JPS63304268A - Electrophotographic sensitive body - Google Patents
Electrophotographic sensitive bodyInfo
- Publication number
- JPS63304268A JPS63304268A JP13892387A JP13892387A JPS63304268A JP S63304268 A JPS63304268 A JP S63304268A JP 13892387 A JP13892387 A JP 13892387A JP 13892387 A JP13892387 A JP 13892387A JP S63304268 A JPS63304268 A JP S63304268A
- Authority
- JP
- Japan
- Prior art keywords
- charge carrier
- layer
- charge
- amplifying
- electromagnetic wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002800 charge carrier Substances 0.000 claims abstract description 64
- 239000004065 semiconductor Substances 0.000 claims abstract description 24
- 230000005684 electric field Effects 0.000 claims abstract description 10
- 238000005381 potential energy Methods 0.000 claims abstract description 7
- 230000003321 amplification Effects 0.000 claims description 36
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 36
- 108091008695 photoreceptors Proteins 0.000 claims description 32
- 239000004020 conductor Substances 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 abstract description 8
- 238000010521 absorption reaction Methods 0.000 abstract description 7
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 66
- 229910021417 amorphous silicon Inorganic materials 0.000 description 22
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 15
- 229910000077 silane Inorganic materials 0.000 description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 230000032258 transport Effects 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 239000010408 film Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 206010034972 Photosensitivity reaction Diseases 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 230000036211 photosensitivity Effects 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052711 selenium Inorganic materials 0.000 description 4
- 239000011669 selenium Substances 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- -1 ether sulfones Chemical class 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- IICCLYANAQEHCI-UHFFFAOYSA-N 4,5,6,7-tetrachloro-3',6'-dihydroxy-2',4',5',7'-tetraiodospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 IICCLYANAQEHCI-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229940107698 malachite green Drugs 0.000 description 1
- FDZZZRQASAIRJF-UHFFFAOYSA-M malachite green Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](C)C)C=C1 FDZZZRQASAIRJF-UHFFFAOYSA-M 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- DZVCFNFOPIZQKX-LTHRDKTGSA-M merocyanine Chemical compound [Na+].O=C1N(CCCC)C(=O)N(CCCC)C(=O)C1=C\C=C\C=C/1N(CCCS([O-])(=O)=O)C2=CC=CC=C2O\1 DZVCFNFOPIZQKX-LTHRDKTGSA-M 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 229940081623 rose bengal Drugs 0.000 description 1
- 229930187593 rose bengal Natural products 0.000 description 1
- STRXNPAVPKGJQR-UHFFFAOYSA-N rose bengal A Natural products O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 STRXNPAVPKGJQR-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/043—Photoconductive layers characterised by having two or more layers or characterised by their composite structure
- G03G5/047—Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、高感度電子写真感光体に関する。[Detailed description of the invention] Industrial applications The present invention relates to a high-sensitivity electrophotographic photoreceptor.
従来の技術
従来、電子写真感光体の光感度を向上させることは、光
導電の機構に基づき、光発生の観点と光発生担体の輸送
の観点から改良が試みられてきた。BACKGROUND OF THE INVENTION Conventionally, attempts have been made to improve the photosensitivity of electrophotographic photoreceptors based on the mechanism of photoconductivity, from the viewpoints of light generation and transportation of photogenerating carriers.
前者は、利用可能な波長領域を広げることによって、感
度の向上を図ろうとするものであり、例えば、セレンの
長波長領域の感度の制限を、より光学的バンドギャップ
の小さいテルルを添加することによって少なくし、また
、水素化アモルファスシリコンの光吸収領域を、ゲルマ
ニウムを添加することによって長波長領域に拡大し、電
子写真感光体として有効な可視域感度の増加を図るもの
であり、モして又、吸収した光によって、効率よく光導
電に付与する電荷担体を分離・発生させるために再結合
中心を減少させるなどの改善を行うものであった。又、
後者は、発生した電荷担体を損失なく対抗する部分へ輸
送させることによって、感度の向上を図るものであり、
特に、機能分離型感光体では、発生した電荷担体の輸送
能の増加と共に、電荷発生層にて発生した電荷担体を電
荷輸送層に効率よく注入することが必要である。この観
点から、深いトラップや浅いトラップとなるような不純
物や欠陥の減少・除去に注意がはられれ、電荷担体の注
入や輸送能に深い係わりのめるバンドのエネルギーやイ
オン化ポテンシャルの値が考慮されて、光吸収によって
発生した電荷担体がすべて輸送されるように構成されて
いる。このように電子写真感光体の光感度を向上させる
ための手段は、照射される電磁波の吸収量を増加ざぜる
ことと吸収した電磁波によって電荷担体を効率よく発生
させることと発生した電荷担体を効率よく輸送すること
とに限られていた。The former attempts to improve sensitivity by expanding the usable wavelength range. For example, the sensitivity of selenium in the long wavelength range is limited by adding tellurium, which has a smaller optical bandgap. Furthermore, by adding germanium, the light absorption region of hydrogenated amorphous silicon is expanded to a long wavelength region, thereby increasing the sensitivity in the visible range, which is effective as an electrophotographic photoreceptor. In order to efficiently separate and generate charge carriers for photoconductivity using absorbed light, improvements were made such as reducing the number of recombination centers. or,
The latter aims to improve sensitivity by transporting the generated charge carriers to the opposing part without loss.
In particular, in a functionally separated photoreceptor, it is necessary to increase the transport capacity of the generated charge carriers and to efficiently inject the charge carriers generated in the charge generation layer into the charge transport layer. From this point of view, attention is paid to the reduction and removal of impurities and defects that may cause deep or shallow traps, and the values of band energy and ionization potential, which are closely related to charge carrier injection and transport ability, are taken into account. It is configured such that all charge carriers generated by light absorption are transported. In this way, the means for improving the photosensitivity of electrophotographic photoreceptors are to increase the amount of absorbed electromagnetic waves, to efficiently generate charge carriers from the absorbed electromagnetic waves, and to efficiently dissipate the generated charge carriers. Well-transported and limited.
発明が解決しようとする問題点
このため、従来の電子写真感光体の光感度は、1光子の
吸収によって1対の電荷担体が生起し得るという原理に
よって、吸収された光子の口から決定される感度以上に
はなり得なかった。つまり、電荷担体発生の量子効率は
1以上になることはなかった。Problems to be Solved by the Invention Therefore, the photosensitivity of a conventional electrophotographic photoreceptor is determined from the position of the absorbed photon by the principle that a pair of charge carriers can be generated by the absorption of one photon. It couldn't be more sensitive. In other words, the quantum efficiency of charge carrier generation never exceeded 1.
本発明は、従来のものとは全く異なる考え方に基づき、
電磁波の1光子から生成した担体の数を1以上にするこ
とによって、光感度の増加を図るものでおり、従来の電
子写真感光体では達成することができなかった高感度な
電子写真感光体を提供することを目的とする。The present invention is based on a completely different idea from conventional ones,
By increasing the number of carriers generated from one photon of electromagnetic waves to one or more, the photosensitivity is increased, making it possible to create a highly sensitive electrophotographic photoreceptor that could not be achieved with conventional electrophotographic photoreceptors. The purpose is to provide.
問題点を解決するための手段
本発明の上記の目的は、電子写真感光体の光導電層に、
電磁波の吸収によって生成した電荷担体を増幅する内部
増幅機能を付与することによって達成される。本発明者
が種々実験研究を重ねた結果、電子写真感光体において
、電磁波の吸収によって生成した電荷担体を内部増幅す
る機能を付与させることが、光導電層内部で電子なだれ
を起こすことによって可能であることの知見を得、この
知見に基づき本発明を完成するに至った。Means for Solving the Problems The above object of the present invention is to provide a photoconductive layer of an electrophotographic photoreceptor,
This is achieved by providing an internal amplification function that amplifies the charge carriers generated by absorption of electromagnetic waves. As a result of various experimental studies conducted by the present inventor, it has been found that it is possible to provide an electrophotographic photoreceptor with the function of internally amplifying charge carriers generated by absorption of electromagnetic waves by causing an electron avalanche inside the photoconductive layer. We have obtained certain knowledge and have completed the present invention based on this knowledge.
本発明の電子写真感光体は、導電性支持体上に電荷担体
増幅層を含む光導電層を形成してなり、該電荷担体増幅
層が、各々厚さ5Å〜1μであって、接合界面でのポテ
ンシャルエネルギー差が10IIlev〜5eVでおる
2以上の半導体層より構成され、かつ、逆バイアスに印
加された3X10”V/n以上の電界の下で、電磁波に
よる電荷担体発生の量子効率が1以上であることを特徴
とする。The electrophotographic photoreceptor of the present invention is formed by forming a photoconductive layer including a charge carrier amplification layer on a conductive support, each of the charge carrier amplification layers having a thickness of 5 Å to 1 μm, and having a thickness of 5 Å to 1 μm at the bonding interface. It is composed of two or more semiconductor layers with a potential energy difference of 10IIlev to 5eV, and the quantum efficiency of charge carrier generation by electromagnetic waves is 1 or more under an electric field of 3X10"V/n or more applied with a reverse bias. It is characterized by
この電子写真感光体においては、電荷担体増幅層の内部
の電磁波の吸収される領域において発生せしめた電荷担
体を該電荷担体増幅層内部で電子なだれを生起すること
によって、電磁波によって発生した電荷担体を増幅し、
感度を増加させる。In this electrophotographic photoreceptor, the charge carriers generated by the electromagnetic waves are removed by causing an electron avalanche inside the charge carrier amplification layer. amplify,
Increase sensitivity.
本発明の電子写真感光体は第1図のような構造を有する
。導電性基板1とその上に設けられた光導電層2で構成
されている。ざらに、光導電層2は、その内部になだれ
発生領域を形成するためのp 1p、p−1r、n−
1n、n 型の伝導型を有する光導電材料の中から選
ばれた光導電材料からなる少なくとも2つの半導体層を
1対あるいは2対以上、順次積層して形成した層構成を
有する電荷担体増幅層3を内部に有する。The electrophotographic photoreceptor of the present invention has a structure as shown in FIG. It consists of a conductive substrate 1 and a photoconductive layer 2 provided thereon. Roughly speaking, the photoconductive layer 2 has p 1p, p-1r, n- for forming an avalanche generation region therein.
A charge carrier amplification layer having a layer structure formed by sequentially laminating one pair or two or more pairs of at least two semiconductor layers made of photoconductive materials selected from photoconductive materials having conductivity types of 1n and n type. 3 inside.
本発明の電子写真感光体において、光導電層は、主にx
ra波による電荷担体の発生と増幅に関与する、いわゆ
る電荷発生層に該当する電荷担体増幅層と、この部分で
発生した電荷担体を輸送する電荷輸送層に分けることも
できる。ざらに、この電荷担体増幅層の上、あるいは電
荷輸送層の上に、これらの保護や光学反射の減少を目的
とした表面層を設けることができる。又、導電性支持体
と光導電層との間に電荷注入阻止層を設けてもよい。In the electrophotographic photoreceptor of the present invention, the photoconductive layer mainly contains x
It can also be divided into a charge carrier amplification layer, which corresponds to a so-called charge generation layer, which is involved in the generation and amplification of charge carriers by RA waves, and a charge transport layer, which transports charge carriers generated in this part. In general, a surface layer can be provided on the charge carrier amplification layer or the charge transport layer for the purpose of protecting them or reducing optical reflection. Further, a charge injection blocking layer may be provided between the conductive support and the photoconductive layer.
以下、本発明の電子写真感光体を構成する各層について
説明する。Each layer constituting the electrophotographic photoreceptor of the present invention will be explained below.
本発明の電子写真感光体において、基板材料としては、
導電性の材料か導電化処理された絶縁性の材料のいずれ
でもよく、例えば、ステンレス鋼、クロム、アルミニウ
ム、チタン等が例示でき、また、絶縁性の材料としては
、例えば、ポリイミド、ポリエステル、ポリエーテルス
ルホンを挙げることができる。In the electrophotographic photoreceptor of the present invention, the substrate material includes:
Either a conductive material or an insulating material treated to make it conductive may be used, such as stainless steel, chromium, aluminum, titanium, etc. Insulating materials include, for example, polyimide, polyester, and polyester. Mention may be made of ether sulfones.
本発明の電子写真感光体において、電荷担体増幅層は、
p 1ps p−1i、n−1ns n 型半導体
層のうち少なくとも2つの層を順次積層して構成される
。この電荷担体増幅層は、伝導型を制御した■族あるい
はV族の原子を不純物として含んだ水素化アモルファス
シリコン、伝導型の制御あるいは電磁波の吸収量や波長
の制御のためにゲルマニウム、スズ、炭素、窒素、酸素
、ハロゲン、アルミニウム等の不純物を含んだ水素化ア
モルファスシリコン、セレン、酸化亜鉛等の無機半導体
、フタロシアニン、メロシアニン、ローズベンガル、ス
クエリリウム等のp型色素、マラカイトグリーン、ピア
シアツール、ローダミンB、トリフェニルメタン等のn
型色素に代表される有機半導体の中から、異なった伝導
型を有する半導体を選択し、それ等を積層して、少なく
とも1対の半導体接合を形成することによって、作製す
ることができる。この場合、接合界面での伝導体及び/
又は価電子帯のポテンシャルエネルギー差が10IIl
ev〜5eVとなるように半導体を選択する必要がある
。このうち、プラズマCVD法によって作製される水素
化アモルファスシリコンが伝導型の制御を行いながら薄
膜の形成を繰り返し行うことができるという点で本発明
に最も適した半導体である。In the electrophotographic photoreceptor of the present invention, the charge carrier amplification layer is
p 1ps p-1i, n-1ns At least two layers of n-type semiconductor layers are sequentially laminated. This charge carrier amplification layer is made of hydrogenated amorphous silicon containing group I or V atoms as impurities to control the conduction type, germanium, tin, carbon to control the conduction type or the absorption amount and wavelength of electromagnetic waves. , hydrogenated amorphous silicon containing impurities such as nitrogen, oxygen, halogen, and aluminum, inorganic semiconductors such as selenium and zinc oxide, p-type pigments such as phthalocyanine, merocyanine, rose bengal, and squerium, malachite green, Piacia tool, rhodamine B, n such as triphenylmethane
It can be manufactured by selecting semiconductors having different conductivity types from among organic semiconductors typified by type dyes and stacking them to form at least one pair of semiconductor junctions. In this case, the conductor and/or
Or the potential energy difference in the valence band is 10IIl
It is necessary to select a semiconductor so that the voltage is between ev and 5 eV. Among these, hydrogenated amorphous silicon produced by the plasma CVD method is the most suitable semiconductor for the present invention in that thin films can be repeatedly formed while controlling the conductivity type.
本発明における電荷担体増幅層において、電荷担体の増
幅機能を有効に利用して、層内部で電子なだれを起こす
ようにするためには、上記した伝導型の異なる2種ある
いは3種の半導体層からなる1対の層を形成してもよい
し、多数対の繰り返しによって全体の光導電層の光電流
の増幅率を向上させるようにすることも可能である。特
に2対以上の半導体接合を用いた場合には、電磁波によ
って発生した電荷担体による電子なだれ発生以外の熱励
起電荷を出発とする電子なだれ現象による暗電流の増加
や降伏現象を抑えることができ、より好ましい結果が得
られる。In the charge carrier amplification layer of the present invention, in order to effectively utilize the charge carrier amplification function and cause an electron avalanche inside the layer, it is necessary to use the above two or three types of semiconductor layers having different conductivity types. A pair of layers may be formed, or a large number of pairs may be repeated to improve the photocurrent amplification factor of the entire photoconductive layer. In particular, when two or more pairs of semiconductor junctions are used, it is possible to suppress the increase in dark current and the breakdown phenomenon caused by the electron avalanche phenomenon starting from thermally excited charges other than the electron avalanche caused by charge carriers generated by electromagnetic waves. More favorable results are obtained.
また、電磁波の照射される側の電荷担体増幅層の厚さは
増幅作用を現わすべき所望の電磁波を十分吸収するよう
にする吸収係数によって、0.01〜100IiIA1
好ましくは0.1〜20#Iの範囲で適宜設定し、接合
すべき少なくとも2種類の半導体層の厚さは、各々5Å
〜1μs、好ましくは10Å〜0.2μsにする。この
厚さ以下では半導体接合の形成が困難になり、また、こ
の厚さ以上ではそれぞれの半導体層が一方の電荷担体に
対して障壁となり、電荷担体の加速を妨げ結果として増
幅作用を得ることができない。更に、なだれ発生の為に
は、外部から強い電界、すなわち3X105v/c11
以上の電界を印加することと、接合界面でのポテンシャ
ルエネルギー差が、1011ev〜5ev1好ましくは
50IlleV〜3eVであることが必要である。この
ようにすることによって初めて、照射された電磁波の光
子数以上の電荷担体を発生し、増幅に寄与するようにす
ることが可能になる。In addition, the thickness of the charge carrier amplification layer on the side to which electromagnetic waves are irradiated is determined from 0.01 to 100IiIA1 depending on the absorption coefficient to sufficiently absorb the desired electromagnetic waves that exhibit the amplification effect.
Preferably, the thickness is appropriately set in the range of 0.1 to 20 #I, and the thickness of at least two types of semiconductor layers to be bonded is 5 Å each.
~1 μs, preferably 10 Å to 0.2 μs. Below this thickness it becomes difficult to form a semiconductor junction, and above this thickness each semiconductor layer acts as a barrier to one charge carrier, preventing the charge carrier from accelerating and resulting in no amplification effect. Can not. Furthermore, in order to generate an avalanche, a strong electric field from the outside, that is, 3X105v/c11 is required.
It is necessary to apply the above electric field and to have a potential energy difference at the junction interface of 1011ev to 5ev1, preferably 50IlleV to 3eV. Only by doing so will it be possible to generate more charge carriers than the number of photons of the irradiated electromagnetic waves and contribute to amplification.
本発明において、電荷輸送層を形成する材料としては、
伝導型を制御した水素化アモルファスシリコン、水素化
アモルファスシリコンカーバイド、水素化アモルファス
シリコンナイトライド、水素化アモルファスシリコンオ
キサイド、セレン、セレンテルル、酸化亜鉛、酸化アル
ミニウム、酸化ジルコニウム等の無機半導体、高分子中
に低分子電荷輸送材を分散した有機電荷輸送材等が挙げ
られ、それらを、電磁波により発生し増幅された電荷が
効率よく注入及び輸送できるように、電荷担体増幅層と
組合せて用いることができる。電荷輸送層の膜厚は0.
1〜100111I範囲にあることが好ましく、特に好
ましくは、1〜50贋の範囲内である。In the present invention, the materials forming the charge transport layer include:
Hydrogenated amorphous silicon with controlled conductivity type, hydrogenated amorphous silicon carbide, hydrogenated amorphous silicon nitride, hydrogenated amorphous silicon oxide, selenium, selenium telluride, zinc oxide, aluminum oxide, zirconium oxide, etc., in inorganic semiconductors and polymers. Examples include organic charge transport materials in which low-molecular charge transport materials are dispersed, and these can be used in combination with a charge carrier amplification layer so that charges generated and amplified by electromagnetic waves can be efficiently injected and transported. The thickness of the charge transport layer is 0.
It is preferably in the range of 1 to 100111I, particularly preferably in the range of 1 to 50 fakes.
電荷注入阻止国を形成する材料としては、■族あるいは
V族の原子によって伝導型の制御されたアモルファスシ
リコン、水素化アモルファスシリコンカーバイド、水素
化アモルファスシリコンナイトライド、水素化アモルフ
ァスシリコンオキサイド、アモルファスカーボン、酸化
アルミニウム、酸化ジルコニウム等の無機半導体、ポリ
カーボネート、ポリエステル、ポリイミド等の高分子樹
脂があげられ、その膜厚は0.05〜2oIIII&、
好ましくは0.1〜10g1llの範囲に設定される。Materials for forming the charge injection blocking country include amorphous silicon whose conductivity type is controlled by group I or group V atoms, hydrogenated amorphous silicon carbide, hydrogenated amorphous silicon nitride, hydrogenated amorphous silicon oxide, amorphous carbon, Examples include inorganic semiconductors such as aluminum oxide and zirconium oxide, and polymer resins such as polycarbonate, polyester, and polyimide.
Preferably, it is set in the range of 0.1 to 10 g/ll.
表面層を形成する材料としては、水素化アモルファスシ
リコンカーバイド、水素化アモルファスシリコンナイト
ライド、水素化アモルファスシリコンオキサイド、アモ
ルファスカーボン、酸化アルミニウム、酸化ジルコニウ
ム等の無機半導体、ポリカーボネート、ポリエステル、
ポリイミド等の高分子樹脂、ざらにこれらの高分子中に
低分子帯電制御材を分散した有機膜を用いることができ
る。表面層の膜厚は0.05〜20#I範囲にあること
が好ましく、特に好ましくは、0.1〜10IIIRの
範囲内である。Materials forming the surface layer include inorganic semiconductors such as hydrogenated amorphous silicon carbide, hydrogenated amorphous silicon nitride, hydrogenated amorphous silicon oxide, amorphous carbon, aluminum oxide, and zirconium oxide, polycarbonate, polyester,
A polymer resin such as polyimide or an organic film in which a low-molecular charge control material is dispersed in these polymers can be used. The thickness of the surface layer is preferably in the range of 0.05 to 20 #I, particularly preferably in the range of 0.1 to 10 IIIR.
本発明において、上記各層は公知の任意の方法で作成す
ることができる。例えば、真空蒸着法、スパッタリング
法、イオンブレーティング法、プラズマCVD法、CV
D法、あるいは塗布法によって作製することができる。In the present invention, each of the above layers can be created by any known method. For example, vacuum evaporation method, sputtering method, ion blating method, plasma CVD method, CV
It can be produced by the D method or the coating method.
作用
以上説明したように本発明に係る電子写真感光体は、光
導′R層の構成成分である電荷担体増幅層か、p 、
p、 p−1i、n−1n、n 型半導体層のうち少
なくとも2つ以上の層を順次積層してなるが、この電子
写真感光体においては、逆バイアスに印加された3X
10” V/art以上の高電界と電荷担体増幅層を形
成する少なくとも2つの半導体層の伝導帯あるいは価電
子帯のポテンシャルエネルギー差を電荷担体の加速電場
として利用して、なだれ領域を形成させる。それによっ
て、電荷担体増幅層の内部で吸収された電磁波によって
発生した電荷担体が増幅されるのである。即ち、なだれ
領域に注入された電荷担体は次々に衝突電離を繰り返し
て、他のイオン対を生起し、結果として電荷担体の増幅
を起こすことが可能となる。Function As explained above, the electrophotographic photoreceptor according to the present invention includes a charge carrier amplification layer, p,
This electrophotographic photoreceptor is made by sequentially stacking at least two of p, p-1i, n-1n, and n-type semiconductor layers.
An avalanche region is formed by using a high electric field of 10'' V/art or more and a potential energy difference between conduction bands or valence bands of at least two semiconductor layers forming a charge carrier amplification layer as an electric field for accelerating charge carriers. As a result, the charge carriers generated by the electromagnetic waves absorbed inside the charge carrier amplification layer are amplified.In other words, the charge carriers injected into the avalanche region repeat collision ionization one after another and generate other ion pairs. as a result of which amplification of charge carriers can occur.
実施例 次に本発明を実施例によって詳細に説明する。Example Next, the present invention will be explained in detail by way of examples.
実施例1
導電性基板としてアルミニウム製ドラムを円筒用プラズ
マCVD反応器内に装填した後、廻転しながら加熱昇温
して、基板温度を300℃にした。Example 1 After loading an aluminum drum as a conductive substrate into a cylindrical plasma CVD reactor, the drum was heated while rotating to bring the substrate temperature to 300°C.
次に反応器にガス導入バルブを開いて水素101005
eを流し、反応器内の圧力を0.51orrに保った。Next, open the gas introduction valve to the reactor and hydrogen 101005
The pressure inside the reactor was maintained at 0.51 orr.
その後、RF出力100Wで10分間放電し、真空度1
0 Torrに排気した。After that, discharge with RF output of 100W for 10 minutes, and vacuum degree of 1
It was evacuated to 0 Torr.
次にシラン50SCCm、水素ガスioosccm、水
素稀釈のジボランをシランに対し、ジボランが1100
ppになるように流した。この条件で圧力を0.51O
r「に設定した後、RF出力100wで60分放電し、
電荷注入阻止層として、厚さ3uのp型のアモルファス
シリコン膜を形成した。Next, add 50 SCCm of silane, ioosccm of hydrogen gas, diborane diluted with hydrogen to silane, and add 1100 SCCm of diborane to the silane.
It was run so that it became pp. Under these conditions, the pressure is 0.51O
After setting to "r", discharge for 60 minutes with RF output of 100W,
A p-type amorphous silicon film with a thickness of 3 μ was formed as a charge injection blocking layer.
放電終了後、十分排気した。なお、この実験中、形成す
る全ての層と層の間は放電を停止して十分排気を行った
。次にガス導入バルブを開いて水素101005cとシ
ランを50sccm導入し、圧力を0.5Torrに設
定した侵、RF出力100Wで10分間放電した。After discharging, the chamber was sufficiently exhausted. During this experiment, the discharge was stopped and sufficient exhaust air was provided between all the layers to be formed. Next, the gas introduction valve was opened, hydrogen 101005c and silane were introduced at 50 sccm, the pressure was set at 0.5 Torr, and discharge was performed at an RF output of 100 W for 10 minutes.
次に、水素100SCCIIとシランを1ooscc+
n導入し、水素稀釈のジボランをシランに対し、ジボラ
ンが2ppmになるように流した。この条件で圧力を0
.5TOrrk:設定した後、RF出力150wで18
0分放電し、約10踊のi型のアモルファスシリコン膜
よりなる電荷輸送層を形成した。Next, add 100SCCII of hydrogen and 1ooscc+ of silane.
n was introduced, and diborane diluted with hydrogen was flowed so that the amount of diborane was 2 ppm relative to the silane. Under these conditions, the pressure is 0.
.. 5TORrk: After setting, 18 at RF output 150w
The discharge was carried out for 0 minutes, and a charge transport layer made of an i-type amorphous silicon film having a diameter of about 10 times was formed.
放電終了後、十分排気し、ガス導入バルブを開いて水素
30SCC1とシランを30sccm導入し、水素稀釈
のジボランをシランに対し、ジボランが30ppmにな
るように流した。0.5 TOrrに設定した後、RF
出力50Wで2分間放電し、約250人のp型のアモル
ファスシリコン膜を形成した。さらに、放電終了後、水
素30SCCmとシランを30SCCm導入し、水素稀
釈のジボランをシランに対し、ジボランが2ppmにな
るように流した。0.5 丁orrに設定した侵、RF
出力50wで4分間放電し、約500人のi型のアモル
ファスシリコン膜を形成した。放電終了後、水素30S
CCmとシランを30SCCm導入し、水素稀釈のホス
フィンをシランに対し、ホスフィンが1001)l)R
1になるように流した。この条件で圧力を0.5 To
rrに設定した後、RF比出力0Wテ2分放電し、約2
50人のn型のアモルファスシリコン膜を形成した。こ
の俊、上記と同様にして、p、i及びn型アモルファス
シリコン膜の形成をざらに2回繰り返して行い、全部で
9層からなる電荷発生領域及び増幅領域を有する電荷担
体増幅層を設けた。After the discharge was completed, the chamber was sufficiently evacuated, and the gas introduction valve was opened to introduce 30 sccm of hydrogen and 30 sccm of silane, and diborane diluted with hydrogen was flowed so that the amount of diborane was 30 ppm relative to the silane. After setting to 0.5 TOrr, RF
Discharge was performed for 2 minutes at an output of 50 W, and approximately 250 p-type amorphous silicon films were formed. Furthermore, after completion of the discharge, 30 SCCm of hydrogen and 30 SCCm of silane were introduced, and diborane diluted with hydrogen was flowed so that the amount of diborane was 2 ppm relative to the silane. Invasion set to 0.5 min orr, RF
Discharge was performed for 4 minutes at an output of 50 W, and approximately 500 i-type amorphous silicon films were formed. After discharging, hydrogen 30S
CCm and silane were introduced at 30SCCm, hydrogen-diluted phosphine was added to the silane, and phosphine was 1001)l)R
I ran it so that it was 1. Under these conditions, the pressure is 0.5 To
After setting to rr, RF specific output 0W is discharged for 2 minutes, about 2
Fifty n-type amorphous silicon films were formed. In this case, the formation of p-, i-, and n-type amorphous silicon films was roughly repeated twice in the same manner as above, and a charge carrier amplification layer having a charge generation region and an amplification region consisting of nine layers in total was formed. .
放電終了後、エチレン50SCCmとシランを50sc
cm導入し、0.5Torrに設定した後、RF出力1
00wで20分間放電し、約2000人のアモルファス
シリコンカーバイドからなる表面層を形成した。After discharging, add 50 SCCm of ethylene and 50 sc of silane.
After introducing cm and setting it to 0.5 Torr, RF output 1
A surface layer of about 2000 amorphous silicon carbide was formed by discharging at 00W for 20 minutes.
このようにして作製した感光体にコロトロン電流の調節
をしながら正帯電を行い、分光器によって分光された4
00nm〜800nmの光を照射したときの表面電位の
減衰曲線からこの感光体の分光電子写真感度を求めた。The photoreceptor thus prepared was positively charged while adjusting the corotron current, and the 4
The spectroelectrophotographic sensitivity of this photoreceptor was determined from the attenuation curve of the surface potential when irradiated with light of 00 nm to 800 nm.
感光体表面における反射率と表面層による吸収量を反射
率及び吸光度の測定値を用いて補正し、光量と併せてこ
の感光体の量子効率を求めた。この結果、5x10”
V/asの電場に相当する650Vの帯電電位で、70
0nmより短波長で量子効率が1以上になり、500n
mの波長で最大の量子効率は2.0となった。このこと
より光量子によって生成した電荷担体が電荷担体増幅層
の中で電子なだれを形成し、その結果、電荷担体の増幅
に至ったことが実証された。The reflectance on the surface of the photoreceptor and the amount of absorption by the surface layer were corrected using the measured values of reflectance and absorbance, and the quantum efficiency of this photoreceptor was determined together with the amount of light. As a result, 5x10”
At a charging potential of 650 V, corresponding to an electric field of V/as, 70
The quantum efficiency becomes 1 or more at wavelengths shorter than 0 nm, and 500 nm
The maximum quantum efficiency was 2.0 at a wavelength of m. This demonstrated that charge carriers generated by photons formed an electron avalanche in the charge carrier amplification layer, resulting in amplification of the charge carriers.
実施例2
電荷注入阻止層に111!nのシランとアンモニアの流
量比が2で作製されたシリコン窒化膜を用い、50人の
p型、i型の層を20回繰り返して形成し、全部で40
層からなる電荷発生領域および増幅領域よりなる電荷担
体増幅層を形成したこと以外は実施例1と同じ作製法、
構成の感光体を作製した。Example 2 111 in the charge injection blocking layer! Using a silicon nitride film made with a flow rate ratio of n silane and ammonia of 2, 50 p-type and i-type layers were formed 20 times, for a total of 40 layers.
The manufacturing method was the same as in Example 1, except that a charge carrier amplification layer consisting of a charge generation region consisting of a layer and a charge carrier amplification layer consisting of an amplification region was formed.
A photoreceptor with the following configuration was manufactured.
実施例1と同じ方法にてこの感光体の1子効率を求めた
。その結果、3X105v/C11の電場に相当する3
50Vの帯電電位で、750nmより短波長で量子効率
が1以上になり、最大の量子効率は、500nmの波長
で3.0であった。The single-child efficiency of this photoreceptor was determined by the same method as in Example 1. As a result, 3
At a charging potential of 50 V, the quantum efficiency was 1 or more at wavelengths shorter than 750 nm, and the maximum quantum efficiency was 3.0 at a wavelength of 500 nm.
実施例3
電荷注入阻止層に1#Iのシランとアンモニアの流量比
が2で作製されたシリコン窒化膜を用い、50人のn型
、i型の層を20回繰り返して形成し、全部で40層か
らなる電荷発生領域および増幅領域よりなる電荷担体増
幅層を形成したこと以外は実施例1と同じ作製法、構成
の感光体を作製した。Example 3 A silicon nitride film prepared with a flow rate ratio of 1#I silane and ammonia of 2 was used as the charge injection blocking layer, and 50 n-type and i-type layers were formed by repeating 20 times. A photoreceptor was produced using the same manufacturing method and structure as in Example 1, except that a charge carrier amplification layer consisting of a charge generation region and an amplification region consisting of 40 layers was formed.
実施例1と同じ方法にてこの感光体の負帯電での量子効
率を求めた。その結果、3X10”V/αの電場に相当
する350Vの帯電電位で、7201mより短波長で量
子効率が1以上になり、最大の量子効率は、500n[
Ilの波長で2.5であった。The quantum efficiency of this photoreceptor when negatively charged was determined in the same manner as in Example 1. As a result, at a charging potential of 350V, which corresponds to an electric field of 3X10"V/α, the quantum efficiency becomes 1 or more at wavelengths shorter than 7201m, and the maximum quantum efficiency is 500n[
The wavelength of Il was 2.5.
発明の効果
本発明の電子写真感光体は、光導電層の構成成分である
電荷担体増幅層が異なる2以上の半導体層よりなるもの
であって、この半導体接合によって形成される内部のポ
テンシャルエネルギーの差を電荷担体の加速に利用し、
電荷担体増幅層によって吸収された電磁波によって発生
した電荷担体を、逆バイアスに印加された3X105v
/a!1以上の高電界によって電子なだれを繰り返して
起こして増幅することができるから、入射電磁波の吸収
光子数よりも多い電荷担体を発生させること、即ち、量
子効率を1以上にすることができる。従って、本発明の
電子写真感光体は従来公知の電子写真感光体に比して高
い光感度を有する。Effects of the Invention The electrophotographic photoreceptor of the present invention is composed of two or more semiconductor layers in which the charge carrier amplification layer, which is a component of the photoconductive layer, is different, and the internal potential energy formed by the semiconductor junction is The difference is used to accelerate charge carriers,
The charge carriers generated by the electromagnetic waves absorbed by the charge carrier amplification layer are exposed to 3X105V applied with reverse bias.
/a! Since electron avalanches can be repeatedly caused and amplified by a high electric field of 1 or more, it is possible to generate more charge carriers than the number of absorbed photons of the incident electromagnetic wave, that is, it is possible to increase the quantum efficiency to 1 or more. Therefore, the electrophotographic photoreceptor of the present invention has higher photosensitivity than conventionally known electrophotographic photoreceptors.
【図面の簡単な説明】
第1図は、本発明の電子写真感光体の模式図である。
1・・・導電性基板、2・・・光導電層、3・・・電荷
担体増幅層。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of the electrophotographic photoreceptor of the present invention. DESCRIPTION OF SYMBOLS 1... Conductive substrate, 2... Photoconductive layer, 3... Charge carrier amplification layer.
Claims (1)
を形成してなり、該電荷担体増幅層が、各々厚さ5Å〜
1μであつて、接合界面での伝導体及び/又は価電子帯
のポテンシャルエネルギー差が10meV〜5eVであ
る少なくとも2つの半導体層より構成され、かつ、逆バ
イアスに印加された3×10^5V/cm以上の電界の
下で、電磁波による電荷担体発生の量子効率が1以上で
あることを特徴とする電子写真感光体。(1) A photoconductive layer including a charge carrier amplification layer is formed on a conductive support, and each charge carrier amplification layer has a thickness of 5 Å to
1μ, composed of at least two semiconductor layers with a potential energy difference between the conductor and/or valence band at the junction interface of 10meV to 5eV, and applied with a reverse bias of 3×10^5V/ An electrophotographic photoreceptor characterized in that the quantum efficiency of charge carrier generation by electromagnetic waves is 1 or more under an electric field of cm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13892387A JP2556037B2 (en) | 1987-06-04 | 1987-06-04 | Electrophotographic photoreceptor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13892387A JP2556037B2 (en) | 1987-06-04 | 1987-06-04 | Electrophotographic photoreceptor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63304268A true JPS63304268A (en) | 1988-12-12 |
JP2556037B2 JP2556037B2 (en) | 1996-11-20 |
Family
ID=15233293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13892387A Expired - Lifetime JP2556037B2 (en) | 1987-06-04 | 1987-06-04 | Electrophotographic photoreceptor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2556037B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03198060A (en) * | 1989-12-27 | 1991-08-29 | Seikosha Co Ltd | Photosensitive body for electrophotographic recording |
-
1987
- 1987-06-04 JP JP13892387A patent/JP2556037B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03198060A (en) * | 1989-12-27 | 1991-08-29 | Seikosha Co Ltd | Photosensitive body for electrophotographic recording |
Also Published As
Publication number | Publication date |
---|---|
JP2556037B2 (en) | 1996-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5720827A (en) | Design for the fabrication of high efficiency solar cells | |
KR830008407A (en) | Method and apparatus for manufacturing non-crystalline alloys with increased band spacing | |
JPS63304268A (en) | Electrophotographic sensitive body | |
US4882252A (en) | Electrophotographic sensitive member with amorphous silicon carbide | |
JPH067270B2 (en) | Electrophotographic photoconductor | |
US4885226A (en) | Electrophotographic photosensitive sensor | |
JPH03184381A (en) | Pin type optical sensor | |
RU2034372C1 (en) | Process of manufacture of ultra-violet converter | |
Sugawa et al. | Amorphous avalanche photodiode with large conduction band edge discontinuity | |
JPS6299759A (en) | Electrophotographic sensitive body | |
JPS6343160A (en) | Electrophotographic sensitive body | |
JPS62266543A (en) | Electrophotographic sensitive body | |
Noda et al. | Photoconduction of the a‐Si: H/a‐C: H heterostructure | |
JPS61289356A (en) | Electrophotographic sensitive body | |
JPS6283755A (en) | Electrophotographic sensitive body | |
JPS6383725A (en) | Electrophotographic sensitive body | |
JPS62226157A (en) | Electrophotographic sensitive body | |
JPS6270855A (en) | Electrophotographic sensitive body | |
JPH06334202A (en) | Solar cell dealing with wide wavelength region | |
Oda et al. | Material Design by Structural Modulation of Amorphous Semiconductors | |
JPS6221161A (en) | Electrophotographic sensitive body | |
JPS6159340A (en) | Photoreceptor for electrophotography | |
JPS6299760A (en) | Electrophotographic sensitive body | |
JPS6383724A (en) | Electrophotographic sensitive body | |
JPS6398667A (en) | Electrophotographic sensitive body |