of using the same
KR101421036B1 (en) Extrusion coated non-twisted yarn
CN100482452C (en) Glass fibre reinforced thermoplastic resin granule material and its production process
US3712776A (en) Apparatus for the continuous production of glass fiber reinforced thermoplastic
EP1105277B1 (en) Coated, long fiber reinforcing composite structure and process of preparation thereof
US6548167B1 (en) Continuous-strand pellets and method and device for preparing continuous-strand pellets
EP1043429B1 (en) Device for the production of a stranded fibre composite from glass fibres and fibre composite from glass fibres
JPH0319809A (en) Method and apparatus for manufacturing long fiber resin composition
JPH06114830A (en) Manufacture of continuous glass-fiber reinforced thermoplastic resin pellet
KR20060052680A (en) Method for producing compressed plastic-coated fibre strands
JPH06114832A (en) Fibber-reinforced thermoplastic resin structure and manufacture thereof
LU501119B1 (en) Reinforced composite filament for an additive manufacturing application and method for manufacturing thereof
JPH0768544A (en) Impregnation of fiber bundle with resin
JPH031907A (en) Production of fiber reinforced composite material
JPH0319810A (en) Manufacture of long fiber resin composition and device thereof
JP2688845B2 (en) Method and apparatus for producing glass fiber-containing resin composition
JP3311807B2 (en) Method for producing fiber-reinforced thermoplastic resin composition
JPH04197726A (en) Manufacture of long fiber reinforced composite material
JP6442385B2 (en) Kneading equipment
JPH0762246A (en) Production of filament-reinforced thermoplastic resin composition and its apparatus
JP2662853B2 (en) Manufacturing method and manufacturing apparatus for long fiber reinforced thermoplastic resin molding material
JPH08258167A (en) Manufacture of fiber reinforced resin structure