JPH03198060A - Photosensitive body for electrophotographic recording - Google Patents

Photosensitive body for electrophotographic recording

Info

Publication number
JPH03198060A
JPH03198060A JP33942389A JP33942389A JPH03198060A JP H03198060 A JPH03198060 A JP H03198060A JP 33942389 A JP33942389 A JP 33942389A JP 33942389 A JP33942389 A JP 33942389A JP H03198060 A JPH03198060 A JP H03198060A
Authority
JP
Japan
Prior art keywords
photosensitive body
layer
light
photoreceptor
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33942389A
Other languages
Japanese (ja)
Inventor
Tetsuo Konno
哲郎 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikosha KK
Original Assignee
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikosha KK filed Critical Seikosha KK
Priority to JP33942389A priority Critical patent/JPH03198060A/en
Publication of JPH03198060A publication Critical patent/JPH03198060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain a photosensitive body capable of forming a record without being affected by the output energy of a light source by successively laminating a p-n-joined carrier generating layer and a carrier transfer layer on a conductive substrate and forming the p-n-junction to apply a reverse bias electric field at the time of electrically charging the photosensitive body. CONSTITUTION:This photosensitive body formed by successively laminating the carrier generating layer obtained by joining an n-type layer 2 with a p-type layer 3, and the carrier transfer layer 5, and the reverse electric field is applied when the surface of the photosensitive body is charged. This layer 4 is allowed to generate a large number of pairs of electrons and positive holes at the pn- junction by irradiation with light and further by the electron avalanche phenomenon, and one group of the generated pairs is drifted to the surface of the photosensitive body and the other group to the side of the substrate. Since the generation rate of the carriers are constant till the stop of the electron avalanche, the surface potential of the exposed area is kept almost constant irrespective of the intensity of the light, thus permitting the obtained photosensitive body to obtain stable record superior in edge sharpness without being affected by the output energy of a light source.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、複写機、ファクシミリ、光プリンタなどの電
子写真記録装置に用いられる感光体に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a photoreceptor used in electrophotographic recording devices such as copying machines, facsimiles, and optical printers.

[従来の技術] 従来の感光体としては、a−3i、5e−Te系、op
c等多くの種類があり、その構造としては、帯電能、ス
ペクトル感度の要求から、第6図示のように導電性基板
aの上面に、キャリヤ発生層(CGL)bとキャリヤ輸
送層(CTL)Cとを積層形成して機能分離型としたも
のがある。
[Prior art] Conventional photoreceptors include a-3i, 5e-Te, and OP.
There are many types such as c, etc., and due to the requirements for charging ability and spectral sensitivity, the structure is such that a carrier generation layer (CGL) b and a carrier transport layer (CTL) are placed on the top surface of a conductive substrate a, as shown in Figure 6. There is also a functionally separated type by laminating C and C.

[解決しようとする課1fil これらの従来の感光体の露光エネルギーと表面電位の関
係は、第7図に縦軸を感光体表面電位V。
[Question to be Solved 1fil] The relationship between exposure energy and surface potential of these conventional photoconductors is shown in FIG. 7, where the vertical axis is the photoconductor surface potential V.

横軸を露光エネルギーEとすると、なだらかな凹曲線d
で感光体感度特性が表わされる。このような感度特性を
もった感光体上に静電潜像を形成する場合、光源の発光
エネルギーに変動を生じると、露光部の表面電位にばら
つきを生じてしまう。すなわち低露光エネルギーELで
は、表面電位がVl、となり、高露光エネルギー” I
tでは表面電位がVuとなる。このばらつきを押えるた
め光源としてレーザを用いた場合には、出力の温度変動
を押えるためにレーザの温度制御を行なわなければなら
ず、また走査中央部と周辺部のエネルギーを一定とする
ため、レンズ設計が複雑となる。LEDアレイを用いた
場合には、LEDチップの発光エネルギーによりチップ
の選別、出力補正を行なわなければならない。
If the horizontal axis is the exposure energy E, a gentle concave curve d
The sensitivity characteristics of the photoreceptor are expressed as: When an electrostatic latent image is formed on a photoreceptor having such sensitivity characteristics, variations in the light emission energy of the light source will cause variations in the surface potential of the exposed portion. That is, at low exposure energy EL, the surface potential becomes Vl, and at high exposure energy "I"
At t, the surface potential becomes Vu. If a laser is used as a light source to suppress this variation, the temperature of the laser must be controlled to suppress temperature fluctuations in the output, and the lens must be adjusted to keep the energy constant at the center and periphery of the scan. The design becomes complicated. When an LED array is used, chip selection and output correction must be performed based on the emission energy of the LED chips.

そこで本発明は、光源の露光エネルギーに変動があって
も、光照射部での感光体の表面電位が一定となり、その
結果、光源の出力エネルギーに影響されず、エツジの切
れの良好な、安定した記録の得られる感光体を提供する
ことを目的とするものである。
Therefore, the present invention has been developed so that even if the exposure energy of the light source changes, the surface potential of the photoreceptor at the light irradiation part remains constant, and as a result, it is not affected by the output energy of the light source and has a stable edge with good sharpness. It is an object of the present invention to provide a photoreceptor that allows recording with high quality.

[課題を解決するための手段] 上記目的を達成するために、本発明の電子写真記録用感
光体においては、導電性基体]二にpn接合したキャリ
ア発生層とキャリア輸送層とが積層して形成してあり、
pn接合は感光体の表面を帯電させたときに逆バイアス
電界が印加されるように形成しである。
[Means for Solving the Problems] In order to achieve the above object, the photoreceptor for electrophotographic recording of the present invention includes a conductive substrate, a carrier generation layer and a carrier transport layer which are pn-junctioned and stacked. has been formed,
The pn junction is formed so that a reverse bias electric field is applied when the surface of the photoreceptor is charged.

[作用] pn接合したキャリア発生層は、光の照射により接合部
において電子正孔対を発生し、電子なだれ現象によって
多数の電子正孔対を生成する。生成された電子および正
孔の一方は感光体表面側へ、他方は基体側へそれぞれド
リフトする。電子なだれ現象の停止までに生成されるキ
ャリア数は一定であるので、露光部の表面電位は光の強
弱によらずにほぼ一定となる。
[Function] The pn-junctioned carrier generation layer generates electron-hole pairs at the junction by irradiation with light, and generates a large number of electron-hole pairs by an electron avalanche phenomenon. One of the generated electrons and holes drifts toward the surface of the photoreceptor, and the other drifts toward the substrate. Since the number of carriers generated until the electron avalanche phenomenon stops is constant, the surface potential of the exposed area is almost constant regardless of the intensity of light.

[実施例] 第1図は本発明による感光体の構成の一例を示すもので
、アルミニウムにより形成された導電性基体1上に、n
型層2とp型層3とを接合したキャリア発生層4と、キ
ャリア輸送層5とが積層して形成してあり、このpn接
合は感光体の表面を帯電させたときに逆バイアス電界が
印加されるように形成しであるもので、図示のように感
光体の表面を負帯電した場合には、導電性基体1側にn
型層2が積層されることになる。また感光体の表面を正
帯電した場合には、導電性基体1側にp型層3が積層さ
れることになる。
[Example] FIG. 1 shows an example of the structure of a photoreceptor according to the present invention.
A carrier generation layer 4 in which a type layer 2 and a p-type layer 3 are joined together, and a carrier transport layer 5 are laminated and formed, and this pn junction is formed by a reverse bias electric field when the surface of the photoreceptor is charged. When the surface of the photoreceptor is negatively charged as shown in the figure, n is formed on the conductive substrate 1 side.
The mold layer 2 will be laminated. Further, when the surface of the photoreceptor is positively charged, the p-type layer 3 is laminated on the conductive substrate 1 side.

第2図にキャリア増倍を説明するエネルギー単位図を示
している。pn接合の逆バイアス電界を増大させて、電
場の強さが105V101以上になると、電子なだれ増
倍が生じる。これはっぎのように説明される。光吸収に
より電子正孔対“AlB“が発生し、伝導体に励起され
た電子Bは、加速されて充分なエネルギーを得る。加速
された電子Cは新たな電子正孔対“E、F”を発生させ
る。
FIG. 2 shows an energy unit diagram explaining carrier multiplication. When the reverse bias electric field of the pn junction is increased to a strength of 105V101 or more, electron avalanche multiplication occurs. This is explained like this. Electron-hole pairs "AlB" are generated by light absorption, and electrons B excited by the conductor are accelerated and acquire sufficient energy. The accelerated electron C generates a new electron-hole pair "E, F".

発生した電子正孔対”E、F”はそれぞれ反対向きにド
リフトし、さらに電子正孔対を発生させる。
The generated electron-hole pairs "E, F" drift in opposite directions, and further electron-hole pairs are generated.

このような現象が連鎖的に進行して電子なだれ増倍が生
じる。
These phenomena progress in a chain sequence, resulting in electron avalanche multiplication.

第3図は電流増倍率Mの電圧依存性を曲線eで示してい
る。これは光で励起された電子正孔対がドリフト中に他
の電子正孔対を発生させる確率をPとすると M−1+p十p2+P3・・・−1/(1−P)である
FIG. 3 shows the voltage dependence of the current multiplication factor M by a curve e. This is M-1+p0p2+P3...-1/(1-P), where P is the probability that an electron-hole pair excited by light generates another electron-hole pair during drift.

以上のことに基づいて、本発明による感光体の動作原理
を、キャリア生成によるエネルギー準位の変化を示す第
4図によって説明する。
Based on the above, the operating principle of the photoreceptor according to the present invention will be explained with reference to FIG. 4, which shows changes in energy level due to carrier generation.

この例は第1図示のように感光体の表面を負帯電させ、
導電性基体1側にn型層2を形成して逆バイアス電圧が
印加されたものである。感光体が帯電能の低い5e−T
e系感光体であっても、膜厚50μm程度に800〜1
00OV程度が帯電されることになるから、第4図(a
)の未露光のときの電界は105V/cmより大となっ
ている。
In this example, as shown in the first diagram, the surface of the photoreceptor is negatively charged,
An n-type layer 2 is formed on the conductive substrate 1 side, and a reverse bias voltage is applied. The photoreceptor is 5e-T with low charging ability.
Even if it is an e-based photoreceptor, the film thickness is about 50 μm.
Since about 00OV will be charged, as shown in Fig. 4(a)
) is larger than 105 V/cm when not exposed to light.

そこで、pn接合したキャリア発生層4に光が照射され
ると、上記したように電子正孔対が発生し、電子なだれ
現象によって多数の電子正孔対が生成される。生成され
た電子正孔対のうち正孔は感光体表面側へ、また電子は
導電性基体1側へドリフトする。ドリフトして行った電
荷により、第4図(b)に示すように、接合部の電界は
小さくなり、キャリア生成効率は急激に減少する。
Therefore, when the pn-junctioned carrier generation layer 4 is irradiated with light, electron-hole pairs are generated as described above, and a large number of electron-hole pairs are generated due to the electron avalanche phenomenon. Of the generated electron-hole pairs, the holes drift toward the surface of the photoreceptor, and the electrons drift toward the conductive substrate 1 side. Due to the drifted charges, the electric field at the junction becomes small, as shown in FIG. 4(b), and the carrier generation efficiency decreases rapidly.

光照射はある時間tだけなされる。照射の初期において
は電子なだれ現象が引き起こされるが、接合部の電界が
ある値以下になった時以後のキャリアは、光吸収によっ
て直接生じたものだけとなる。強い光を照射した場合に
は、短い時間で電子なだれ現象は停止し、弱い光の場合
には比較的長い時間続くが、電子なだれ現象が停止する
のは接合部の電界、すなわち生成キャリア数で決まるの
で、照射光の強弱によらず電子なだれ現象停止までに生
成されるキャリア数は一定となる。
Light irradiation is performed for a certain time t. At the initial stage of irradiation, an electron avalanche phenomenon is caused, but after the electric field at the junction drops below a certain value, carriers are only those directly generated by light absorption. When strong light is irradiated, the electron avalanche phenomenon stops in a short time, and when weak light is used, it continues for a relatively long time, but the electron avalanche phenomenon stops depending on the electric field at the junction, that is, the number of carriers generated. Therefore, the number of carriers generated until the electron avalanche phenomenon stops is constant regardless of the strength of the irradiation light.

電流増倍率Mは理想的な場合には104にも達するので
、電子なだれ現象停止後に生成されるキャリア(光吸収
による)数は微小なものとなり、低露光エネルギーEL
でも高露光エネルギーEIIでも、結局は第5図示の感
光体感度特性を示す曲線fのように、露光エネルギーの
強弱によらないで、露光部の表面電位VL”=v11と
なってほぼ一定となる。
Since the current multiplication factor M reaches as high as 104 in an ideal case, the number of carriers (due to light absorption) generated after the electron avalanche phenomenon stops is minute, and the low exposure energy EL
However, even with high exposure energy EII, the surface potential of the exposed area becomes VL''=v11, which is almost constant, regardless of the strength of the exposure energy, as shown by the curve f showing the photoreceptor sensitivity characteristics shown in Figure 5. .

第1図示の実施例においては、キャリア輸送層5をキャ
リア発生層4の上に形成したが、この逆にキャリア発生
層をキャリア輸送層の上に形成してもよい。
In the embodiment shown in the first figure, the carrier transport layer 5 is formed on the carrier generation layer 4, but the carrier generation layer may be formed on the carrier transport layer conversely.

[効果] このような構成にかかる本発明では、光源の露光エネル
ギーに変動があっても、光照射部での感光体の表面電位
が一定となり、その結果、光源の出力エネルギーに影響
されず、エツジの切れの良好な、安定した記録の得られ
る感光体となる。
[Effect] In the present invention having such a configuration, even if the exposure energy of the light source varies, the surface potential of the photoreceptor at the light irradiation part remains constant, and as a result, it is not affected by the output energy of the light source. This results in a photoreceptor that provides stable recording with good edge cutting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図はキャ
リア増倍を説明するエネルギー準位図、第3図はなだれ
増倍の電圧依存性を示すグラフ、第4図はキャリア生成
によるエネルギー準位の変化を示すエネルギー準位図、
第5図は本発明による感光体の感度特性図、第6図は従
来の機能分離型感光体を示す断面図、第7図は従来の感
光体の感度特性図である。 1・ ・導電性基体、 2・ ・n型層、 3・ ・p型層、 4・・・キャリア発生層、 5・・・キャリア輸送層。 以  上 出 願 人 株式会社 精 工 舎 代 理 人 弁理士 松田和子 第1図 第4図 (a)  来電え p望     nlE! (b)露乞 p型    n製 第2図 第3図 第6図 逆ノ(イアス1〔スE
Fig. 1 is a cross-sectional view showing an embodiment of the present invention, Fig. 2 is an energy level diagram explaining carrier multiplication, Fig. 3 is a graph showing the voltage dependence of avalanche multiplication, and Fig. 4 is a carrier Energy level diagram showing changes in energy levels due to generation,
FIG. 5 is a sensitivity characteristic diagram of a photoconductor according to the present invention, FIG. 6 is a sectional view showing a conventional function-separated type photoconductor, and FIG. 7 is a sensitivity characteristic diagram of a conventional photoconductor. 1. Conductive substrate, 2. N-type layer, 3. P-type layer, 4. Carrier generation layer, 5. Carrier transport layer. Applicant Seiko Co., Ltd. Attorney Kazuko Matsuda Figure 1 Figure 4 (a) NlE! (b) Dew p type N made Fig. 2 Fig. 3 Fig. 6 Reverse (Iasu 1 [S E

Claims (1)

【特許請求の範囲】[Claims] 導電性基体上にpn接合したキャリア発生層とキャリア
輸送層とが積層して形成してあり、上記pn接合は感光
体の表面を帯電させたときに逆バイアス電界が印加され
るように形成してあることを特徴とする電子写真記録用
感光体。
A carrier generation layer and a carrier transport layer are formed by stacking them on a conductive substrate, and the pn junction is formed so that a reverse bias electric field is applied when the surface of the photoreceptor is charged. A photoreceptor for electrophotographic recording, characterized in that:
JP33942389A 1989-12-27 1989-12-27 Photosensitive body for electrophotographic recording Pending JPH03198060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33942389A JPH03198060A (en) 1989-12-27 1989-12-27 Photosensitive body for electrophotographic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33942389A JPH03198060A (en) 1989-12-27 1989-12-27 Photosensitive body for electrophotographic recording

Publications (1)

Publication Number Publication Date
JPH03198060A true JPH03198060A (en) 1991-08-29

Family

ID=18327330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33942389A Pending JPH03198060A (en) 1989-12-27 1989-12-27 Photosensitive body for electrophotographic recording

Country Status (1)

Country Link
JP (1) JPH03198060A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345527A (en) * 1976-10-07 1978-04-24 Ricoh Co Ltd Formation of electrostatic latent image
JPS5377631A (en) * 1976-12-21 1978-07-10 Ricoh Co Ltd Electrophotograhic light sensitive material
JPS63304268A (en) * 1987-06-04 1988-12-12 Fuji Xerox Co Ltd Electrophotographic sensitive body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345527A (en) * 1976-10-07 1978-04-24 Ricoh Co Ltd Formation of electrostatic latent image
JPS5377631A (en) * 1976-12-21 1978-07-10 Ricoh Co Ltd Electrophotograhic light sensitive material
JPS63304268A (en) * 1987-06-04 1988-12-12 Fuji Xerox Co Ltd Electrophotographic sensitive body

Similar Documents

Publication Publication Date Title
US5196702A (en) Photo-sensor and method for operating the same
US4191452A (en) AC silicon PN junction photodiode light-valve substrate
US4239348A (en) High resolution AC silicon MOS light-valve substrate
US5172163A (en) Photovoltaic photo-receptor and electrophotographing apparatus
US4443064A (en) High resolution AC silicon MOS-light-valve substrate
JPH03198060A (en) Photosensitive body for electrophotographic recording
US3748485A (en) Optical-to-electrical signal transducer apparatus
US4010031A (en) Electrophotographic system
US4914457A (en) Electrostatic latent image forming apparatus
EP0338091A1 (en) Light-receiving element and method of operating the same
US3623027A (en) Solid-state light-sensitive storage device
Kolodny et al. Two-dimensional effects in intrinsic photoconductive infrared detectors
WO1990011551A1 (en) Photosensitive member and electrostatic data recording method
US7301135B2 (en) Photodetector having an electrostatic recording body and photodetecting method thereof
JP2758587B2 (en) Optical device using self-scanning light emitting element array
JPH0729507A (en) Image pickup tube and operating method thereof
US3496404A (en) Radiation transducer
JPH01229259A (en) Photosensitive body
US4265989A (en) Photosensitive member for electrophotography
SU379909A1 (en) DEVICE FOR ELECTROPHOTOGRAPHIC
JPH0535425B2 (en)
JPH0117573B2 (en)
JP2853172B2 (en) Image forming device
SU368579A1 (en) METHOD OF ELECTROPHOTOGRAPHIC RECORDING INFORMATION
Tateishi et al. Electrophotographic printer using LED array