JPH03197962A - Developer - Google Patents

Developer

Info

Publication number
JPH03197962A
JPH03197962A JP1336726A JP33672689A JPH03197962A JP H03197962 A JPH03197962 A JP H03197962A JP 1336726 A JP1336726 A JP 1336726A JP 33672689 A JP33672689 A JP 33672689A JP H03197962 A JPH03197962 A JP H03197962A
Authority
JP
Japan
Prior art keywords
fine particles
particles
resin
layer
resin particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1336726A
Other languages
Japanese (ja)
Inventor
Kenji Yamane
健二 山根
Hiroshi Yamazaki
弘 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP1336726A priority Critical patent/JPH03197962A/en
Priority to EP19900314132 priority patent/EP0435608A3/en
Publication of JPH03197962A publication Critical patent/JPH03197962A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08797Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09725Silicon-oxides; Silicates

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To stably form an image free from black spots without causing defective cleaning by using a developer for an amorphous silicon (a-Si) photosensitive body contg. colored particles and combined fine particles obtd. by sticking specified inorg. fine particles to the surfaces of specified resin particles. CONSTITUTION:An electrostatic charge image formed by an image forming process on an a-Si photosensitive body is developed with a developer contg. colored particles contg. a colorant and resin and combined fine particles obtd. by sticking inorg. fine particles having 0.01-1mum average particle size to the surfaces of resin particles having 10-500kg/cm<2> yield value at 20 deg.C and 0.1-7mum average particle size as nuclei. When the combined fine particles are put between a cleaning member and the photosensitive body and receive high pressing force, the resin particles are moderately deformed to relieve the intense rubbing action of the inorg. fine particles and the resin particles are hardly broken. A image free from black spots can stably be formed without causing defective cleaning.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アモルファスシリコン感光体を用いて、静電
荷像の形成、現像、転写、クリーニングの各工程を経由
して画像を形成する画像形成プロセスに使用される現像
剤に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to image formation in which an image is formed through the steps of forming an electrostatic image, developing, transferring, and cleaning using an amorphous silicon photoreceptor. Regarding the developer used in the process.

〔従来の技術〕[Conventional technology]

電子写真法の一例においては、感光体上に、帯電、露光
により静電荷像が形成され、この静電荷像はトナーを含
む現像剤によって現像されてトナー像が形成され、次い
でこのトナー像が転写材に転写され、定着されて可視画
像が形成される。
In an example of electrophotography, an electrostatic image is formed on a photoconductor by charging and exposure, this electrostatic image is developed with a developer containing toner to form a toner image, and this toner image is then transferred. The image is transferred to a material and fused to form a visible image.

方、転写材に転写されずに感光体上に残留したトナーは
、感光体の表面に圧接配置されたクリーニング部材によ
りクリーニングされる。
On the other hand, toner remaining on the photoreceptor without being transferred to the transfer material is cleaned by a cleaning member placed in pressure contact with the surface of the photoreceptor.

このような画像形成プロセスに使用される現像剤を構成
するトナーとしては、従来、着色粒子と、無機微粒子に
より表面処理されてなる樹脂粒子からなる複合微粒子と
を含有してなるトナーが提案されている(特開昭64−
91143号公報)。
As a toner constituting a developer used in such an image forming process, a toner containing colored particles and composite fine particles made of resin particles whose surface is treated with inorganic fine particles has been proposed. (Unexamined Japanese Patent Publication No. 1983-
91143).

そして上記公報には、樹脂粒子を構成する樹脂として、
アクリル系重合体、アクリル・スチレン系重合体、含窒
素付加重合性単量体の重合体または共重合体、付加重合
性カルボン酸の重合体または共重合体、フッ素樹脂、シ
リコーン樹脂が用いられることが記載されている。
In the above publication, as the resin constituting the resin particles,
Acrylic polymers, acrylic/styrene polymers, polymers or copolymers of nitrogen-containing addition polymerizable monomers, polymers or copolymers of addition polymerizable carboxylic acids, fluororesins, and silicone resins are used. is listed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記公報のトナーでは、複合微粒子の核となる
樹脂粒子を構成する樹脂が硬くて脆いために、感光体と
して特にアモルファスシリコン感光体を用いた画像形成
プロセスに使用する場合には、以下の問題のあることが
判明した。
However, in the toner disclosed in the above publication, the resin constituting the resin particles that serve as the core of the composite fine particles is hard and brittle. It turned out there was a problem.

(1)クリーニング工程においてクリーニング性を高め
るために、アモルファスシリコン感光体の表面にクリー
ニング部材を比較的大きな圧接力で圧接配置してクリー
ニングを行うと、クリーニング部材とアモルファスシリ
コン感光体の表面との間に挟まれた複合微粒子が大きな
圧接力を受けるため、複合微粒子の表面に存在する無機
微粒子によってアモルファスシリコン感光体の表面が強
く擦られて損傷が発生し、また複合微粒子の核を構成す
る樹脂粒子が破壊されて、複合微粒子の形態および表面
特性が不良となり、クリーニング不良が発生する問題が
ある。
(1) In order to improve cleaning performance in the cleaning process, when cleaning is performed by placing a cleaning member in contact with the surface of the amorphous silicon photoreceptor with a relatively large pressure contact force, the gap between the cleaning member and the surface of the amorphous silicon photoreceptor is Since the composite fine particles sandwiched between the composite particles are subjected to a large pressure contact force, the surface of the amorphous silicon photoreceptor is strongly rubbed by the inorganic fine particles existing on the surface of the composite fine particles, causing damage, and the resin particles forming the core of the composite fine particles is destroyed, resulting in poor morphology and surface properties of the composite fine particles, resulting in a problem of poor cleaning.

(2) このように樹脂粒子の破壊が生ずると、樹脂微
粉が発生し、この樹脂微粉がクリーニング部材によりア
モルファスシリコン感光体の表面に圧接されるため、ア
モルファスシリコン感光体の表面がフィルミングされ、
当該感光体の表面特性が早期に劣化して、画像の形成を
繰り返すに従って画像濃度が低下する問題がある。
(2) When the resin particles are broken in this way, fine resin powder is generated, and this fine resin powder is pressed against the surface of the amorphous silicon photoreceptor by the cleaning member, so that the surface of the amorphous silicon photoreceptor is filmed.
There is a problem that the surface characteristics of the photoreceptor deteriorate early and the image density decreases as images are repeatedly formed.

(3) また、樹脂粒子が破壊される際には、無機微粒
子が遊離して無機微粉が発生し、この無機微粉によって
もアモルファスシリコン感光体の表面が損傷され、そし
てこの無機微粉がアモルファスシリコン感光体の表面の
損傷部に埋め込まれてクリーニングされないようになり
、その結果、次の画像の形成においては埋め込まれた無
機微粒子にトナーが付着してこれが定着されて画像に黒
い斑点状の汚れ(黒ポチ)が発生する問題がある。
(3) In addition, when resin particles are destroyed, inorganic fine particles are liberated and inorganic fine powder is generated, and this inorganic fine powder also damages the surface of the amorphous silicon photoreceptor, and this inorganic fine powder is used as the amorphous silicon photoreceptor. As a result, when the next image is formed, the toner adheres to the embedded inorganic particles and is fixed, causing black spot-like stains (black spots) on the image. There is a problem that occurs.

本発明の目的は、複合微粒子の破壊を防止して、クリー
ニング不良を伴わずに、画像濃度が高くて黒ポチのない
画像を多数回にわたり安定に形成することができる現像
剤を提供することにある。
An object of the present invention is to provide a developer that can prevent the destruction of composite fine particles and stably form images with high image density and no black spots many times without causing cleaning failures. be.

〔課題を解決するための手段〕[Means to solve the problem]

以上の目的を達成するために、本発明においては、アモ
ルファスンリコン(以下r a −3i Jという)感
光体上に静電荷像を形成し、この静電荷像を現像剤によ
り現像してトナー像を形成し、このトナー像を転写材に
転写した後、a −3i悪感光上に残留したトナーをク
リーニングする工程を含む画像形成プロセスに使用され
る現像剤において、現像剤を構成するトナーが、少なく
とも樹脂と着色剤を含有してなる着色粒子と、20℃に
おける降伏値が10〜500 kg/cm2で平均粒径
が0.1〜7.umの樹脂粒子の表面に、平均粒径が0
.01〜1μmの無機微粒子が固着されてなる複合微粒
子とを含をしてなる構成を採用する。
In order to achieve the above object, in the present invention, an electrostatic charge image is formed on an amorphous silicon (referred to as RA-3i J) photoreceptor, and this electrostatic charge image is developed with a developer to form a toner image. In a developer used in an image forming process that includes a step of forming a toner image, transferring the toner image to a transfer material, and cleaning the toner remaining on the a-3i photosensitive material, the toner constituting the developer is Colored particles containing at least a resin and a colorant have a yield value of 10 to 500 kg/cm2 at 20°C and an average particle size of 0.1 to 7. On the surface of the resin particles of um, the average particle size is 0.
.. A structure including composite fine particles formed by fixing inorganic fine particles of 0.01 to 1 μm is adopted.

すなわち、本発明では、複合微粒子の核となる樹脂粒子
として、特に20℃における降伏値が特定の範囲にある
ものを用いることにより、当該樹脂粒子の粘り強い物性
によって、クリーニング部材による圧接力に起因する樹
脂粒子の破壊を防止し、これによりクリーニング性の向
上を図り、またa−3i感光体の表面のフィルミングを
防止し、そして当該感光体の表面の損傷に起因する黒ポ
チの発生を防止し得るようにしたものである。
That is, in the present invention, by using resin particles whose yield value at 20° C. is within a specific range as the core of the composite fine particles, due to the tenacious physical properties of the resin particles, It prevents destruction of resin particles, thereby improving cleaning performance, and also prevents filming on the surface of the a-3i photoreceptor, and prevents the occurrence of black spots caused by damage to the surface of the photoreceptor. This is what I did to get it.

詳しく説明すると、複合微粒子の核となる樹脂粒子は、
20℃における降伏値が特定の範囲にあるので、常温下
において圧縮圧力を受けたときに、その圧縮圧力に適度
に追従して破壊されることなく変形し得る樹脂粒子であ
り、当該圧縮圧力に対して粘り強い物性を有している。
To explain in detail, the resin particles that form the core of the composite fine particles are
Since the yield value at 20°C is within a specific range, the resin particles can be deformed without being destroyed by appropriately following the compression pressure when subjected to compression pressure at room temperature. It has strong physical properties.

従って、硬質なa−Si感光体に比較的大きな圧接力で
接触配置されたクリーニング部材により残留トナーをク
リーニングする際に、複合微粒子がクリーニング部材と
感光体との間に挟まれて大きな圧接力を受けたときには
、樹脂粒子が適度に変形してクツション作用を発揮し、
このため無機微粒子による強い擦過作用が相当に緩和さ
れ、また樹脂粒子が破壊されるおそれが少ない。従って
、無機微粒子および樹脂粒子の微粉が発生することがな
く、クリーニング不良を招かずに、画像濃度が十分で、
黒ポチのない画像を多数回にわたり安定に形成すること
ができる。
Therefore, when cleaning residual toner with a cleaning member placed in contact with a hard a-Si photoconductor with a relatively large pressure contact force, the composite fine particles are sandwiched between the cleaning member and the photoconductor and a large pressure contact force is applied. When received, the resin particles deform appropriately and exert a cushioning effect.
Therefore, the strong abrasion effect caused by the inorganic fine particles is considerably alleviated, and there is little risk that the resin particles will be destroyed. Therefore, fine inorganic particles and resin particles are not generated, and the image density is sufficient without causing cleaning defects.
Images without black spots can be stably formed many times.

以下、本発明の構成を具体的に説明する。Hereinafter, the configuration of the present invention will be specifically explained.

本発明の現像剤を構成する複合微粒子は、20℃におけ
る降伏値が10〜500 kg/cm”好ましくは20
〜300kg /cm”で、平均粒径が0.1〜7μm
好ましくは0.2〜5μmの樹脂粒子を核とし、この樹
脂粒子の表面に平均粒径が0.01〜1μm好ましくは
0.01〜0.5 μmの無機微粒子が固着されたもの
である。
The fine composite particles constituting the developer of the present invention have a yield value of 10 to 500 kg/cm at 20°C, preferably 20
~300kg/cm” with an average particle size of 0.1-7μm
Preferably, resin particles of 0.2 to 5 μm are used as cores, and inorganic fine particles having an average particle diameter of 0.01 to 1 μm, preferably 0.01 to 0.5 μm are fixed to the surface of the resin particles.

ここで、降伏値とは、JIS K 7113−1981
に規定される方法により測定される値をいう。
Here, the yield value is JIS K 7113-1981
This refers to the value measured by the method specified in .

20℃における降伏値が10〜500 kg/cm2に
ある樹脂は、常温下において圧縮圧力により適度に変形
されるが、完全には破断もしくは破砕されない粘り強い
物性を有している。
A resin having a yield value of 10 to 500 kg/cm2 at 20 DEG C. is moderately deformed by compression pressure at room temperature, but has tenacious physical properties that will not completely break or fracture.

これに対して、樹脂粒子を構成する樹脂の20℃におけ
る降伏値が10kg/cm2未満のときには、僅かの圧
縮圧力によっても樹脂粒子が大きく変形するため、複合
微粒子による良好なコロ作用が発揮されず、トナーの流
動性が低下し、またa −3i感光体に対する付着力が
増大してクリーニング不良が発生しやすい。
On the other hand, when the yield value of the resin constituting the resin particles at 20°C is less than 10 kg/cm2, the resin particles are greatly deformed even by a slight compression pressure, so the composite fine particles do not exhibit a good rolling effect. , the fluidity of the toner decreases, and the adhesion force to the a-3i photoreceptor increases, resulting in poor cleaning.

逆に、樹脂粒子を構成する樹脂の20℃における降伏値
が500kg/cm”を超えるときには、樹脂の粘り強
さが不足するため、クリーニング部材による大きな圧接
力を受けたときには、樹脂粒子が変形しにくくて無機微
粒子による擦過作用が大きく現れ、そのためa −3i
感光体の表面に損傷が発生しやすく、また樹脂粒子の破
壊が急激に起こるため、クリーニング不良が発生し、さ
らに樹脂粒子および無機微粒子の微粉が発生して、a 
−3i感光体の表面のフィルミングにより画像濃度が低
下し、a−3i感光体の表面の損傷に起因する黒ポチが
発生しやすい。
On the other hand, when the yield value at 20°C of the resin constituting the resin particles exceeds 500 kg/cm, the resin does not have enough tenacity, so the resin particles are difficult to deform when subjected to a large pressing force from the cleaning member. The abrasive action of inorganic fine particles appears greatly, and therefore a-3i
The surface of the photoreceptor is easily damaged, and the resin particles are rapidly destroyed, resulting in poor cleaning.Furthermore, fine powder of resin particles and inorganic particles is generated, resulting in a
Image density decreases due to filming on the surface of the -3i photoreceptor, and black spots are likely to occur due to damage to the surface of the a-3i photoreceptor.

複合微粒子を構成する樹脂粒子の平均粒径は、0.1〜
7μmであり、好ましくは0.2〜5μmである。ここ
で、樹脂粒子の平均粒径は、SYMPATEC社製のレ
ーザ回折式粒度分布測定装置r IIELO3COMP
ETITION / 3 Jにより測定される体積基準
の平均粒径をいう。
The average particle diameter of the resin particles constituting the composite fine particles is 0.1 to
The thickness is 7 μm, preferably 0.2 to 5 μm. Here, the average particle size of the resin particles is measured using a laser diffraction particle size distribution measuring device r IIELO3COMP manufactured by SYMPATEC.
ETITION/3 Refers to the volume-based average particle size measured by J.

樹脂粒子の平均粒径が斯かる範囲にあれば、複合微粒子
による良好なコロ作用が発揮されるため、すなわち着色
粒子間に好適な大きさの複合微粒子が介在することによ
って良好な潤滑作用が発揮されるため、トナーのクリー
ニング性が向上し、またトナーの摩擦帯電性が阻害され
るおそれがないため、画像濃度の高い画像を形成するこ
とができる。
If the average particle size of the resin particles is within this range, the composite fine particles will exhibit a good rolling effect, that is, the composite fine particles of a suitable size will be interposed between the colored particles, and a good lubricating effect will be exerted. Therefore, the cleaning performance of the toner is improved, and there is no fear that the triboelectric charging property of the toner is inhibited, so that an image with high image density can be formed.

これに対して、樹脂粒子の平均粒径が0.1μm未満の
ときには、複合微粒子によるコロ作用が不十分となるた
め、クリーニング性が低下しやすい。
On the other hand, when the average particle size of the resin particles is less than 0.1 μm, the cleaning performance tends to deteriorate because the rolling action of the composite fine particles becomes insufficient.

逆に、樹脂粒子の平均粒径が7μmを超えるときには、
トナーの摩擦帯電性が阻害されるため、画像濃度の低下
を招きやすい。
Conversely, when the average particle size of the resin particles exceeds 7 μm,
Since the triboelectric charging properties of the toner are inhibited, image density tends to decrease.

複合微粒子の樹脂粒子を構成する樹脂としては、20℃
における降伏値が10〜500 kg/cm2好ましく
は20〜300 kg/cm”の範囲にある樹脂から選
択されるが、具体的には、エチレン−酢酸ビニル共重合
体、ポリウレタン、塩化ビニリデン樹脂、塩化ビニル樹
脂、ABSIII!等を用いることができる。
The resin constituting the resin particles of the composite fine particles has a temperature of 20°C.
The resin is selected from resins having a yield value in the range of 10 to 500 kg/cm2, preferably 20 to 300 kg/cm, and specifically, ethylene-vinyl acetate copolymer, polyurethane, vinylidene chloride resin, chloride resin, etc. Vinyl resin, ABSIII!, etc. can be used.

複合微粒子を構成する無機微粒子の平均粒径は、0.0
1〜IA1m好ましくは0.01〜0.5 μmである
The average particle size of the inorganic fine particles constituting the composite fine particles is 0.0
1 to IA1m, preferably 0.01 to 0.5 μm.

ここで、無機微粒子の平均粒径とは、1次粒子の平均粒
径であって、走査型電子顕微鏡により観察し、画像解析
により測定される個数基準の平均粒径をいう。
Here, the average particle size of inorganic fine particles refers to the average particle size of primary particles, and refers to the number-based average particle size observed with a scanning electron microscope and measured by image analysis.

無機微粒子の平均粒径が斯かる範囲にあれば、良好なり
リーニング性が発揮され、さらには好適な研磨作用が発
揮されて、感光体表面の劣化部分あるいはフィルミング
部分が良好に除去されて感光体の表面特性が長期間にわ
たり安定に維持される。
If the average particle size of the inorganic fine particles is within this range, good cleaning properties will be exhibited, and furthermore, a suitable polishing action will be exhibited, and deteriorated parts or filming parts on the surface of the photoreceptor will be effectively removed and the photoreceptor will be Body surface properties are maintained stably over a long period of time.

これに対して、無機微粒子の平均粒径が0.01μm未
満のときには、樹脂粒子中に埋没しやす(、クリーニン
グ性が不十分となる。逆に、無機微粒子の平均粒径が1
μmを超えるときには、樹脂粒子の表面に固着すること
が困難であり、遊離した無機微粒子により感光体の表面
が損傷されやすい。
On the other hand, when the average particle size of the inorganic fine particles is less than 0.01 μm, they tend to be buried in the resin particles (and the cleaning performance becomes insufficient. Conversely, when the average particle size of the inorganic fine particles is less than 1
When it exceeds μm, it is difficult to adhere to the surface of the resin particles, and the surface of the photoreceptor is easily damaged by the free inorganic fine particles.

無機微粒子を構成する無機材料としては、■酸化ケイ素
、酸化アルミニウム、酸化チタン、酸焦亜鉛、酸化ジル
コニア、酸化クロム、酸化セリウム、酸化タングステン
、酸化アンチモン、酸化銅、酸化スズ、酸化テルノペ酸
化マンガン、酸化ホウ素、チタン酸バリウム、チタン酸
アルミニウム、チタン酸マグネシウム、チタン酸カルシ
ウム、チタン酸ストロンチウム等の酸化物、■炭化ケイ
素、炭化タングステン、炭化ホウ素、炭化チタン等の炭
化物、■窒化ケイ素、窒化チタン、窒化ホウ素等の窒化
物、等を用いることができる。
Inorganic materials that make up the inorganic fine particles include silicon oxide, aluminum oxide, titanium oxide, pyrozinc oxide, zirconia oxide, chromium oxide, cerium oxide, tungsten oxide, antimony oxide, copper oxide, tin oxide, ternope oxide, manganese oxide, Oxides such as boron oxide, barium titanate, aluminum titanate, magnesium titanate, calcium titanate, strontium titanate, ■ carbides such as silicon carbide, tungsten carbide, boron carbide, titanium carbide, ■ silicon nitride, titanium nitride, Nitride such as boron nitride, etc. can be used.

複合微粒子は、以上の樹脂粒子の表面に、以上の無機微
粒子が固着されて構成される。ここで固着とは、無機微
粒子が樹脂粒子に単に静電気力により付着しているので
はなくて、無機微粒子の樹脂粒子中に埋め込まれた部分
の長さが5〜95%である状態をいう。このような状態
は、透過電子顕微鏡または通常の電子顕微鏡により複合
微粒子の表面を観察することにより確認することができ
る。
The composite fine particles are composed of the above inorganic fine particles fixed to the surface of the above resin particles. Here, adhesion refers to a state in which the inorganic fine particles are not simply attached to the resin particles by electrostatic force, but the length of the part of the inorganic fine particles embedded in the resin particles is 5 to 95%. Such a state can be confirmed by observing the surface of the composite fine particles using a transmission electron microscope or an ordinary electron microscope.

無機微粒子を樹脂粒子の表面に固着させるに際しては、
まず樹脂粒子を球形化し、その後に無機微粒子を樹脂粒
子の表面に固着させるのが好ましい。これは、樹脂粒子
が球形であると、無機微粒子が均一に固着されるように
なって、無機微粒子の遊離が有効に防止されるからであ
る。これに対して、不定形の樹脂粒子を用いると、樹脂
粒子の表面に対する無機微粒子の固着が不均一となり、
無機微粒子が遊離しやすくなる。また樹脂粒子の表面が
大きく露出してしまう。
When fixing inorganic fine particles to the surface of resin particles,
It is preferable that the resin particles are first sphericalized and then the inorganic fine particles are fixed to the surface of the resin particles. This is because when the resin particles are spherical, the inorganic fine particles are evenly fixed, and separation of the inorganic fine particles is effectively prevented. On the other hand, if irregularly shaped resin particles are used, the inorganic fine particles will not adhere to the surface of the resin particles uniformly.
Inorganic fine particles become easily liberated. Moreover, the surface of the resin particles is largely exposed.

樹脂粒子を球形化する手段としては、■樹脂粒子を熱に
よっていったん溶融し、その後噴霧造粒を行う方法、■
熱溶融した樹脂粒子を水中にジェットで放出して球形化
する方法、■懸濁重合法あるいは乳化重合法によって球
形の樹脂粒子を合成する方法、等を挙げることができる
Methods for making resin particles spherical include: (1) melting the resin particles by heat and then performing spray granulation; (2)
Examples include a method in which heat-molten resin particles are jetted into water to make them spherical, and (2) a method in which spherical resin particles are synthesized by a suspension polymerization method or an emulsion polymerization method.

樹脂粒子の表面に無機微粒子を固着する手段としては、
無機微粒子と樹脂粒子とを混合し、その後に熱を加える
方法、樹脂粒子の表面に無機微粒子を機械的に固着する
いわゆるメカノケミカル法等を用いることができる。具
体的には、■樹脂粒子と無機微粒子とを混合し、ヘンシ
ェルミキサーV型混合機、タービュラーミキサー等によ
り撹拌混合を行い、樹脂粒子の表面に静電気力により無
機微粒子を付着させ、次いで表面に無機微粒子が付着し
た樹脂粒子をニロアトマイザー、スプレードライヤー等
の熱処理装置に導入し、熱を加えて樹脂粒子の表面を軟
化させて当該表面に無機微粒子を固着させる方法、■樹
脂粒子の表面に静電気力により無機微粒子を付着させた
後に、衝撃式粉砕機を改造した機械的エネルギーを付与
することのできる装置、例えばオングミル、自由ミル、
ハイブリダイザ−等の装置を使用して樹脂粒子の表面に
無機微粒子を固着させる方法、等を採用することができ
る。
As a means of fixing inorganic fine particles to the surface of resin particles,
A method in which inorganic fine particles and resin particles are mixed and then heat is applied, a so-called mechanochemical method in which inorganic fine particles are mechanically fixed to the surface of resin particles, etc. can be used. Specifically, ■Resin particles and inorganic fine particles are mixed, stirred and mixed using a Henschel mixer V type mixer, turbular mixer, etc., the inorganic fine particles are attached to the surface of the resin particles by electrostatic force, and then the inorganic fine particles are attached to the surface of the resin particles. A method in which resin particles with fine particles attached are introduced into a heat treatment device such as a Niro atomizer or a spray dryer, and heat is applied to soften the surface of the resin particles and inorganic fine particles are fixed to the surface. ■Electrostatic force is applied to the surface of the resin particles. After the inorganic fine particles are attached by a device that can apply mechanical energy by modifying an impact crusher, such as an Ong mill, a free mill,
A method of fixing inorganic fine particles to the surface of resin particles using a device such as a hybridizer can be adopted.

複合微粒子を得るに際して、樹脂粒子に対する無機微粒
子の配合中は、樹脂粒子の表面を均一に覆うことができ
る量であればよい。具体的には、無機微粒子の比重によ
って異なるが、通常、樹脂粒子に対して5〜60重景%
、好ましくは5〜40重量%の割合で無機微粒子を使用
する。このような割合であれば、樹脂粒子の表面に十分
均一に無機微粒子を固着させることができる。これに対
して、無機微粒子の割合が過小であるとクリーム〉′電
性が低下しやすく、逆に無機微粒子の割合が過大である
と無機微粒子が遊離しやすくなって耐久性が低下する。
In obtaining composite fine particles, when blending inorganic fine particles with resin particles, the amount may be sufficient as long as the surface of the resin particles can be uniformly covered. Specifically, it varies depending on the specific gravity of the inorganic fine particles, but usually 5 to 60% by weight relative to the resin particles.
The inorganic fine particles are preferably used in a proportion of 5 to 40% by weight. With such a ratio, the inorganic fine particles can be fixed sufficiently uniformly to the surface of the resin particles. On the other hand, if the proportion of inorganic fine particles is too small, the cream's conductivity tends to decrease, and conversely, if the proportion of inorganic fine particles is too large, the inorganic fine particles tend to be liberated, resulting in a decrease in durability.

以上の複合微粒子は着色粒子に添加混合されてトナーが
構成されるが、複合微粒子の配合割合は、着色粒子に対
して0.旧〜2.0重量%の範囲が好ましい。斯かる範
囲にあれば、良好なりリーニング性が得られ、またトナ
ーの摩擦帯電性も阻害されるおそれがなく、そして良好
な流動性が発揮される。これに対して、複合微粒子の配
合割合が過小のときにはクリーニング性が低下しやすい
。逆に複合微粒子の配合割合が過大のときにはトナーの
摩擦帯電性が阻害され、また流動性が低下するため、画
像濃度が低下しやすい。
The above composite fine particles are added and mixed with colored particles to form a toner, and the blending ratio of the composite fine particles to the colored particles is 0. A range of 2.0% by weight is preferred. Within this range, fairly good leaning properties can be obtained, the triboelectric charging properties of the toner will not be inhibited, and good fluidity will be exhibited. On the other hand, when the blending ratio of composite fine particles is too small, cleaning performance tends to deteriorate. On the other hand, when the blending ratio of the composite fine particles is too large, the triboelectric charging properties of the toner are inhibited and the fluidity is lowered, so that the image density is likely to be lowered.

本発明の現像剤を構成する着色粒子は、少なくとも樹脂
と着色剤を含有してなる着色粒子である。
The colored particles constituting the developer of the present invention are colored particles containing at least a resin and a colorant.

着色粒子の平均粒径は、通常、1〜30μmの範囲であ
る。
The average particle size of the colored particles is usually in the range of 1 to 30 μm.

着色粒子を構成する樹脂としては、ポリエステル樹脂、
スチレン系樹脂、アクリル系樹脂、スチレン−アクリル
系共重合体樹脂、エポキシ樹脂等を用いることができる
As the resin constituting the colored particles, polyester resin,
Styrene resins, acrylic resins, styrene-acrylic copolymer resins, epoxy resins, etc. can be used.

着色粒子を構成する着色剤としては、カーボンブラック
、ニグロシン染料、アニリンブルー、カルコオイルブル
ー、クロムイエロー、ウルトラマリンブルー、デュポン
オイルレッド、キノリンイエロー、メチレンブルークロ
ライド、フタロシアニンブルー、マラカイトグリーンオ
フサレート、ランプブラック、ローズベンガル等を用い
ることができる。
Colorants that make up the colored particles include carbon black, nigrosine dye, aniline blue, calco oil blue, chrome yellow, ultramarine blue, DuPont oil red, quinoline yellow, methylene blue chloride, phthalocyanine blue, malachite green offsalate, and lamp black. , Rose Bengal, etc. can be used.

着色粒子中には、必要に応じてその他の添加剤が含有さ
れていてもよい。斯かるその他の添加剤としては、荷電
制御剤、定着性改良剤等を挙げることができる。
The colored particles may contain other additives as necessary. Examples of such other additives include charge control agents, fixability improvers, and the like.

荷電制御剤としては、サリチル酸誘導体等を用いること
ができる。
As the charge control agent, salicylic acid derivatives and the like can be used.

定着性改良剤としては、低分子量ポリオレフィン等を用
いることができる。
As the fixing property improving agent, low molecular weight polyolefin or the like can be used.

また、磁性トナーを得る場合には、着色粒子中に添加剤
として磁性体粒子が含有される。斯かる磁性体粒子とし
ては、平均粒径が0.1〜2μmのフェライト、マグネ
タイト等の粒子を用いることができる。磁性体粒子の添
加量は、複合微粒子等の外部添加剤を除いた状態の着色
粒子の通常20〜70重量%となる範囲である。
Further, when obtaining a magnetic toner, magnetic particles are contained as an additive in the colored particles. As such magnetic particles, particles of ferrite, magnetite, etc. having an average particle size of 0.1 to 2 μm can be used. The amount of magnetic particles added is usually 20 to 70% by weight of the colored particles excluding external additives such as composite fine particles.

また、本発明においては、着色粒子と複合微粒子の混合
物に、さらに無機微粒子を外部から添加混合してトナー
を構成してもよい。この無機微粒子によりトナーの流動
性をさらに高めることができる。斯かる無機微粒子とし
ては、特に、シランカップリング剤、チタンカップリン
グ剤等の疎水化剤により表面処理されたシリカ微粒子等
を好ましく用いることができる。
Further, in the present invention, inorganic fine particles may be added and mixed from the outside to the mixture of colored particles and composite fine particles to form a toner. These inorganic fine particles can further improve the fluidity of the toner. As such inorganic fine particles, in particular, silica fine particles whose surface has been treated with a hydrophobizing agent such as a silane coupling agent or a titanium coupling agent can be preferably used.

本発明の現像剤を構成するトナーの製造方法の一例を挙
げると、着色粒子を構成する樹脂と、着色剤と、その他
必要に応じて用いられる添加剤とを混合し、溶融混練し
、冷却後粉砕し、分級して所望の平均粒径の着色粒子を
得る。次いで、この着色粒子と、複合微粒子とを、ヘン
シェルミキサー等の装置により混合して、着色粒子の表
面に複合微粒子を静電気力により付着させてトナーを製
造する。
To give an example of a method for manufacturing the toner constituting the developer of the present invention, the resin constituting the colored particles, the colorant, and other additives used as necessary are mixed, melt-kneaded, and after cooling. It is crushed and classified to obtain colored particles with a desired average particle size. Next, the colored particles and composite fine particles are mixed using a device such as a Henschel mixer, and the composite fine particles are attached to the surface of the colored particles by electrostatic force to produce a toner.

本発明の現像剤は、上記トナーにキャリアが混合されて
構成された二成分系現像剤であってもよいし、トナーが
磁性トナーである場合には、当該磁性トナーのみにより
構成された一成分系現像剤であってもよい。
The developer of the present invention may be a two-component developer composed of the above toner mixed with a carrier, or when the toner is a magnetic toner, a one-component developer composed only of the magnetic toner. It may be a type developer.

二成分系現像剤を構成するキャリアとしては、現像剤の
耐久性を高める観点から、磁性体粒子の表面が樹脂によ
り被覆されてなるコーティングキャリアを好ましく用い
ることができる。
As the carrier constituting the two-component developer, a coated carrier in which the surfaces of magnetic particles are coated with a resin can be preferably used from the viewpoint of increasing the durability of the developer.

斯かる磁性体粒子としては、フェライト、マグネタイト
等の粒子を用いることができる。
As such magnetic particles, particles of ferrite, magnetite, etc. can be used.

また被覆用樹脂としては、スチレン−アクリル系共重合
体等の樹脂を用いることができる。
Further, as the coating resin, a resin such as a styrene-acrylic copolymer can be used.

キャリアの平均粒径は、通常、30〜150 μmの範
囲である。
The average particle size of the carrier is usually in the range of 30 to 150 μm.

本発明の現像剤は、a −3i悪感光上に静電荷像を形
成し、この静電荷像を現像剤により現゛像してトナー像
を形成し、このトナー像を転写材に転写した後、a−3
i悪感光上に残留したトナーをクリーニングする工程を
含む画像形成プロセスに使用される。
The developer of the present invention forms an electrostatic charge image on the a-3i bad exposure light, develops this electrostatic charge image with the developer to form a toner image, and after transferring this toner image to a transfer material. , a-3
Used in an image forming process that includes the step of cleaning toner remaining on the photosensitive surface.

以下、各工程について具体的に説明する。Each step will be specifically explained below.

(静電荷像形成工程) a−3i悪感光の表面をコロナ帯電器等により一様に帯
電し、次いで露光光学系により像露光を施して、当該a
 −3i悪感光上に静電荷像を形成する。
(Electrostatic charge image forming step) The surface of the a-3i photosensitive material is uniformly charged using a corona charger or the like, and then image exposure is performed using an exposure optical system to form the a-3i image.
-3i Forming an electrostatic charge image on the irritating light.

a−5i悪感光としては、特に表面改質層を有する積層
型a−5i感光体を好ましく用いることができる。この
表面改質層としては、a−5i層に、水素原子および/
またはフン素原子等のハロゲン原子(X)を導入してダ
ングリングボンドを封鎖した層(以下ra −Si :
 H(X)層」という)に、さらに炭素原子、酸素原子
、窒素原子等の改質原子(Y)を導入してなるものが好
ましい。
As the a-5i photoreceptor, a laminated type a-5i photoreceptor having a surface modification layer can be particularly preferably used. This surface modified layer includes hydrogen atoms and/or
Or a layer in which dangling bonds are blocked by introducing halogen atoms (X) such as fluorine atoms (hereinafter referred to as ra-Si:
It is preferable that a modifying atom (Y) such as a carbon atom, an oxygen atom, or a nitrogen atom is further introduced into the "H(X) layer").

斯かる表面改質層を有する積層型a −Si感光体は、
無公害で、耐光性、耐コロナイオン性、耐温湿度性、耐
摩耗性のきわめて優れたものである。
The laminated a-Si photoreceptor having such a surface modified layer is
It is non-polluting and has excellent light resistance, corona ion resistance, temperature and humidity resistance, and abrasion resistance.

耐摩耗性が優れている理由としては、導入された改質原
子(Y)とシリコン原子(sl)との結合力が、シリコ
ン原子(Sl)同士の結合力よりも大きいからであると
考えられる。
The reason for the excellent wear resistance is thought to be that the bonding force between the introduced modification atoms (Y) and silicon atoms (sl) is greater than the bonding force between silicon atoms (sl). .

また、表面改質層が硬いため、a −Si感光体に対す
るトナーの物理的な付着力が小さくなり、転写工程にお
いては、a−Si感光体から転写材へのトナーの転移が
容易になされ、転写率が高くなる。
In addition, since the surface modification layer is hard, the physical adhesion of the toner to the a-Si photoreceptor is reduced, and in the transfer process, the toner is easily transferred from the a-Si photoreceptor to the transfer material. Transfer rate increases.

そして転写率が高くなる結果、転写されずにa−Si感
光体上に残留するトナーの量が減少し、しかも表面改質
層へのトナーの埋め込みも防止されるため、クリーニン
グ性が向上する。
As a result of the higher transfer rate, the amount of toner remaining on the a-Si photoreceptor without being transferred is reduced, and embedding of toner in the surface modification layer is also prevented, resulting in improved cleaning performance.

また、上8己表面改質層は、それ自体が優れた光導電性
を有すると共に、改質原子(Y)が導入されたことによ
り暗抵抗が1012〜10”Ω・cm (通常のa−3
i:H層では108〜109Ω・cm)  と増大し、
その結果a−Si感光体の電荷保持能が格段に高くなっ
ている。また、帯電・露光の繰り返し特性も安定してい
る。
In addition, the upper 8 self-surface modified layer itself has excellent photoconductivity, and due to the introduction of modifying atoms (Y), the dark resistance is 1012 to 10" Ω・cm (normal a- 3
In the i:H layer, it increases to 108 to 109 Ω・cm),
As a result, the charge retention ability of the a-Si photoreceptor is significantly improved. Furthermore, the repeatability of charging and exposure is also stable.

表面改質層は、光導電層上に直接積層してもよいし、あ
るいは光導電層に中間層を設けてこの中間層上に積層し
てもよい。
The surface modification layer may be laminated directly on the photoconductive layer, or may be laminated on the photoconductive layer provided with an intermediate layer.

光導電層としては、電荷の発生と輸送とを別個の層に分
担させる機能分離型の層構成としてもよい。このような
多層構成の光導電層を用いる場合には、表面改質層は光
導電層の最外層上に積層すればよい。
The photoconductive layer may have a functionally separated layer structure in which charge generation and transport are shared by separate layers. When using such a multilayer photoconductive layer, the surface modification layer may be laminated on the outermost layer of the photoconductive layer.

第1図にa −Si感光体の具体的構成の一例を示す。FIG. 1 shows an example of a specific configuration of an a-Si photoreceptor.

10はa−Si感光体である。帯電極性を正とする場合
には、例えばアルミニウム等よりなるドラム状の基体1
1上に、Pゝ型の電荷ブロッキング層12、電荷輸送層
13、中間層14、電荷発生層15、表面改質層16を
順次積層してa −Si感光体10を構成する。
10 is an a-Si photoreceptor. When the charging polarity is positive, for example, a drum-shaped base 1 made of aluminum or the like is used.
1, a P-type charge blocking layer 12, a charge transport layer 13, an intermediate layer 14, a charge generation layer 15, and a surface modification layer 16 are sequentially laminated on the a-Si photoreceptor 10.

P“型の電荷ブロッキング層12は、第3A族元素(ホ
ウ素、アルミニウム、ガリウム等)がヘビードープされ
、かつ炭素原子、酸素原子、窒素原子等の改質原子(Y
)の少なくとも1種を含有するa −3i : C: 
H(X)層、a−Si:C:O:H(X)層、a −S
i : N : H(X)層、a−3i:N:O:H(
X)層、a−3i:○:H(X)層、a−3i:C:O
:N:H(X)層等により構成することが好ましい。改
質原子(Y)の含有割合は、0.5〜4Q atm%が
好ましい。また電荷ブロッキング層12の厚さは、0,
01〜10μmが好ましい。
The P" type charge blocking layer 12 is heavily doped with Group 3A elements (boron, aluminum, gallium, etc.), and is doped with modifying atoms (Y
) containing at least one of the following: a-3i: C:
H(X) layer, a-Si:C:O:H(X) layer, a-S
i:N:H(X) layer, a-3i:N:O:H(
X) layer, a-3i:○:H(X) layer, a-3i:C:O
:N:H(X) layer or the like is preferable. The content of the modifying atoms (Y) is preferably 0.5 to 4Q atm%. Further, the thickness of the charge blocking layer 12 is 0,
01 to 10 μm is preferable.

電荷輸送層13は、第3A族元素がライトドープされ、
しかも電荷ブロッキング層12と同様に、炭素原子、酸
素原子、窒素原子等の改質原子(Y)の少なくとも1種
を含有するa −3i : Y : H(X)層により
構成することが好ましい。改質原子(Y)の含有割合は
0.5〜4Q atm%が好ましい。また帯電能、感度
を向上させるために、ホウ素原子を導入して真性化して
もよい。電荷輸送層13の軍さは、5〜50μmが好ま
しく、電荷発生層15よりも厚いほうが好ましい。
The charge transport layer 13 is lightly doped with a Group 3A element,
Moreover, like the charge blocking layer 12, it is preferable to configure the a-3i:Y:H(X) layer containing at least one kind of modifying atoms (Y) such as carbon atoms, oxygen atoms, and nitrogen atoms. The content of the modifying atoms (Y) is preferably 0.5 to 4Q atm%. Further, in order to improve charging ability and sensitivity, boron atoms may be introduced to make the material intrinsic. The thickness of the charge transport layer 13 is preferably 5 to 50 μm, and preferably thicker than the charge generation layer 15.

中間層14は、キャリアの注入効率を高めるために必要
に応じて設けられるものであり、例えば炭素原子、酸素
原子、窒素原子等の改質原子(Y)の少なくとも1種を
含有するa −3i : Y : H(X)層により構
成することが好ましい。また改質原子(Y、)の含有割
合は電荷輸送層13より小さいことが好ましく、特に電
荷輸送層13の1/6程度であることが好ましい。具体
的には、0.O1〜4Q atm%が好ましい。また中
間層14には、第3A族元素をライトドープするのが好
ましい。中間層14の厚さは、0.01〜2μmが好ま
しい。中間層14は、2層以上の積層体であってもよい
The intermediate layer 14 is provided as necessary to improve carrier injection efficiency, and is made of a-3i containing at least one kind of modifying atoms (Y) such as carbon atoms, oxygen atoms, nitrogen atoms, etc. :Y:H(X) layer is preferable. Further, the content ratio of the modifying atoms (Y, ) is preferably smaller than that of the charge transport layer 13, and particularly preferably about 1/6 of the content of the charge transport layer 13. Specifically, 0. O1-4Q atm% is preferred. Further, it is preferable that the intermediate layer 14 be lightly doped with a Group 3A element. The thickness of the intermediate layer 14 is preferably 0.01 to 2 μm. The intermediate layer 14 may be a laminate of two or more layers.

電荷発生層15は、必要に応じて第3A族元素がライト
ドープされたa −3i : H(X)層により構成す
ることが好ましい。また帯電能を向上させるために、ホ
ウ素原子を導入して真性化して、高抵抗化とキャリアの
移動度の向上を図ってもよい。
The charge generation layer 15 is preferably constituted by an a-3i:H(X) layer lightly doped with a Group 3A element as required. Further, in order to improve the charging ability, boron atoms may be introduced to make the material intrinsic, thereby increasing the resistance and improving carrier mobility.

この電荷発生層15の厚さは、2〜15μmが好ましい
The thickness of this charge generation layer 15 is preferably 2 to 15 μm.

表面改質層16は、a−Si層に、水素原子および/ま
たはフッ素原子等のハロゲン原子(X)を導入してダン
グリングボンドを封鎖してなるa −’Si:H(X)
層に、さらに、炭素原子、酸素原子、窒素原子等の改質
原子(Y)を導入してなるa−3i:Y:H(X)層に
より構成することが好ましい。具体的には、a −3i
 : C: H(X)層、a−3+:C:O:H(X)
層、a −3i : N : H(X)層、a−5i:
N:O:H(X)層、a−3i:C:N:H(X)層、
a−3i:C:N:O:H(X)層等の種々の構成を採
用することができる。
The surface modified layer 16 is a-'Si:H(X) formed by introducing halogen atoms (X) such as hydrogen atoms and/or fluorine atoms into the a-Si layer to block dangling bonds.
It is preferable that the a-3i:Y:H(X) layer is formed by further introducing a modifying atom (Y) such as a carbon atom, an oxygen atom, or a nitrogen atom into the layer. Specifically, a −3i
: C: H(X) layer, a-3+:C:O:H(X)
Layer, a-3i: N: H(X) layer, a-5i:
N:O:H(X) layer, a-3i:C:N:H(X) layer,
Various configurations such as a-3i:C:N:O:H(X) layer can be adopted.

表面改質層16において、炭素原子、酸素原子、窒素原
子等の改質原子(Y)含有割合は、シリコン原子と改質
原子(Y)との合計をlQQatm%としたとき、改質
原子(Y)が0.5〜9Q atm%となる割合が好ま
しい。なお、改質原子(Y)が酸素原子である場合には
、その含有割合は0.5〜7(] atm%が好ましい
。また、炭素原子、酸素原子、窒素原子等の改質原子(
Y)を複数種含有させる場合には、炭素原子;酸素原子
:窒素原子=0〜90:0.5〜70:0〜90の割合
(atm%)とするのがよく、改質原子(Y)の合計割
合としては、05〜9Q atm%の範囲が好ましい。
In the surface modified layer 16, the content ratio of modified atoms (Y) such as carbon atoms, oxygen atoms, nitrogen atoms, etc. is as follows: When the total of silicon atoms and modified atoms (Y) is lQQatm%, the modified atoms ( A ratio in which Y) is 0.5 to 9Q atm% is preferable. In addition, when the modifying atom (Y) is an oxygen atom, its content is preferably 0.5 to 7 (] atm%. In addition, modifying atoms (Y) such as carbon atoms, oxygen atoms, nitrogen atoms, etc.
When containing multiple types of modifying atoms (Y), the ratio (atm%) of carbon atoms; oxygen atoms: nitrogen atoms = 0 to 90: 0.5 to 70: 0 to 90 is preferred; ) is preferably in the range of 05 to 9Q atm%.

表面改質層16の厚さは、400人〜1μmが好ましい
The thickness of the surface modified layer 16 is preferably 400 to 1 μm.

また、必要に応じて電荷発生層15と表面改質層16と
の間に第2の中間層を設けてもよい。第2の中間層は改
質原子(Y)の含有割合が表面改質層16より小さいほ
うがよい。
Further, a second intermediate layer may be provided between the charge generation layer 15 and the surface modification layer 16 if necessary. It is preferable that the second intermediate layer has a lower content of modified atoms (Y) than the surface modified layer 16.

a−5i悪感光10を構成する上記各層には、水素原子
および/またはフッ素原子等のハロゲン原子(X)が導
入されていることが好ましい。特に、電荷発生層15に
水素原子を含有させることは、ダングリングボンドを封
鎖して光導電性および電荷保持性を高めるうえで重要で
ある。具体的には、水素原子の含有割合は10〜3Q 
atm%が好ましい。
It is preferable that halogen atoms (X) such as hydrogen atoms and/or fluorine atoms are introduced into each of the above layers constituting the a-5i bad sensitivity photo 10. In particular, it is important to include hydrogen atoms in the charge generation layer 15 in order to seal off dangling bonds and improve photoconductivity and charge retention. Specifically, the content ratio of hydrogen atoms is 10 to 3Q
ATM% is preferred.

この水素原子の含有割合は、表面改質層16、中間層1
4、電荷ブロッキング層12、電荷輸送層13に対して
も同様である。また、導電型を制御するための不純物と
して、P型化のためにホウ素以外にもアルミニウム、ガ
リウム、インジウム、タリウム等の第3A族元素を用い
ることができる。
The content ratio of hydrogen atoms is as follows: surface modified layer 16, intermediate layer 1
4. The same applies to the charge blocking layer 12 and the charge transporting layer 13. Further, as an impurity for controlling the conductivity type, in addition to boron, a Group 3A element such as aluminum, gallium, indium, or thallium can be used to make the conductivity type P-type.

a −3i悪感光10を構成する各層の形成時において
ダングリングボンドを封鎖するために、水素原子の代わ
りにあるいは水素原子と共に、ハロゲン原子例えばフッ
素原子を3iF4等の形で導入し、a−3+:F、a−
Si:H:FSa−3i:C:F。
In order to block dangling bonds during the formation of each layer constituting the a-3i bad photosensitive photosensitive material 10, a halogen atom, such as a fluorine atom, in the form of 3iF4, etc., is introduced in place of or together with a hydrogen atom, and the a-3+ :F, a-
Si:H:FSa-3i:C:F.

a−3i:C:H:F、a−3i:C:O:F、aS+
:C:O:H:F等の層構成としてもよい。この場合フ
ッ素原子の含有割合は0.5〜IQ atm%が好まし
い。
a-3i:C:H:F, a-3i:C:O:F, aS+
:C:O:H:F or the like may be used. In this case, the content of fluorine atoms is preferably 0.5 to IQ atm%.

a−3i悪感光lOを構成する各層は、例えばグロー放
電分解法、スパッタリング法、イオンブレーティング法
、水素放電管で活性化もしくはイオン化された水素を導
入した状態でシリコンを蒸発させる方法(特開昭56−
78413号公報)等によって形成することができる。
Each layer constituting the a-3i ill-sensitivity lO can be formed using, for example, a glow discharge decomposition method, a sputtering method, an ion blating method, or a method in which silicon is evaporated in a state in which activated or ionized hydrogen is introduced in a hydrogen discharge tube (Unexamined Japanese Patent Publication No. 1972-
78413) or the like.

以上は、a −5i悪感光10の帯電極性を正とする場
合の説明であるが、a −Si感光体10の帯電極性を
負とする場合には、電荷ブロッキング層12、電荷輸送
層13、中間層14、電荷発生層15、表面改質層16
の各層に導入するドープ剤を、第5A族元素(リン、ヒ
素、アンチモン、ビスマス等)に変更すればよい。なお
、電荷ブロッキング層12および中間層14は、必要に
応じて設けられるものであり、省略してもよい。
The above is an explanation for the case where the charge polarity of the a-5i photoreceptor 10 is positive, but when the charge polarity of the a-Si photoreceptor 10 is negative, the charge blocking layer 12, the charge transport layer 13, Intermediate layer 14, charge generation layer 15, surface modification layer 16
The dopant introduced into each layer may be changed to a Group 5A element (phosphorus, arsenic, antimony, bismuth, etc.). Note that the charge blocking layer 12 and the intermediate layer 14 are provided as necessary, and may be omitted.

また、電荷輸送層13および電荷発生層15は別個の層
構成とせずに単一の層構成としてもよい。また、有機光
導電層、セレン光導電層、硫化カドミウムもしくは酸化
亜鉛等の樹脂分散型の光導電層を用いてもよい。
Further, the charge transport layer 13 and the charge generation layer 15 may not have a separate layer structure but may have a single layer structure. Further, an organic photoconductive layer, a selenium photoconductive layer, a resin-dispersed photoconductive layer such as cadmium sulfide or zinc oxide may be used.

基体11は、導電性および絶縁性のいずれの材料によっ
て形成してもよい。導電性の材料としては、例えばステ
ンレス、アルミニウム、クロム、モリブチ゛ン、イリジ
ウム、テルル、チタン、白金、パラジウム″等の金属ま
たはこれらの合金等を挙げることができる。絶縁性の材
料としては、ポリエステノベポリエチレン、ポリカーボ
ネート、セルロースアセテート、ポリプロピレン、ポリ
塩化ビニノベポリ塩化ビニリデン、ポリスチレン、ポリ
アミド等の合成樹脂のフィルムもしくはシート、ガラス
、セラミック、紙等を挙げることができる。
The base 11 may be formed of either conductive or insulating material. Examples of conductive materials include metals such as stainless steel, aluminum, chromium, molybutin, iridium, tellurium, titanium, platinum, and palladium, and alloys thereof. Examples of insulating materials include polyester, polyethylene, and the like. Examples include films or sheets of synthetic resins such as polycarbonate, cellulose acetate, polypropylene, polyvinylidene chloride, polystyrene, and polyamide, glass, ceramics, and paper.

絶縁性の材料を用いる場合はその表面が導電処理されて
いることが好ましい。具体的には、例えばガラスの場合
は、酸化インジウム、酸化スズ等により導電処理し、ポ
リエステルフィルム等の合成樹脂フィルムの場合は、ア
ルミニウム、銀、鉛、ニッケル、金、クロム、モリブデ
ン、イリジウム、ニオブ、タンタル、バナジウム、チタ
ン、白金等の金属を真空蒸着、電子ビーム蒸着、スパッ
タリング等の方法により導電処理し、あるいは上記金属
でラミネートすることにより導電処理することができる
When using an insulating material, it is preferable that its surface be electrically conductive treated. Specifically, for example, in the case of glass, it is conductive treated with indium oxide, tin oxide, etc., and in the case of synthetic resin films such as polyester films, it is treated with aluminum, silver, lead, nickel, gold, chromium, molybdenum, iridium, niobium, etc. , tantalum, vanadium, titanium, platinum, etc., can be subjected to conductive treatment by methods such as vacuum evaporation, electron beam evaporation, and sputtering, or by laminating with the above-mentioned metals.

基体11の形状は、円筒状、ベルト状、板状等種々の形
態を選択することができる。連続して高速で画像を形成
する場合は無端ベルト状あるいは円筒状が好ましい。基
体11の厚さは特に限定されず、製造上、取扱い上、機
械的強度等の観点から適宜選定される。
The shape of the base body 11 can be selected from various shapes such as a cylindrical shape, a belt shape, and a plate shape. When forming images continuously at high speed, an endless belt or a cylindrical shape is preferable. The thickness of the base body 11 is not particularly limited, and is appropriately selected from the viewpoints of manufacturing, handling, mechanical strength, and the like.

(現像工程) 本発吠の現像剤を現像剤搬送担体により現像領域に搬送
腰当該現像領域においてa −3i悪感光の表面に形成
された静電荷像を現像する。
(Development Step) The developer of the main development is transported to a development area by a developer transporting carrier, and the electrostatic charge image formed on the surface of the a-3i photoreceptor is developed in the development area.

現像剤搬送担体としては、バイアス電圧を印加し得る構
造のものが好ましく、例えば表面に現像剤層が担持され
る筒状のスリーブと、このスIJ−ブの内部に配置した
複数の磁極を有する磁石体とにより構成されたものが好
ましい。スリーブおよび/または磁石体の回転によって
スリーブ上の現像剤層が現像領域に搬送される。
The developer transport carrier preferably has a structure to which a bias voltage can be applied, and includes, for example, a cylindrical sleeve on which a developer layer is supported, and a plurality of magnetic poles arranged inside the sleeve. It is preferable to use a magnet made of a magnet. The rotation of the sleeve and/or the magnet conveys the developer layer on the sleeve to the development area.

現像領域に厚さの均一な現像剤層を搬送するために、現
像剤搬送担体における現像領域の上流側には、厚さ規制
部材を設けるのが好ましい。
In order to convey a developer layer having a uniform thickness to the development area, it is preferable to provide a thickness regulating member on the developer transport carrier upstream of the development area.

現像スリーブに印加するバイアス電圧としては、直流電
圧、あるいは直流電圧に交流電圧を重畳した電圧を用い
ることができる。
As the bias voltage applied to the developing sleeve, a DC voltage or a voltage obtained by superimposing an AC voltage on a DC voltage can be used.

(転写工程) 現像により得られたa−3i感光体上のトナー像を紙等
の転写材に転写する。
(Transfer Step) The toner image on the a-3i photoreceptor obtained by development is transferred to a transfer material such as paper.

この転写工程においては、静電転写方式を好ましく用い
ることができる。具体的には、例えば直流コロナ放電を
生じさせる転写器を、転写材を介してa−3i悪感光に
対向するよう配置し、転写材にその裏面側から直流コロ
ナ放電を作用させることによりa−3i悪感光の表面に
担持されていたトナーを転写材の表面に転写する。
In this transfer step, an electrostatic transfer method can be preferably used. Specifically, for example, a transfer device that generates a direct current corona discharge is placed so as to face the a-3i adverse light through the transfer material, and a direct current corona discharge is applied to the transfer material from the back side. 3i The toner carried on the surface of the photoreceptor is transferred to the surface of the transfer material.

(クリーニング工程) a−3i悪感光に圧接配置されたクリーニングブレード
等のクリーニング部材を備えたクリーニング装置を用い
て、転写されずにa −3i感光体上に残留したトナー
をクリーニングする。
(Cleaning Step) Toner remaining on the a-3i photoreceptor without being transferred is cleaned using a cleaning device equipped with a cleaning member such as a cleaning blade placed in pressure contact with the a-3i photoreceptor.

クリーニング部材のa −3i悪感光に対する圧接力は
、クリーニング性を向上させる観点から5〜50g/c
mが好ましい。
The pressing force of the cleaning member against the a-3i sensitive light is 5 to 50 g/c from the viewpoint of improving cleaning performance.
m is preferred.

なお、このクリーニング工程の前段においては、クリー
ニングを容易にするためにa −3i悪感光の表面を除
電する除電工程を付加することが好ましい。この除電工
程は、例えば交流コロナ放電を生じさせる除電器により
行うことができる。
In addition, in the first stage of this cleaning process, it is preferable to add a static elimination process for eliminating static electricity from the surface of the a-3i photoreceptor in order to facilitate cleaning. This static elimination step can be performed, for example, using a static eliminator that generates AC corona discharge.

(定着工程) 転写工程によって、トナー像が転写された転写材を、熱
ローラ定着器等の定着装置により定着処理し、もって定
着画像を形成する。
(Fixing Step) In the transfer step, the transfer material onto which the toner image has been transferred is subjected to a fixing process using a fixing device such as a heat roller fixing device, thereby forming a fixed image.

第2図は、以上の画像形成プロセスを遂行し得る画像形
成装置の一例を示す説明図である。同図において、10
はa−5i悪感光、21は帯電器、22は露光光学系、
23は現像器、24は除電用ランプ、25は転写電極、
26は分離電極、27は除電電極、28はクリーニング
装置、29は熱ローラ定着器、30はクリーニングブレ
ード、40は原稿台である。この装置は、露光光学系2
2が固定配置され原稿台40が移動されるタイプのもの
である。
FIG. 2 is an explanatory diagram showing an example of an image forming apparatus that can perform the above image forming process. In the same figure, 10
21 is a charger, 22 is an exposure optical system,
23 is a developing device, 24 is a static elimination lamp, 25 is a transfer electrode,
26 is a separation electrode, 27 is a static elimination electrode, 28 is a cleaning device, 29 is a heat roller fixing device, 30 is a cleaning blade, and 40 is a document table. This device has an exposure optical system 2
2 is fixedly arranged, and the document table 40 is movable.

帯電器21によりa −3i悪感光10の表面が一様に
帯電され、この帯電されたa −3i悪感光10の表面
が露光光学系22により像露光されて当該a −3i腰
感光10上に原稿に対応した静電荷像が形成される。
The surface of the a-3i bad sensitivity photo 10 is uniformly charged by the charger 21, and the surface of the charged a-3i bad photon 10 is subjected to image exposure by the exposure optical system 22, and is placed on the a-3i bad photosensitive photo 10. An electrostatic charge image corresponding to the original is formed.

この静電荷像は、現像器23により現像されてトナー像
が形成される。
This electrostatic charge image is developed by a developing device 23 to form a toner image.

このトナー像は、除電用ランプ24により除電されて転
写されやすい状態とされた後、転写電極25により転写
紙Pに転写される。転写紙Pは分離電極26によりa−
3i悪感光10から分離され、熱ローラ定着器29で定
着処理を受け、もって定着画像が形成される。一方、a
 −3i悪感光10は除電電極27により除電されたう
え、クリーニング装置28により転写されずにa−3i
腰感光10上に残留したトナーが掻き取り除去される。
After this toner image is neutralized by the static elimination lamp 24 and made easily transferable, it is transferred onto the transfer paper P by the transfer electrode 25. The transfer paper P is a-
It is separated from the 3i bad exposure light 10 and subjected to a fixing process in a heat roller fixing device 29, thereby forming a fixed image. On the other hand, a
-3i bad light 10 is neutralized by the static eliminating electrode 27, and is not transferred by the cleaning device 28.
The toner remaining on the photosensitive material 10 is scraped off.

クリーニングブレード30は、例えば厚さ1〜3mmの
硬質ウレタンゴム等の弾性体によって構成され、実質的
にa−Sig光体10の幅(第2図において紙面に垂直
方向)に相当する長さを有していて、ブレードホルダー
(図示せず)によって、圧接位置と圧接解除位置とに切
り換え可能に保持されている。
The cleaning blade 30 is made of an elastic material such as hard urethane rubber with a thickness of 1 to 3 mm, and has a length substantially equivalent to the width of the a-Sig light body 10 (in the direction perpendicular to the plane of the paper in FIG. 2). It is held by a blade holder (not shown) so as to be switchable between a pressure contact position and a pressure release position.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と共に説明するが、本発
明の実施の態様はこれらの実施例に限定されるものでは
ない。なお、「部」は「重量部」を表す。
Examples of the present invention will be described below along with comparative examples, but the embodiments of the present invention are not limited to these Examples. Note that "parts" represent "parts by weight."

く複合微粒子を構成する樹脂粒子〉 (1)樹脂粒子A(本発明用) エチレン−酢酸ビニル共重合体(エチレン:酢酸ビニル
=8 : 2)よりなり、20℃における降伏値が13
5kg/cm2で平均粒径が3.0μmの樹脂粒子。
(1) Resin particles A (for the present invention) Made of ethylene-vinyl acetate copolymer (ethylene: vinyl acetate = 8:2), with a yield value of 13 at 20°C
Resin particles weighing 5 kg/cm2 and having an average particle size of 3.0 μm.

(2)樹脂粒子B(本発明用) エチレン−酢酸ビニル共重合体(エチレン:酢酸ビニル
=8 : 2)よりなり、20℃における降伏値が13
5kg/cm2で平均粒径が0.20 t−t mの樹
脂粒子。
(2) Resin particles B (for the present invention) are made of ethylene-vinyl acetate copolymer (ethylene: vinyl acetate = 8:2) and have a yield value of 13 at 20°C.
Resin particles with an average particle size of 0.20 t-t m at 5 kg/cm2.

(3)樹脂粒子C(本発明用) ポリウレタンよりなり、20℃における降伏値が300
 kg/cm”で平均粒径が1.0μmの樹脂粒子。
(3) Resin particles C (for the present invention) are made of polyurethane and have a yield value of 300 at 20°C.
kg/cm" and an average particle size of 1.0 μm.

(4)樹脂粒子a (比較用) アクリル系重合体よりなり、降伏値を持たず破断されや
すい物性を有する平均粒径が1.0μmの樹脂粒子。
(4) Resin particles a (for comparison) Resin particles with an average particle size of 1.0 μm, which are made of an acrylic polymer and have physical properties that do not have a yield value and are easily broken.

(5)樹脂粒子b(比較用) スチレン−アクリロニトリル共重合体よりなり、20℃
における降伏値が700kg/cm”で平均粒径が0.
5μmの樹脂粒子。
(5) Resin particle b (for comparison) Made of styrene-acrylonitrile copolymer, 20℃
The yield value is 700 kg/cm" and the average grain size is 0.
5 μm resin particles.

く複合微粒子を構成する無機微粒子〉 (1)無機微粒子A(本発明用) 酸化チタンよりなる平均粒径が0.2μmの無機微粒子
Inorganic fine particles constituting composite fine particles> (1) Inorganic fine particles A (for the present invention) Inorganic fine particles made of titanium oxide and having an average particle size of 0.2 μm.

(2)無機微粒子B(本発明用) 炭化ケイ素よりなる平均粒径が0.05μmの無機微粒
子。
(2) Inorganic fine particles B (for the present invention) Inorganic fine particles made of silicon carbide and having an average particle size of 0.05 μm.

く複合微粒子の製造〉 後記第1表に示す組合せおよび配合量の樹脂粒子と無機
微粒子とを、V型混合機により十分に撹拌混合して、無
機微粒子を樹脂粒子の表面に静電気力により付着させた
後、この混合物を通常の衝撃式粉砕装置を改良した装置
に仕込み、当該混合物に衝撃力を与え、樹脂粒子の表面
に無機微粒子が固着された複合微粒子を製造した。
Production of composite fine particles> Resin particles and inorganic fine particles in the combinations and amounts shown in Table 1 below are thoroughly stirred and mixed using a V-type mixer, and the inorganic fine particles are attached to the surface of the resin particles by electrostatic force. After that, this mixture was charged into an improved conventional impact-type pulverizer, and an impact force was applied to the mixture to produce composite fine particles in which inorganic fine particles were fixed to the surface of resin particles.

得られた各複合微粒子は、電子顕微鏡による表面観察お
よび透過電子顕微鏡による観察により、樹脂粒子の表面
に静電気力により付着していた無機微粒子が、当該樹脂
粒子の表面に埋約込まれて保持された状態となっている
ことが認められた。
Surface observation using an electron microscope and transmission electron microscope revealed that the inorganic fine particles that had been attached to the surface of the resin particles due to electrostatic force were embedded and held in the surface of the resin particles. It was recognized that the situation was

第  1  表 〈実施例1〉 ポリエステル樹脂          100部カーボ
ンブラック          10部低分子量ポリプ
ロピレン        5部以上の物質を、混合、練
肉、粉砕、分級して、平均粒径12.0μmの非磁性の
着色粒子1を得た。
Table 1 <Example 1> Polyester resin 100 parts Carbon black 10 parts Low molecular weight polypropylene 5 parts or more of substances were mixed, kneaded, crushed, and classified to obtain non-magnetic colored particles 1 with an average particle size of 12.0 μm. I got it.

この着色粒子1に、日本アエロジル社製の疎水性シリカ
微粒子「アエロジルR−812Jを肌6重量%、複合微
粒子Aを0.6重量%となる割合で加え、ヘンシェルミ
キサーにより混合して、トナー1を製造した。
Hydrophobic silica fine particles "Aerosil R-812J" manufactured by Nippon Aerosil Co., Ltd. are added to the colored particles 1 at a ratio of 6% by weight and composite fine particles A at 0.6% by weight, and mixed with a Henschel mixer to form Toner 1. was manufactured.

このトナー103部と、フェライト粒子の表面をスチレ
ン−アクリル共重合体樹脂(スチレン二メチルメタクリ
レート=3ニア)により被覆してなる平均粒径が80μ
mのコーティングキャリア97部とを混合して、本発明
に係る二成分系の現像剤へを製造した。
The average particle size of 103 parts of this toner and ferrite particles coated with a styrene-acrylic copolymer resin (styrene dimethyl methacrylate = 3 nia) is 80 μm.
A two-component developer according to the present invention was prepared by mixing with 97 parts of a coating carrier of m.

〈実施例2〉 実施例1において、複合微粒子Aを、複合微粒子Bの0
.3重量%に変更したほかは同様に処理して本発明に係
る二成分系の現像剤Bを製造した。
<Example 2> In Example 1, composite fine particles A were mixed with 0 of composite fine particles B.
.. A two-component developer B according to the present invention was produced in the same manner except that the amount was changed to 3% by weight.

〈実施例3〉 ポリエステル樹脂          55部マグネタ
イト             40部低分子量ポリプ
ロピレン        3部サリチル酸誘導体(荷電
制御剤)    2部以上の物質を実施例1と同様に処
理して、平均粒径11.0μmの磁性の着色粒子2を得
た。
<Example 3> Polyester resin 55 parts Magnetite 40 parts Low molecular weight polypropylene 3 parts Salicylic acid derivative (charge control agent) 2 parts or more of the substance was treated in the same manner as in Example 1 to form a magnetic colored material with an average particle size of 11.0 μm. Particle 2 was obtained.

この着色粒子2に、日本アエロジル社製の疎水性シリカ
微粒子「アエロジルR−972Jを0.4重量%、複合
微粒子Bを0.5重景%となる割合で加え、ヘンシェル
ミキサーにより混合して、磁性トナー2を製造した。こ
の磁性トナー2のみにより本発明に係る一成分系の現像
剤Cを構成した。
To the colored particles 2, 0.4% by weight of hydrophobic silica fine particles "Aerosil R-972J" manufactured by Nippon Aerosil Co., Ltd. and 0.5% of composite fine particles B were added by weight, and mixed with a Henschel mixer. A magnetic toner 2 was produced. This magnetic toner 2 alone constituted a one-component developer C according to the present invention.

〈実施例4〉 実施例3において、複合微粒子Bを、複合微粒子Cの1
.0重量%に変更したほかは同様に処理して本発明に係
る一成分系の現像剤りを製造した。
<Example 4> In Example 3, composite fine particles B were mixed with 1 of composite fine particles C.
.. A one-component developer according to the present invention was produced in the same manner except that the content was changed to 0% by weight.

〈比較例1〉 実施例1において、複合微粒子Aを、比較用の複合微粒
子aの0.6重量%に変更したほかは同様に処理して比
較用の二成分系の現像剤aを製造した。
Comparative Example 1 A comparative two-component developer a was produced in the same manner as in Example 1, except that the amount of composite fine particles A was changed to 0.6% by weight of the comparative fine composite particles a. .

く比較例2〉 実施例3において、複合微粒子Bを、比較用の複合微粒
子すの0.5重量%に変更したほかは同様に処理して比
較用の一成分系の現像剤すを製造した。
Comparative Example 2 A comparative one-component developer was produced in the same manner as in Example 3 except that the composite fine particles B was changed to 0.5% by weight of the comparative fine composite particles. .

<a−5i悪感光の製造〉 グロー放電分解法により、第1図に示した構成のa−s
ig光体を次のようにして製造した。
<Manufacture of a-5i bad sensitivity photo> A-s of the configuration shown in Fig. 1 was produced by glow discharge decomposition method.
The ig light body was manufactured as follows.

平滑な表面を有するドラム状のアルミニウム製基体の表
面を清浄化した後、これを真空槽内に配置し、真空槽内
のガス圧が10−”Torrとなるように調整して排気
し、基体を100〜350℃の範囲内の所定温度に加熱
維持した。次いで、高純度のアルゴンガスをキャリアガ
スとして導入し、0.5Torrの背圧のもとて周波数
13.56MHzの高周波電力を加え、10分間の予備
放電を行った。
After cleaning the surface of a drum-shaped aluminum substrate with a smooth surface, it is placed in a vacuum chamber, and the gas pressure in the vacuum chamber is adjusted to 10-” Torr and evacuated. was heated and maintained at a predetermined temperature within the range of 100 to 350° C. Next, high-purity argon gas was introduced as a carrier gas, and high-frequency power at a frequency of 13.56 MHz was applied under a back pressure of 0.5 Torr. Preliminary discharge was performed for 10 minutes.

次いで、S IH4とCH,、B 2 Heからなる反
応ガスを導入し、流量比Ar : SI H4: CH
a : B2 Hg= 1 : 1 : 1 :1.5
 Xl0−3の混合ガスをグロー放電分解することによ
り、P゛型のa−3i:C:8層よりなる電荷ブロッキ
ング層と、a−3+:C:8層(但し、CB2H6) 
/ C3+H−) =10容量plum。
Next, a reaction gas consisting of SIH4, CH, and B2He is introduced, and the flow rate ratio is Ar:SIH4:CH.
a: B2 Hg= 1: 1: 1: 1.5
By glow discharge decomposition of a mixed gas of
/C3+H-) = 10 volume plum.

CC) =10 atm%)よりなる電荷輸送層と、a
Si : C: 8層(但し、CB 2 H6〕/ (
S IH−〕=9容量ppm、EC) =5 atm%
)よりなる中間層とを、6μm/hrの堆積速度で順次
基体に積層して形成した。電荷ブロッキング層の厚さは
0.5μm、電荷輸送層の厚さは10μm1中間層の厚
さは1μmである。
CC) = 10 atm%);
Si: C: 8 layers (CB 2 H6) / (
S IH-] = 9 volume ppm, EC) = 5 atm%
) were sequentially laminated on the substrate at a deposition rate of 6 μm/hr. The thickness of the charge blocking layer is 0.5 μm, the thickness of the charge transport layer is 10 μm, and the thickness of the intermediate layer is 1 μm.

引続きCH,等のガスの供給を停止し、5IH4および
B 2 Hsを放電分解して、厚さ0.1μmのaSi
:8層(但し、(B2Hs) / C51H<) =0
.1容量ppm)よりなる電荷発生層を上記中間層上に
積層した。
Subsequently, the supply of gas such as CH, etc. was stopped, and 5IH4 and B 2 Hs were decomposed by discharge to form an aSi film with a thickness of 0.1 μm.
: 8 layers (however, (B2Hs) / C51H<) = 0
.. A charge generation layer having a capacity of 1 ppm) was laminated on the intermediate layer.

次いで、02 、CH,、N、よりなる改質ガスを流量
比02  :CH,:N2 =20:60:20となる
ように真空槽内に導入しつつこれを放電分解して厚さ0
.05μmの表面改質層を上記電荷発生層上に積層して
形成し、第1図に示した構成のa −5i悪感光を製造
した。これをa−3i悪感光Aとする。
Next, a reformed gas consisting of 02:CH,:N2 is introduced into the vacuum chamber at a flow rate ratio of 02:CH,:N2 = 20:60:20, and is decomposed by electrical discharge to reduce the thickness to 0.
.. A surface modified layer having a thickness of 0.05 .mu.m was laminated on the charge generation layer to produce an a-5i photosensitive material having the structure shown in FIG. This is referred to as a-3i nausea photo A.

〈画像形成テスト〉 以上のようにして得られた各現像剤をそれぞれ用いて、
a−5i悪感光上に形成した静電荷像を現像してトナー
像を形成し、このトナー像を転写材に転写し、転写した
トナー像を定着し、転写後にa−3i悪感光上に残留し
たトナーをクリーニングブレードによりクリーニングす
る工程を含む画像形成プロセスを遂行してコピー画像を
形成するテストを行った。
<Image formation test> Using each developer obtained as above,
The electrostatic charge image formed on the a-5i photosensitive material is developed to form a toner image, this toner image is transferred to a transfer material, the transferred toner image is fixed, and it remains on the a-3i photosensitive material after transfer. A test was conducted in which a copy image was formed by performing an image forming process including a step of cleaning the toner with a cleaning blade.

なお、二成分系現像剤である現像剤A、Bおよびaにつ
いては、上記a−3i感光体Aと、二成分系現像剤用の
現像器と、クリーニングブレードとを備えた二成分系現
像剤用のコニカ■製の電子写真複写機U −8ix 5
000改造機を用い、温度20℃、相対湿度55%の環
境条件下で最高20万回にわたりコピー画像を形成する
テストを行った。
Note that developers A, B, and a, which are two-component developers, are two-component developers that include the a-3i photoreceptor A, a developing device for two-component developers, and a cleaning blade. Konica electrophotographic copying machine U-8ix 5 for
Using a modified 000 machine, a test was conducted in which copy images were formed up to 200,000 times under environmental conditions of a temperature of 20° C. and a relative humidity of 55%.

また、−成分系現像剤である現像剤C,Dおよびbにつ
いては、上記a−3i感光体Aと、現像領域に振動電界
を作用させる非接触型現像器と、クリーニングブレード
とを備えた一成分系現像剤用の電子写真複写機の試作機
を用い、温度20℃、相対湿度55%の環境条件下で最
高20万回にわたりコピー画像を形成するテストを行っ
た。
Developers C, D, and b, which are -component type developers, are developed using a single unit comprising the a-3i photoreceptor A, a non-contact developing device that applies an oscillating electric field to the development area, and a cleaning blade. Using a prototype electrophotographic copying machine for component-based developers, a test was conducted in which copied images were formed up to 200,000 times under environmental conditions of a temperature of 20° C. and a relative humidity of 55%.

以上のテストにより、下記の項目について評価した。結
果を後記第2表に示す。
Through the above tests, the following items were evaluated. The results are shown in Table 2 below.

■クリーニング性 クリーニングブレードによりクリーニングされた直後の
a−3i悪感光の表面を目視により観察して付着物の有
無を調べ、付着物がほとんど認められない場合を「O」
、付着物が若干認められるが実用レベルにある場合を「
△」、付着物が多くて実用的には問題のある場合をrX
Jとした。
■Cleanability Immediately after cleaning with the cleaning blade, visually observe the surface of the a-3i bad light to check for any deposits. If almost no deposits are observed, mark it as "O".
, if some deposits are observed but at a practical level,
△", if there is a lot of deposits and there is a problem in practical use, rX
I made it J.

■感光体の損傷 感光体の表面を目視により観察し、損傷の有無を調べた
。なお、観察は実写テストの終了後に行った。
(2) Damage to Photoreceptor The surface of the photoreceptor was visually observed to determine whether there was any damage. Note that the observation was made after the live-action test was completed.

■画像濃度 コニカ■製のサクラデンシトメーターを用いて反射濃度
を測定し、反射濃度が1.25以上の場合を「O」、1
.1以上で1.25未満の場合を「△J、1.1未満の
場合を「×」とした。
■Image Density Measure the reflection density using a Konica ■Sakura densitometer, and if the reflection density is 1.25 or more, it is "O", 1
.. A case of 1 or more and less than 1.25 was given as "ΔJ", and a case of less than 1.1 was given as "x".

■黒ポチ コピー画像を目視により観察して、a −3i悪感光の
表面の損傷に起因する黒ポチの有無を調べ、黒ポチがほ
とんど認められない場合を「O」、黒ポチが若干認めら
れるが実用レベルにある場合を「△」、黒ポチが多くて
実用的には問題のある場合を「×」とした。
■ Visually observe the black spot copy image to check for the presence or absence of black spots caused by damage to the surface of the a-3i negative light. If there are almost no black spots, it is rated "O," and if there are some black spots, it is rated "O." A case where it is at a practical level is marked as "△", and a case where there are many black spots and there is a problem in practical use is marked as "x".

以上の第2表から明らかなように、本発明の現像剤A−
Dによれば、a −Si感光体の表面を常に良好な状態
に維持することができ、良好なりIJ −ニング性が発
揮される。また、画像濃度の高い安定した画像を20万
回にわたり形成することができる。また、a −5i感
光体の表面の損傷に起因する黒ポチも3忍められない。
As is clear from Table 2 above, the developer A-
According to D, the surface of the a-Si photoreceptor can always be maintained in a good condition, and good IJ-ning properties can be exhibited. Further, stable images with high image density can be formed over 200,000 times. Furthermore, black spots caused by damage to the surface of the a-5i photoreceptor are also intolerable.

これに対して、比較用の現像剤aおよびbでは、複合微
粒子を構成する樹脂粒子が硬いものであるため、クリー
ニングブレードとa−3i悪感光との間に挟まれた複合
微粒子が破壊されて、遊離した無機微粒子および樹脂粒
子の微粉により、りIJ−ニング性が低下し、早期に画
像濃度が低下した。
On the other hand, in the comparative developers a and b, the resin particles constituting the composite fine particles are hard, so the composite fine particles sandwiched between the cleaning blade and the a-3i bad exposure light are destroyed. Due to the free inorganic fine particles and fine resin particles, the IJ-ing property was deteriorated and the image density was early reduced.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明の現像剤によれば、
複合微粒子の核となる樹脂粒子が、20℃における降伏
値が特定の範囲にあって粘り強い物性を有するものであ
るので、a −3i悪感光に比較的大きな圧接力で接触
配置されたクリーニング部材によりトナーをクリーニン
グする際に、クリーニング部材とa−3i悪感光との間
に挟まれた複合微粒子が大きな圧接力を受けたときにも
、複合微粒子の核を構成する樹脂粒子が適度に変形され
てクツション作用を発揮し、破壊されることがない。
As explained in detail above, according to the developer of the present invention,
Since the resin particles that form the core of the composite fine particles have a yield value at 20°C within a specific range and have tenacious physical properties, the cleaning member placed in contact with the a-3i ill-sensing light with a relatively large pressing force When cleaning the toner, even when the composite fine particles sandwiched between the cleaning member and the a-3i bad exposure light are subjected to a large pressure contact force, the resin particles forming the core of the composite fine particles are appropriately deformed. It exerts a cushioning effect and cannot be destroyed.

従って、複合微粒子の表面に存在する無機微粒子によっ
てa−Si感光体の表面が強(擦過されるおそれがなく
、a −3i悪感光の表面の損傷を有効に防止すること
ができ、また無機微粒子および樹脂粒子の微粉が発生す
ることがなく、結局、クリーニング不良を招かずに、画
像濃度が十分で、黒ポチのない画像を多数回にわたり安
定に形成することができる。
Therefore, there is no risk that the surface of the a-Si photoreceptor will be scratched by the inorganic fine particles present on the surface of the composite fine particles, and damage to the surface of the a-3i photoreceptor can be effectively prevented, and the inorganic fine particles Furthermore, fine powder of resin particles is not generated, and as a result, images with sufficient image density and without black spots can be stably formed many times without causing cleaning defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はa −51g光体の具体的構成例を示す断面図
、第2図は画像形成装置の一例を示す概略図である。 10・・・a −5i感光体   11・・基体12・
・・電荷ブo 、7キング層 13・・・電荷輸送層    14・・・中間層15・
・・電荷発生層    16・・・表面改質層21・・
・帯電器 23・・・現像器 25・・・転写電極 29・・・熱ローラ定着器 30・・・クリーニングプレー 40・・・原稿台 22・・・露光光学系 24・・・除電用ランプ 28・・・クリーニング装置 ド
FIG. 1 is a sectional view showing a specific example of the structure of the a-51g light body, and FIG. 2 is a schematic diagram showing an example of an image forming apparatus. 10...a-5i photoreceptor 11...Base 12.
... Charge block o, 7 King layer 13... Charge transport layer 14... Intermediate layer 15.
...Charge generation layer 16...Surface modification layer 21...
・Charging device 23...Developing device 25...Transfer electrode 29...Heat roller fixing device 30...Cleaning plate 40...Original table 22...Exposure optical system 24...Static elimination lamp 28 ...Cleaning device door

Claims (1)

【特許請求の範囲】 アモルファスシリコン感光体上に静電荷像を形成し、こ
の静電荷像を現像剤により現像してトナー像を形成し、
このトナー像を転写材に転写した後、アモルファスシリ
コン感光体上に残留したトナーをクリーニングする工程
を含む画像形成プロセスに使用される現像剤において、 現像剤を構成するトナーが、少なくとも樹脂と着色剤を
含有してなる着色粒子と、20℃における降伏値が10
〜500kg/cm^2で平均粒径が0.1〜7μmの
樹脂粒子の表面に、平均粒径が0.01〜1μmの無機
微粒子が固着されてなる複合微粒子とを含有してなるこ
とを特徴とする現像剤。
[Claims] Forming an electrostatic charge image on an amorphous silicon photoreceptor and developing this electrostatic charge image with a developer to form a toner image,
In the developer used in the image forming process that includes the step of cleaning the toner remaining on the amorphous silicon photoreceptor after transferring the toner image to the transfer material, the toner constituting the developer contains at least a resin and a colorant. and a yield value of 10 at 20°C.
~500 kg/cm^2, containing composite fine particles in which inorganic fine particles with an average particle size of 0.01 to 1 μm are fixed to the surface of resin particles with an average particle size of 0.1 to 7 μm. Characteristic developer.
JP1336726A 1989-12-27 1989-12-27 Developer Pending JPH03197962A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1336726A JPH03197962A (en) 1989-12-27 1989-12-27 Developer
EP19900314132 EP0435608A3 (en) 1989-12-27 1990-12-21 Image forming process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1336726A JPH03197962A (en) 1989-12-27 1989-12-27 Developer

Publications (1)

Publication Number Publication Date
JPH03197962A true JPH03197962A (en) 1991-08-29

Family

ID=18302152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336726A Pending JPH03197962A (en) 1989-12-27 1989-12-27 Developer

Country Status (2)

Country Link
EP (1) EP0435608A3 (en)
JP (1) JPH03197962A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05216268A (en) * 1992-02-07 1993-08-27 Hitachi Metals Ltd Electrostatic charge image developing toner
JP2985594B2 (en) * 1992-12-03 1999-12-06 セイコーエプソン株式会社 Image forming method
US5547805A (en) * 1994-04-28 1996-08-20 Mita Industrial Co., Ltd. Electrophotographic method using amorphous silicon photosensitive material
JP3482552B2 (en) * 1997-01-08 2003-12-22 コニカミノルタホールディングス株式会社 Electrostatic image developing toner and developer and image forming method using the same
JP2013092748A (en) 2011-10-26 2013-05-16 Cabot Corp Toner additives comprising composite particles
CN106103615B (en) 2013-12-20 2018-10-30 卡博特公司 Metal oxide-polymer composite particles for chemical-mechanical planarization

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598823B2 (en) * 1979-06-29 1984-02-27 キヤノン株式会社 Developer manufacturing method
JPS61183664A (en) * 1985-02-08 1986-08-16 Ricoh Co Ltd Electrostatic charge image developing toner
JPH07120067B2 (en) * 1986-07-03 1995-12-20 キヤノン株式会社 Dry developer for electrophotography
JPH0812440B2 (en) * 1987-10-02 1996-02-07 コニカ株式会社 Toner for electrostatic image development
JPH01126660A (en) * 1987-11-12 1989-05-18 Konica Corp Electrostatic latent image developer

Also Published As

Publication number Publication date
EP0435608A2 (en) 1991-07-03
EP0435608A3 (en) 1991-09-11

Similar Documents

Publication Publication Date Title
EP1207430B1 (en) Image-forming apparatus and image-forming method
JPS6313054A (en) Image forming method
JPH03197962A (en) Developer
EP0570679B1 (en) Toner and method for manufacturing the same, and image forming apparatus using the toner
EP2592479A1 (en) Toner for electrostatic latent image development and method of producing toner for electrostatic latent image development
JP4141335B2 (en) Electrostatic latent image developing toner, two-component developer and image forming apparatus using the same
JP3195933B2 (en) Electrostatic image developer and image forming method
JP2000352845A (en) Image forming method
EP0614129B1 (en) Magnetic carrier, developer comprising the carrier for developing latent electrostatic images, electrographic photoconductor, and image formation method using the same
JPH03197963A (en) Developer
EP0617339B1 (en) Granular charging agent and charging method and image forming method using the same
JPH03197965A (en) Developer
JP5022872B2 (en) Toner for electrophotography
JP2002278114A (en) Method and device for electrophotography
JP3093371B2 (en) Electrostatic image developing developer, image forming method, electrophotographic apparatus, apparatus unit, and facsimile apparatus
US4960668A (en) Magnetic toner for electrophotography
JP2872422B2 (en) Electrostatic image developing developer, image forming method, electrophotographic apparatus, apparatus unit, and facsimile apparatus
JP2008304788A (en) Electrophotographic toner
JPH01285954A (en) Image forming method
JP4085020B2 (en) Two-component developer and image forming apparatus using the same
JP2009237207A (en) Image forming apparatus
JP3410183B2 (en) Image forming method
JP2002296821A (en) Image forming method and image forming apparatus
JP2008286938A (en) Electrophotographic toner
JP2713716B2 (en) Image forming method