JPH03197878A - Light wave interference type ic tester - Google Patents

Light wave interference type ic tester

Info

Publication number
JPH03197878A
JPH03197878A JP1340124A JP34012489A JPH03197878A JP H03197878 A JPH03197878 A JP H03197878A JP 1340124 A JP1340124 A JP 1340124A JP 34012489 A JP34012489 A JP 34012489A JP H03197878 A JPH03197878 A JP H03197878A
Authority
JP
Japan
Prior art keywords
measured
heat
light wave
wave interference
interference type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1340124A
Other languages
Japanese (ja)
Inventor
Yoshinori Bessho
別所 芳則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP1340124A priority Critical patent/JPH03197878A/en
Publication of JPH03197878A publication Critical patent/JPH03197878A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To decide whether or not heat diffusion is normal as to all ICs in a short time of several seconds by analyzing a heat expansion process pertaining the heat generation of an IC by a light wave interference type displacement gauge and a differentiating means. CONSTITUTION:A body 80 to be measured is moved by an XY stage 60 which is controlled by a control means 10 and an XY stage controller 30 so that a specific place is irradiated with a laser spot which is converged by an objective lens 90. Then an IC driver 40 which is controlled by the control means 10 as well supplies a specific current to a part to be measured and the body 80 to be measured generates heat. The quantity of heat expansion (displacement quantity) of the body 80 to be measured which expands thermally by the heat generation is measured extremely accurately to order of angstrom by, for example, the light wave interference type displacement gauge 100 which uses the phase shift of reflected light from the body 80 to be measured. Consequently, if can be decided whether or not the heat diffusion is normal as to all the ICs in a short time of several seconds.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、LSI、ULSI等に代表されるICのため
の光波干渉式ICテスタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a light wave interference type IC tester for ICs typified by LSI, ULSI, and the like.

(従来技術) 現在、電力、鉄道、銀行業務等に代表される巨大システ
ムは全てLSI等からなる半導体ICから成り、その高
集積化、高密度化は年々加速度的に進んでいる。
(Prior Art) Currently, all large-scale systems represented by electric power, railways, banking, etc. are made up of semiconductor ICs such as LSIs, and their integration and density are progressing at an accelerating rate year by year.

そしてその高集積化、高密度化はIC自身の発熱を益々
助長させICの熱劣化、短寿命化、ひいてはそれに伴う
システムダウンの危険性が指摘されている。
It has been pointed out that the higher integration and density of ICs increases the heat generation of the ICs themselves, leading to thermal deterioration of the ICs, shortening their lifespans, and resulting in system failures.

従来、このような半導体ICのための試験としては、連
続、断続動作試験等からなる動作寿命試験や、高温保存
寿命試験、低温保存寿命試験等からなる保存寿命試験、
あるいは温度サイクル試験、熱衝撃試験から成る環境試
験を行っていた。
Conventionally, tests for such semiconductor ICs include operating life tests consisting of continuous and intermittent operation tests, shelf life tests consisting of high temperature storage life tests, low temperature storage life tests, etc.
Alternatively, environmental tests consisting of temperature cycle tests and thermal shock tests were conducted.

(発明が解決しようとする課題) しかしながら上記試験は抜き取り検査であるうえ、何れ
の試験も1000時間という膨大な時間を必要とする問
題点があった。またストレスを定格以上に大きくする強
制劣化試験は、素子寿命と完全な相関があるとは断定し
がたい上、やはり時間を要した。
(Problem to be Solved by the Invention) However, the above test was a sampling test, and each test required an enormous amount of time, 1000 hours. In addition, it is difficult to conclude that there is a complete correlation with element life in forced deterioration tests in which the stress is increased above the rated value, and it also takes time.

本発明は、上述した問題点を解決するためになされたも
のであり、ICの発熱に伴う熱膨張過程を光波干渉式変
位計と微分手段によって熱拡散の解析を行い、数秒とい
う短い時間で全数のICの熱拡散の良否を判定できる光
波干渉式ICテスタを提供することを目的としている。
The present invention was made in order to solve the above-mentioned problems, and the thermal expansion process accompanying the heat generation of an IC is analyzed by thermal diffusion using a light wave interference displacement meter and a differentiator. An object of the present invention is to provide a light wave interference type IC tester that can determine the quality of thermal diffusion of an IC.

(課題を解決するための手段) この目的を達成するために本発明は、被測定物、例えば
、IC中の所定の素子、例えば、トランジスタ、抵抗等
に所定の電流を流して発熱させるためのICドライバと
、該発熱による熱膨張を測定するための光波干渉式変位
計と、該熱膨張量の時間変化より微分値を測定する微分
手段と、被測定物上の所定の位置にレーザースポットを
設定するXY移動手段とを備えている。
(Means for Solving the Problems) In order to achieve this object, the present invention provides a method for causing a predetermined current to flow through a predetermined element in an object to be measured, such as an IC, such as a transistor or a resistor, to generate heat. An IC driver, a light wave interference type displacement meter for measuring thermal expansion due to the heat generation, a differentiating means for measuring a differential value from a time change in the amount of thermal expansion, and a laser spot at a predetermined position on the object to be measured. It is equipped with an XY moving means for setting.

(作用) 上記の構成を有する本発明において、上記XY移動手段
はレーザースポットが所定の位置に照射されるように被
測定物を移動させる。ICドライバーは被測定物の所定
の素子に所定の電流を流し発熱させる。光波干渉式変位
計は発熱によって膨張し変位した量を測定し、微分手段
の出力に基いて被測定物の良否の判断を行う。
(Function) In the present invention having the above configuration, the XY moving means moves the object to be measured so that a predetermined position is irradiated with a laser spot. The IC driver causes a predetermined current to flow through a predetermined element of the object to be measured to generate heat. The light wave interference type displacement meter measures the amount of displacement caused by expansion due to heat generation, and determines whether the object to be measured is good or bad based on the output of the differentiating means.

(実施例) 以下、本発明を共体化した一実施例を図面を参照して説
明する。
(Example) Hereinafter, an example in which the present invention is integrated will be described with reference to the drawings.

第1図に本発明のブロック図を示す。FIG. 1 shows a block diagram of the present invention.

IC/LSI試料、即ち被測定物80は、対物レンズ9
0によって絞られたレーザースポットが所定の個所に照
射されるように、制御手段10及びXYステージコント
ローラ30により制御されるXYステージ60によって
移動させられる。その後、被測定物80は、同じく制御
手段10によって制御されるIC/LSIドライバ40
によって、その被測定箇所に所定の電流が流され、発熱
させられる。そして発熱によって熱膨張した被測定物8
0の熱膨張量(変位量)が、被測定物80からの反射光
の位相変化をもとにした、例えば、特願昭63−330
977号(光りヘテロダイン干渉表面形状測定装置)に
代表されるような光波干渉式変位計100でオングスト
ロームのオーダーで非常に精密に測定されるのである。
The IC/LSI sample, that is, the object to be measured 80 is
The laser beam is moved by an XY stage 60 controlled by a control means 10 and an XY stage controller 30 so that a laser spot focused by 0 is irradiated onto a predetermined location. Thereafter, the device under test 80 is controlled by the IC/LSI driver 40 which is also controlled by the control means 10.
As a result, a predetermined current is passed through the measurement point, causing it to generate heat. The object to be measured 8 has thermally expanded due to heat generation.
For example, the amount of thermal expansion (displacement) of 0 is based on the phase change of the reflected light from the object to be measured 80.
The measurement can be performed very precisely on the order of angstroms using a light wave interference type displacement meter 100 such as No. 977 (optical heterodyne interference surface shape measuring device).

例えば、被測定物80をICとすると、IC中の抵抗R
に電流Iをt秒間流した場合の温度上昇量△Tは次ぎの
式で与えられる。
For example, if the object to be measured 80 is an IC, the resistance R in the IC
The amount of temperature rise ΔT when a current I is passed through for t seconds is given by the following equation.

△T−12R/λ−[1−exp (−λt/me)] ただし、m: ICチップの質量 c:ICチップの比熱 t:時間 また、熱膨張量ΔLと温度上昇量△Tとの関係は 単に
△L=に・L・△T であるから △L(λ)=に・L−I2R/λ・ [1−exp  
        (−λt/mc)]・・・・・・(1
) ただし、に:比例定数 が成立し、光波干渉式変位計100で測定される変位量
ΔLは、熱伝導率λの関数となるのである。つまりIC
/LSIチップにボイドや接着不良がなくヒートシンク
が良好な時は、熱伝導率λか十分大きいことから第2図
に示すような熱拡散を表す曲線となり、1=0における
微分係数をαo、t=iにおける微分係数をα1それら
の比を係数比rとすれば r=al/α0=exp (−λt / m c )λ
、mSc>0 となり、r(1となる。つまり、これは熱拡散が設計ど
うり働いており、IC寿命が長くなることを意味してい
る。しかしながら、I C/L S Iチップにボイド
や接着不良がありヒートシンクが不十分なときは相対的
に熱伝導率λが小さくなるので(1)式は近似式(2)
で表される線形となる。
△T-12R/λ-[1-exp (-λt/me)] Where, m: Mass of IC chip c: Specific heat of IC chip t: Time Also, the relationship between the amount of thermal expansion ΔL and the amount of temperature rise △T is simply △L=to・L・△T, so △L(λ)=to・L−I2R/λ・[1−exp
(-λt/mc)]...(1
) However, a constant of proportionality is established, and the displacement amount ΔL measured by the light wave interferometric displacement meter 100 is a function of the thermal conductivity λ. In other words, I.C.
/When the LSI chip has no voids or poor adhesion and the heat sink is good, the thermal conductivity λ is sufficiently large, so the curve representing thermal diffusion as shown in Figure 2 is formed, and the differential coefficient at 1=0 is αo, t = The differential coefficient at i is α1, and their ratio is the coefficient ratio r, then r=al/α0=exp (-λt / m c )λ
, mSc>0, and r(1. In other words, this means that thermal diffusion is working as designed and the IC life will be longer. However, there are voids and When there is poor adhesion and the heat sink is insufficient, the thermal conductivity λ becomes relatively small, so equation (1) is approximated by equation (2).
The linear shape is expressed as .

△L(λ)=に・L−I2R/mC−t・・・・・・(
2)に:比例定数 これをグラフで表すと第3図になる。つまり、熱拡散が
不十分であり、一方的に熱が溜る事を示している。ここ
でも同様に1=0とt=1の時の係数比rをとると、r
=1となるのである。つまり熱伝導率λが小さい、即ち
、係数比rが1に近いほどIC/LSIチップのヒート
シンクが悪く、即ち、寿命が短くなることを表している
のである。
△L(λ)=ni・L−I2R/mC−t・・・・・・(
2): Constant of proportionality This can be expressed graphically as shown in Figure 3. In other words, heat diffusion is insufficient, and heat accumulates unilaterally. Similarly, if we take the coefficient ratio r when 1=0 and t=1, then r
= 1. In other words, the smaller the thermal conductivity λ, that is, the closer the coefficient ratio r is to 1, the worse the heat sink of the IC/LSI chip is, that is, the shorter the life span.

つまりユーザーが判断基準として例えばr sh= 0
゜5〜0.6を選べば制御手段は、IC/LSIチップ
の熱拡散の善し悪し良し、つまり製品の善し悪しが判断
できるのである。係数比rと熱伝導率λの関係を第4図
に、係数比rと寿命との関係を第5図に示す。
In other words, the user uses, for example, r sh = 0 as a criterion.
By selecting a value between .degree.5 and 0.6, the control means can judge whether the heat diffusion of the IC/LSI chip is good or bad, that is, whether the product is good or bad. The relationship between the coefficient ratio r and the thermal conductivity λ is shown in FIG. 4, and the relationship between the coefficient ratio r and the life span is shown in FIG.

つぎに、このrを求める方法を実施例にもとずいて具体
的に説明する。
Next, a method for determining this r will be specifically explained based on an example.

まず、最初に制御手段10は、プログラムに基いて所定
のコードをバス20を通じてICドライバ40に送る。
First, the control means 10 sends a predetermined code to the IC driver 40 via the bus 20 based on a program.

ICドライバ40はそのコードをデコードし、所定の素
子にパルス電流を流す。それと同時に制御手段10は、
バス20を通じて測定トリガ信号を微分回路50のタイ
ミング発生回路230に送る。タイミング発生回路23
0は、測定トリガ信号と同期してラッチ1にラッチ信号
を送りバッファ200にある光波干渉式変位計100の
データをラッチ1に取り込む。つぎに、例えば0.01
秒後にラッチ2にラッチ信号を送り、0.01秒後のデ
ータをラッチ2に取り込む。ラッチ1及びラッチ2のデ
ータは引算回路゛240によって引算され、t=0にお
ける微分値αOが計算され、それかつぎのタイミングで
ラッチ3に取り込まれる。このデータはバス20に出力
されて制御手段10によりRAMl0Iに記憶される。
The IC driver 40 decodes the code and causes a pulse current to flow through a predetermined element. At the same time, the control means 10
A measurement trigger signal is sent to the timing generation circuit 230 of the differentiator circuit 50 via the bus 20 . Timing generation circuit 23
0 sends a latch signal to the latch 1 in synchronization with the measurement trigger signal and takes in the data of the light wave interference type displacement meter 100 in the buffer 200 to the latch 1. Next, for example, 0.01
After a second, a latch signal is sent to latch 2, and data after 0.01 seconds is taken into latch 2. The data in latch 1 and latch 2 are subtracted by a subtraction circuit 240 to calculate a differential value αO at t=0, which is then taken into latch 3 at the next timing. This data is output to the bus 20 and stored in the RAM 10I by the control means 10.

1秒後、制御手段10は再度タイミング発生回路230
に測定トリガ信号を出し、同様の過程を経てt=1にお
ける微分値α1を得るのである。そしてr=α1/αO
の演算を行い、予めユーザーによってインプットされた
良否判断基準rshと比較し判定を行うのである。従っ
て、従来、約1000時間要した測定時間は、本実施例
では、数秒で済む。
After one second, the control means 10 again activates the timing generation circuit 230.
A measurement trigger signal is issued at , and the differential value α1 at t=1 is obtained through the same process. and r=α1/αO
The calculation is performed and the judgment is made by comparing with the pass/fail judgment criteria rsh inputted in advance by the user. Therefore, the measurement time that conventionally required about 1000 hours is only a few seconds in this embodiment.

尚、上記実施例では、微分回路を第6図に示すようにデ
ジタル回路で構成したが、変形例として第7図に示すよ
うにアナログ微分回路を用いてもよい。また、そのほか
−々例示はしないが、この熱拡散カーブの特徴を抽出す
る回路は、様々考えられるが本主旨を逸脱しない限りの
変形は許されるものとする。
In the above embodiment, the differentiating circuit is constructed of a digital circuit as shown in FIG. 6, but as a modification, an analog differentiating circuit as shown in FIG. 7 may be used. In addition, various other circuits can be considered for extracting the characteristics of this thermal diffusion curve, although they are not illustrated, and modifications are permitted as long as they do not depart from the main idea.

(発明の効果) 以上詳述したことから明らかなように、本発明によれば
ICドライバによりICの特定部分を通電発熱させ、そ
の膨張量を光波干渉式変位計によって、例えばオングス
トロームのオーダで極めて正確に測定し、かつ微分手段
でその変位量変化をもとめて熱拡散の良否、即ち該半導
体ICの将来寿命の推定を行なって判断を下すので、時
間も要した従来技術と比較して画期的な速さで測定でき
るのである。もちろん非接触非破壊であることは言うま
でもない。また、従来技術は抜取り検査であったが、本
発明よれば全数検査も容易に実施でき、半導体ICの信
頼性に貢献することができるのである。
(Effects of the Invention) As is clear from the detailed description above, according to the present invention, a specific part of an IC is energized and heated by an IC driver, and the amount of expansion is measured by a light wave interference displacement meter, for example, on the order of angstroms. This method is revolutionary compared to conventional technology, which takes time, as it measures accurately and uses a differentiator to determine the change in displacement to determine the quality of thermal diffusion, in other words, to estimate the future life of the semiconductor IC. It can be measured at a speed of Of course, it goes without saying that it is non-contact and non-destructive. Furthermore, while the conventional technology involves sampling inspection, the present invention allows for easy inspection of all parts, contributing to the reliability of semiconductor ICs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第7図までは本発明を具体化した実施例を示
すもので、第1図はシステムブロック図であり、第2図
は熱伝導率が大、即ち良品の場合の時間と熱膨張量の関
係を説明する図であり、第3図は熱伝導率が小、即ち不
良品の場合の時間と熱膨張量の関係を説明する図であり
、第4図は良品・不良品の判断基準である計数比rと総
合的な熱伝導率λとの関係を説明する図であり、第5図
は係数比とIC寿命との関係を説明する図であり、第6
図は微分回路のブロック図であり、第7図は微分回路の
変形例を示す図である。 0 0 0 0 0 0 0 0 00 制御手段 XYステージコントローラ ICコントローラ 微分回路 XYステージ IC基板 半導体IC 対物レンズ 光波干渉式変位計
Figures 1 to 7 show embodiments embodying the present invention. Figure 1 is a system block diagram, and Figure 2 shows time and heat in the case of high thermal conductivity, that is, a good product. FIG. 3 is a diagram illustrating the relationship between the amount of expansion and time for a product with low thermal conductivity, that is, a defective product. FIG. FIG. 5 is a diagram illustrating the relationship between the coefficient ratio r and the overall thermal conductivity λ, which is a judgment criterion; FIG. 5 is a diagram illustrating the relationship between the coefficient ratio and IC life;
The figure is a block diagram of the differentiating circuit, and FIG. 7 is a diagram showing a modification of the differentiating circuit. 0 0 0 0 0 0 0 0 00 Control means XY stage controller IC controller Differential circuit XY stage IC board Semiconductor IC Objective lens Light wave interference type displacement meter

Claims (1)

【特許請求の範囲】[Claims] IC中の素子あるいは配線を指定し、そこに所定の電流
を流して発熱させるICドライバと、該箇所に光を照射
し、その反射光の位相変化より熱膨張量即ち変位量を測
定する光波干渉式変位計と、該変位量の時間変化を測定
する微分手段と、レーザースポットを被測定物の所定の
箇所に設定する為のXY移動手段とよりなることを特徴
とする光波干渉式ICテスタ。
An IC driver that specifies an element or wiring in an IC and causes it to generate heat by passing a predetermined current through it; and a light wave interference system that irradiates light to the specified location and measures the amount of thermal expansion, or displacement, from the phase change of the reflected light. 1. A light wave interference type IC tester comprising a type displacement meter, a differentiating means for measuring a change in the amount of displacement over time, and an XY moving means for setting a laser spot at a predetermined location on an object to be measured.
JP1340124A 1989-12-26 1989-12-26 Light wave interference type ic tester Pending JPH03197878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1340124A JPH03197878A (en) 1989-12-26 1989-12-26 Light wave interference type ic tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1340124A JPH03197878A (en) 1989-12-26 1989-12-26 Light wave interference type ic tester

Publications (1)

Publication Number Publication Date
JPH03197878A true JPH03197878A (en) 1991-08-29

Family

ID=18333954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1340124A Pending JPH03197878A (en) 1989-12-26 1989-12-26 Light wave interference type ic tester

Country Status (1)

Country Link
JP (1) JPH03197878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080960A (en) * 2009-10-09 2011-04-21 Hamamatsu Photonics Kk Semiconductor inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080960A (en) * 2009-10-09 2011-04-21 Hamamatsu Photonics Kk Semiconductor inspection device

Similar Documents

Publication Publication Date Title
US4761607A (en) Apparatus and method for inspecting semiconductor devices
Rencz et al. Measuring partial thermal resistances in a heat-flow path
US4698587A (en) Method of characterizing critical timing paths and analyzing timing related failure modes in very large scale integrated circuits
Wolfgang Electron beam testing
JP2007311389A (en) Prober, and probe contact method
US7038474B2 (en) Laser-induced critical parameter analysis of CMOS devices
CN101915893B (en) Method for forecasting working life of integrated circuit based on electronic speckle technique
Ghosh-Dastidar et al. Adaptive techniques for improving delay fault diagnosis
JPH03197878A (en) Light wave interference type ic tester
Virazel et al. Delay fault testing: Choosing between random SIC and random MIC test sequences
US6577150B1 (en) Testing apparatus and method of measuring operation timing of semiconductor device
JP2000223385A5 (en)
JPH05152389A (en) Probe card
JP3934384B2 (en) Semiconductor device test equipment
Hora et al. Towards high accuracy fault diagnosis of digital circuits
JP3776257B2 (en) Electromigration evaluation method and evaluation apparatus for metal wiring
JPH1073642A (en) Integrated circuit with delay evaluation circuit
JP2004233171A (en) Assembly failure analytical device of semiconductor device and its failure analytical method
US20090298206A1 (en) Method and apparatus to minimize stress during reflow process
Pineda Fault Localization of Temperature-Dependent Digital Circuit Functional Failures Utilizing the Scan-based Bench Testing and the Dynamic Analysis by Laser Simulation (DALS)
JPH09329649A (en) Method and device for automatically analyzing lsi failure
Ravi et al. Effect of interaction between multiple defects on Z-Depth estimate in lock-in thermography applications
Anolick et al. Acceleration Factors for Environmental Life Testing of Integrated Circuits
Lombardi et al. Guest Editors' Introduction: Defect-Oriented Diagnosis for Very Deep-Submicron Systems
Wong et al. Rapid Assessment of Semiconductor Thermal Quality