JPH03197664A - High-toughness coated sintered hard alloy and its production - Google Patents

High-toughness coated sintered hard alloy and its production

Info

Publication number
JPH03197664A
JPH03197664A JP33765789A JP33765789A JPH03197664A JP H03197664 A JPH03197664 A JP H03197664A JP 33765789 A JP33765789 A JP 33765789A JP 33765789 A JP33765789 A JP 33765789A JP H03197664 A JPH03197664 A JP H03197664A
Authority
JP
Japan
Prior art keywords
phase
cemented carbide
layer
crystal structure
type crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33765789A
Other languages
Japanese (ja)
Other versions
JPH0784643B2 (en
Inventor
Yasuro Taniguchi
泰朗 谷口
Mitsuo Ueki
植木 光生
Keiichi Kobori
小堀 景一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP1337657A priority Critical patent/JPH0784643B2/en
Publication of JPH03197664A publication Critical patent/JPH03197664A/en
Publication of JPH0784643B2 publication Critical patent/JPH0784643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce the high-toughness coated sintered hard alloy which is enhanced in chipping resistance by allowing the lean layer of the hard phase of a B-1 type crystal structure and the enriched layer of a bond phase to exist on the surface of the sintered hard alloy and providing a core part contg. free carbon in the inside. CONSTITUTION:The coated sintered hard alloy is produced by forming the coated layer on the sintered hard alloy consisting of the hard phase which consists of the B-1 type crystal structure of 3 to 25wt.% bond phase essentially consisting of Co and Ni and the balance at least one kind of the phase of WC and the carbide, carbonitride, carbooxide and carbonitooxide of group 4a, 5a, 6a metals of periodic table and the inersolid solns. thereof, and unavoidable impurities. The sintered hard alloy consists of the core part which contains the tree carbon and the peripheral part which encloses the core part and does not contain the free carbon. The surface layer from the surface of the sintered hard alloy down to 5mum inside is so formed that the lean layer of the phase of the B-1 type crystal structure relatively decreased in the hard phase of the B-1 type crystal structure as compared to the core part and the enriched part of the bond phase relatively increased in the bond phase as compared with the core part.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、旋削工具、フライス工具、エンドミル、ドリ
ルなどの切削工具及びスリッター、ノズル、gJ缶用型
などの耐摩耗工具として適する高靭性被覆超硬合金及び
その製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a high-toughness coating suitable for cutting tools such as turning tools, milling tools, end mills, and drills, and wear-resistant tools such as slitters, nozzles, and molds for gJ cans. This invention relates to cemented carbide and its manufacturing method.

(従来の技術) 従来、超硬合金の表面にTiC,TiN、 Ti(C,
Nl。
(Prior art) Conventionally, TiC, TiN, Ti(C,
Nl.

^β203などの被覆層を形成してなる被覆超硬合金は
、耐摩耗性が格段に向上するため、切削工具や耐摩耗工
具などに広く実用されている。しかしながら、この実用
されている被覆超硬合金は、被覆層が脆弱なために、例
えば切削工具として用いる場合、フライスや断続旋削の
ような衝撃の生じる用途又はドリル、エンドミルなどの
切刃のシャープな形状の工具には適用範囲が限られると
いう問題がある。これらの問題を解決しようとした代表
的なものとして、特開昭54−87719号公報及び特
開昭54−134719号公報がある。
A coated cemented carbide formed with a coating layer such as ^β203 has significantly improved wear resistance, and is therefore widely used in cutting tools, wear-resistant tools, and the like. However, this coated cemented carbide in practical use has a fragile coating layer, so when used as a cutting tool, for example, when used in applications that generate impact such as milling cutters and interrupted turning, or sharp cutting edges such as drills and end mills. The problem with shaped tools is that their range of application is limited. Representative examples of attempts to solve these problems include Japanese Patent Application Laid-Open No. 54-87719 and Japanese Patent Application Laid-open No. 134719-1987.

(発明が解決しようとする課題) 特開昭54− 87719号公報には、窒素を含有する
B−1型結晶構造の相と■C相とでなる硬質相と、残り
鉄族金属の結合相とからなる超硬合金において、この超
硬合金の5〜200μmの表面層からB−1型結晶構造
の相を内部に移動させて、表面層中のB−1型結晶構造
の相を他の部分より少なくしたという超硬合金が開示さ
れている。
(Problem to be Solved by the Invention) JP-A No. 54-87719 discloses a hard phase consisting of a nitrogen-containing B-1 type crystal structure phase and a C phase, and a binder phase of the remaining iron group metal. In the cemented carbide consisting of, the phase with the B-1 type crystal structure in the surface layer is moved into the interior from the 5 to 200 μm surface layer of this cemented carbide, and the phase with the B-1 type crystal structure in the surface layer is mixed with another phase. A cemented carbide is disclosed in which the amount of the cemented carbide is reduced by less than 100%.

この同公報に開示された超硬合金の表面に硬質な被覆層
を形成した被覆超硬合金は、表面層の効果により耐欠損
性が向上したというすぐれたものであるけれども、鈴木
寿編著「超硬合金と焼結硬質材料J 1986.九a、
 P2H4に示されているように、表面層内の表面部に
おいては、結合相が内部に比べて貧化されてしまうため
に、脆い被覆層に発生した亀裂の超硬合金内部への進展
を表面層で抑止する効果が減殺され、その結果耐衝撃性
の効果も減少し、さらなる用途の拡大を計るまでに至っ
ていないという問題がある。
The coated cemented carbide disclosed in this publication, in which a hard coating layer is formed on the surface of the cemented carbide, has excellent fracture resistance due to the effect of the surface layer. Hard alloys and sintered hard materials J 1986.9a,
As shown in P2H4, the binder phase in the surface layer is poorer than that in the interior, so cracks that occur in the brittle coating layer are difficult to propagate inside the cemented carbide. The problem is that the suppressing effect of the layer is reduced, and as a result, the impact resistance effect is also reduced, and further expansion of the application has not been achieved.

特開昭54−134719号公報には、超硬合金の表面
に硬質な被覆層を形成してなる被覆超硬合金における超
硬合金が層厚50〜500μmの遊離炭素を含有しない
表面部と、0.01〜0.5重量%の遊離炭ふを含有す
る芯部とからなり、表面部には内側から超硬合金表面に
亘って連続的に硬さが10%以上低下する軟化層が存在
するという被覆超硬合金が開示されている。
JP-A-54-134719 discloses that in a coated cemented carbide formed by forming a hard coating layer on the surface of a cemented carbide, the cemented carbide has a surface portion that does not contain free carbon and has a layer thickness of 50 to 500 μm; It consists of a core containing 0.01 to 0.5% by weight of free carbon, and a softened layer whose hardness decreases by 10% or more continuously from the inside to the cemented carbide surface exists on the surface. A coated cemented carbide is disclosed.

この同公報に開示された被覆超硬合金は、超硬合金の表
面部に存在する軟化層が脆い被覆層に発生したクラック
の伝播を抑止するために耐チッピング性及び耐欠損性が
向上したというすぐれたものであるけれども、耐チッピ
ング性及び耐欠損性を高めるために軟化層を厚(しよう
とすると、製造上非常に困難であること及び得られる製
品のバラツキが大きくなるという問題があり、逆に軟化
層を薄くすると耐チッピング性及び耐欠損性を高める効
果が弱くなるために用途的に制限されてしまうという問
題がある。
The coated cemented carbide disclosed in this publication has improved chipping resistance and fracture resistance because the softened layer present on the surface of the cemented carbide suppresses the propagation of cracks that occur in the brittle coating layer. However, if you try to thicken the softened layer in order to improve chipping resistance and chipping resistance, there are problems in that it is extremely difficult to manufacture and the resulting products will vary widely. However, if the softened layer is made thinner, the effect of increasing chipping resistance and chipping resistance becomes weaker, so there is a problem in that the application is limited.

本発明は、上述のような問題点を解決したものであり、
具体的には、被覆超硬合金に用いる超硬合金の表面にB
−1型結晶構造の硬質相を貧化させてなる貧化層と結合
相を富化させてなる富化層とを併せて存在させることに
より耐チッピング性及び耐塑性変形性を顕著に高めると
共に、超硬合金の内部に遊離炭素の存在する芯部を設け
ることによりクラックの内部伝播エネルギーを吸収して
II欠損性を高めた高靭性被覆超硬合金及びその製造方
法を提供することを目的とするものである。
The present invention solves the above-mentioned problems,
Specifically, B is added to the surface of the cemented carbide used for the coated cemented carbide.
- Chipping resistance and plastic deformation resistance are significantly improved by the presence of both a depleted layer formed by depleting the hard phase of type 1 crystal structure and an enriched layer formed by enriching the binder phase. The purpose of the present invention is to provide a high-toughness coated cemented carbide that absorbs the internal propagation energy of cracks and increases II deficiency by providing a core portion in which free carbon exists inside the cemented carbide, and a method for producing the same. It is something to do.

(課題を解決するための手段) 本発明者らは、被覆超硬合金の使用領域の中でも、より
高速切削領域及びより高送り切削領域という厳しい切削
条件において、被覆超硬合金の寿命を向上させることが
できるかという問題について検討していた所、 第1に、被覆超硬合金における耐チッピング性及び耐欠
損性は、被覆層に生じた亀裂が超硬合金の内部に進展す
るのを防ぐことにより向上し、この場合、亀裂の発生し
た初期段階で亀裂進展を阻止するのがよく、そのために
は超硬合金の表面層の結合相を富化すると共にB−1型
結晶構造の硬質相を貧化すると最も効果的であるという
知見を得たものである。
(Means for Solving the Problems) The present inventors aim to improve the life of coated cemented carbide under severe cutting conditions such as higher speed cutting and higher feed cutting, among the areas in which coated cemented carbide is used. First, the chipping and fracture resistance of coated cemented carbide is to prevent cracks that occur in the coating layer from propagating inside the cemented carbide. In this case, it is best to prevent crack propagation at the initial stage of crack generation, and to do so, enrich the binder phase in the surface layer of the cemented carbide and increase the hard phase with the B-1 type crystal structure. This is based on the knowledge that it is most effective when people are poor.

第2に、被覆超硬合金を切削工具として用いる場合、刃
先に加わる圧力に対しては成る程度の圧縮強度が必要で
あり、圧縮強度を高めるためには、超硬合金の表面部を
遊離炭素の存在しない層とし、逆に亀裂が超硬合金の内
部に伝播して、大きな欠損又は破損となるのを防止する
ためには、結合相濃度、硬質相組成及び粒度などが同一
ならば遊離炭素の存在している方が亀裂の伝播エネルギ
ーを吸収しやすいといういう知見を得た。
Second, when coated cemented carbide is used as a cutting tool, it must have a certain degree of compressive strength to withstand the pressure applied to the cutting edge. In order to prevent cracks from propagating inside the cemented carbide and causing large defects or damage, if the binder phase concentration, hard phase composition, and grain size are the same, free carbon It was found that the presence of cracks makes it easier to absorb crack propagation energy.

この第1及び第2の知見に基づいて、本発明を完成する
に至ったものである。
Based on these first and second findings, we have completed the present invention.

すなわち、本発明の高靭性被覆超硬合金は、C。That is, the high toughness coated cemented carbide of the present invention has C.

及び/又はNiを主成分とする結合相3〜25重堡%と
、残り炭化タングステンの相と周期律表4a、 5a。
and/or 3 to 25% by weight of a binder phase mainly composed of Ni, and the remaining tungsten carbide phase and periodic table 4a, 5a.

6a族金属の炭化物、炭窒化物、炭酸化物、炭窒酸化物
及びこれらの相互固溶体の中の少なくとも1種のB−1
型結晶構造の相とでなる硬質相と不可避不純物とからな
る超硬合金の表面に単層又は多層の被覆層を形成してな
る被覆超硬合金であって、該超硬合金は、遊離炭素を含
有している芯部と、該芯部を包囲して遊離炭素を含有し
ていない周辺部とからなり、しかも該超硬合金の表面か
ら少なくとも5μmまでの内部の表面層は、該B−1型
結品構造の硬質相が該芯部に比べて相対的に減少してな
るB−1型結晶構造の相の貧化層と、かつ該結合相が該
芯部に比べて相対的に増加してなる結合相富化層とが存
在していることを特徴とする合金である。
At least one B-1 selected from group 6a metal carbides, carbonitrides, carbonates, carbonitrides, and mutual solid solutions thereof
A coated cemented carbide is formed by forming a single or multi-layer coating layer on the surface of a cemented carbide consisting of a hard phase having a type crystal structure and unavoidable impurities. A core portion containing B- a B-1 type crystal structure phase depletion layer in which the type 1 crystal structure hard phase is relatively reduced compared to the core; and the binder phase is relatively reduced compared to the core. The alloy is characterized by the presence of an increasing binder phase-enriched layer.

本発明の高靭性被覆超硬合金における超硬合金中の結合
相は、Co及び/又はNiを主成分として、硬質相成分
の一部及び不可避不純物が固溶したものである。この内
、不可避不純物としては、出発物質中に含有している、
例えばAl1. Ca、 Siなどがあり、出発物質の
混合粉砕工程中に混入してくる、例えばFe、 Mnな
どがある。また、超硬合金中の硬質相は、炭化タングス
テンの相とB−1型結晶構造の相とからなり、この内、
B−1型結晶構造の相は、具体的には1例えば(TiJ
IC。
The binder phase in the cemented carbide in the high-toughness coated cemented carbide of the present invention has Co and/or Ni as its main components, and a portion of the hard phase components and inevitable impurities are dissolved therein. Among these, unavoidable impurities include those contained in the starting materials,
For example, Al1. These include Ca, Si, etc., and include, for example, Fe, Mn, etc., which are mixed in during the mixing and pulverizing process of the starting materials. Furthermore, the hard phase in the cemented carbide consists of a tungsten carbide phase and a B-1 type crystal structure phase, among which:
Specifically, the phase of the B-1 type crystal structure is 1, for example (TiJ
I.C.

(Ti、Ta1c、  [Ti、Ta、W)C,(Ti
、Ta、Nb、W)C。
(Ti, Ta1c, [Ti, Ta, W)C, (Ti
, Ta, Nb, W)C.

(Ti、W) (C,N1.  (Ti、Tal (C
,N)、  (Ti、Ta、Wl (C,Nl。
(Ti, W) (C, N1. (Ti, Tal (C
, N), (Ti, Ta, Wl (C, Nl.

(Ti、Ta、Nb、’II) (C,Nl、  (T
i、1ll) (C101,[Ti、Ta) (C,0
)。
(Ti, Ta, Nb, 'II) (C, Nl, (T
i, 1ll) (C101, [Ti, Ta) (C, 0
).

(Ti、Ta、Ill (C,01,(Ti、Ta、N
b、w) (C,0)。
(Ti, Ta, Ill (C, 01, (Ti, Ta, N
b,w) (C,0).

(Ti、 Ill (C,N、 01 、  (Ti、
 Ta1(C,N、 0) 。
(Ti, Ill (C,N, 01, (Ti,
Ta1(C,N,0).

(Ti、Ta、Wl (C,N、0)、  (Ti、T
a、NbJl (C,N、0)を挙げることができる。
(Ti, Ta, Wl (C, N, 0), (Ti, T
a, NbJl (C,N,0).

このような組成成分でなる超硬合金は、遊離炭素を含有
している芯部と、この芯部を包囲して遊離炭素を含有し
ていない周辺部とからなり、特に周辺部が超硬合金の表
面から内部に向って50〜400μmの深さでなるとき
には、高送り領域における切削工具としての圧縮強度を
保持することができることから好ましいことである。ま
た、この超硬合金は、その表面から少なくとも5μmま
での内部の表面層には、B−1型結晶構造の相の貧化層
と、結合相の富化層とが存在しており、このときの貧化
層は、10〜50μmの深さであることが特に好ましい
ことである。また、結合相の富化層は、亀裂の進展を初
期に抑止するという意図から、超硬合金の表面で最大の
結合相濃度となることが好ましく、内部に向って減少し
、表面から10μmの所で最小の濃度となってがら内部
値まで増加することは、耐塑性変形性の向上にさらに有
利となるものである。
Cemented carbide made of such composition components consists of a core containing free carbon and a peripheral part surrounding this core and containing no free carbon. Especially, the peripheral part is made of cemented carbide. When the depth is 50 to 400 μm from the surface to the inside, it is preferable because the compressive strength as a cutting tool in a high feed region can be maintained. In addition, this cemented carbide has a layer depleted in the B-1 type crystal structure phase and a layer enriched in the binder phase in the inner surface layer up to at least 5 μm from the surface. It is particularly preferable that the depleted layer has a depth of 10 to 50 μm. Furthermore, with the intention of inhibiting crack propagation at an early stage, the binder phase enriched layer preferably has a maximum binder phase concentration on the surface of the cemented carbide, decreases toward the inside, and reaches a depth of 10 μm from the surface. It is further advantageous to increase the plastic deformation resistance from the minimum concentration at some point to the internal value.

この超硬合金の表面部における構成を大別して、さらに
詳述すると、■貧化層が最も浅く、次に富化層で、周辺
部が最も深くなっている場合、■貧化層と富化層が殆ん
ど同深さで、これよりも周辺部が深くなっている場合、
■貧化層が浅く、これよりも富化層と周辺部が共に深く
、かつ富化層と周辺部が殆んど同深さでなる場合、■貧
化層と富化層と周辺部が殆んど同深さでなる場合、■貧
化層が最も浅く、次に周辺部で、富化層が最も深い場合
が好ましい構成であり、これらは用途により使い分ける
ことが好ましく、特に切削工具としての使用領域を広げ
るには、■、■、■の構成にすることが好ましいことで
ある。
The structure of the surface of this cemented carbide can be broadly classified and explained in more detail: ■ If the impoverished layer is the shallowest, then the enriched layer, and the peripheral area is the deepest, ■ the impoverished layer and the enriched layer. If the layers are almost the same depth, but the peripheral part is deeper than this,
■If the poor layer is shallow, the rich layer and the surrounding area are both deeper than it, and the rich layer and the surrounding area are almost the same depth, ■The poor layer, the enriched layer, and the surrounding area are at the same depth. When the depths are almost the same, the preferred configuration is that the impoverished layer is the shallowest, followed by the peripheral area, and the enriched layer is the deepest.It is preferable to use these layers depending on the purpose, especially when used as a cutting tool. In order to expand the usage area of , it is preferable to use the configurations of (1), (2), and (3).

この超硬合金の結合相量が3wt%未満になると、相対
的に硬質相量が97wt%を超えて多くなることがら貧
化層及び富化層の存在する超硬合金ではあるが顕著な強
度低下となること、逆に結合相量が25wt%を超えて
多くなると、相対的に硬質相量が75wL%未満となり
、被覆層の消滅後における超硬合金の摩耗が激しく寿命
低下となる。このために超硬合金の結合相量を3〜25
wt%と定めたものである。
When the amount of binder phase in this cemented carbide is less than 3wt%, the amount of hard phase increases relatively to more than 97wt%, so although it is a cemented carbide with poor and enriched layers, it has remarkable strength. On the other hand, if the amount of binder phase increases beyond 25 wt%, the amount of hard phase becomes relatively less than 75 wL%, and the wear of the cemented carbide after the coating layer disappears is severe, resulting in a shortened life. For this purpose, the amount of binder phase in cemented carbide is 3 to 25.
It is defined as wt%.

このような超硬合金の表面に形成させる被覆層は、具体
的には、例えば、周期律表4a、 5a、 6a族金属
の炭化物、窒化物、炭酸化物、窒酸化物、+1の酸化物
、窒化物、Siの炭化物、窒化物及びこれらの相互固溶
体を挙げることができる。これらの内、炭化チタン、窒
化チタン、炭窒化チタン、酸化アルミニウムの被覆層を
組合わせた複層にすると、鋼や鋳物用切削工具としてす
ぐれることから好ましく、特に超硬合金の表面から被覆
層の表面に向って、炭化チタン層、窒化チタン層、炭化
チタン層、炭窒化チタン層、酸化アルミニウム層。
Specifically, the coating layer formed on the surface of such a cemented carbide includes, for example, carbides, nitrides, carbonates, nitroxides, +1 oxides of metals in groups 4a, 5a, and 6a of the periodic table, Examples include nitrides, Si carbides, nitrides, and mutual solid solutions thereof. Among these, a multilayer combination of coating layers of titanium carbide, titanium nitride, titanium carbonitride, and aluminum oxide is preferable because it is excellent as a cutting tool for steel and castings. Towards the surface, a titanium carbide layer, a titanium nitride layer, a titanium carbide layer, a titanium carbonitride layer, and an aluminum oxide layer.

窒化チタン層の順に形成した複層の場合は一層好ましい
ことである。この被覆層の最適厚さは、用途及び工具形
状により異なり、切削工具として用いる場合には被覆層
の全厚を1−15μm、特に複層にする場合には5〜1
5μm、単層にする場合には1〜10μm程度が好まし
いことである。
It is even more preferable to use a multilayer structure in which titanium nitride layers are formed in this order. The optimal thickness of this coating layer varies depending on the application and tool shape, and when used as a cutting tool, the total thickness of the coating layer is 1-15 μm, and in particular, when it is multilayered, it is 5-1 μm.
The thickness is preferably 5 μm, and in the case of a single layer, about 1 to 10 μm.

本発明の高靭性被覆超硬合金を作製する場合は、数F[
の方法があるけれども、次の方法で行うと超硬合金の表
面部における制御が容易で、バラツキも少なく好ましい
ことである。
When producing the high toughness coated cemented carbide of the present invention, several F[
Although there are two methods, the following method is preferable because it allows easy control of the surface of the cemented carbide and less variation.

すなわち、本発明の高靭性被覆超硬合金の製造方法は、
 Co及び/又はNiを主成分とする結合相3〜z5r
Mm%と、残り炭化タングステンの相と周期律表4a、
 5a、 Ba族金属の炭化物、炭窒化物、炭酸化物、
炭窒酸化物及びこれらの相互固溶体の中の少なくとも1
種の8−1型結晶構造の相とでなる硬質相と不可避不純
物とからなる超硬合金の表面に単層又は多層の被覆層を
形成してなる被覆超硬合金をll造する方法であって、
該超硬合金を反応容器内に設置した後、該反応容器内を
浸炭性雰囲気にして加熱する第1工程と、該反応容器内
を脱炭性雰囲気に切換えた状態で冷却し、該冷却時に1
0℃/分以下の速度で徐冷しながら該結合相の固液共存
温度域を通過させる第2工程とにより処理し、引続いて
物理蒸着法又は化学蒸着法でもって該被覆層を形成する
第3工程とを経て、該超硬合金が遊離炭素を含有してい
ない周辺部と該周辺部を除いた内部の遊離炭素を含有し
ている芯部とからなり、該超硬合金の表面から少なくと
も5μmまでの内部の表面層における該B−1型結品構
造の硬質相が該表面層を除いた内部に比べて相対的に減
少してなるB−1型結品構造の相の貧化層と、該結合相
が該表面層を除いた内部に比べて相対的に増加してなる
結合相の富化層とを存在させることを特徴とする方法で
ある。
That is, the method for producing a high toughness coated cemented carbide of the present invention is as follows:
Bonded phase 3 to z5r containing Co and/or Ni as main components
Mm%, remaining tungsten carbide phase and periodic table 4a,
5a, carbides, carbonitrides, carbonates of Ba group metals,
At least one of carbonitride oxides and mutual solid solutions thereof
This is a method for manufacturing a coated cemented carbide by forming a single or multilayer coating layer on the surface of a cemented carbide consisting of a hard phase consisting of a phase with an 8-1 type crystal structure and unavoidable impurities. hand,
After placing the cemented carbide in a reaction vessel, a first step of heating the reaction vessel in a carburizing atmosphere, cooling the reaction vessel with the atmosphere switched to a decarburizing atmosphere, and during the cooling. 1
A second step of passing the binder phase through a solid-liquid coexistence temperature range while slowly cooling at a rate of 0° C./min or less, and then forming the coating layer by physical vapor deposition or chemical vapor deposition. After the third step, the cemented carbide consists of a peripheral part that does not contain free carbon and a core part that contains free carbon inside the peripheral part, and from the surface of the cemented carbide. The hard phase of the B-1 type crystalline structure in the inner surface layer up to at least 5 μm is relatively reduced compared to the inside excluding the surface layer, resulting in poor phase of the B-1 type crystalline structure. This method is characterized in that a binder phase enriched layer is present in which the binder phase is relatively increased compared to the inside excluding the surface layer.

本発明の高靭性被覆超硬合金の製造方法における超硬合
金の処理工程である第1工程は、例えばC114のよう
な炭化水素ガスと)13ガス又は必要に応じて不活性ガ
スの混在してなる混合ガスによる浸炭性雰囲気中で12
00℃〜15000℃に加熱すればよく、この第1工程
で浸炭した超硬合金の表面部を、次に第2工程で脱炭さ
せるのであり、これは一定温度下でも行うことも可能で
あるが、むしろ結合相の固液共存温度域を通過しながら
徐冷すると表面層の制御が容易になる。この徐冷中の雰
囲気は、真空においても脱炭作用があるが、例えばCO
x + lln、 IIJ + IIsなどの脱炭性雰
囲気にすれば顕著に表面層の一制御が可能である。また
、この第1工程及び第2工程による超硬合金は、超硬合
金の出発物質中に微量のNの含有した物質を用いるか、
又は第1工程の前の焼結過程において、超硬合金を窒化
処理して微量のNを超硬合金中に含有しておくと、−層
表面層が容易に形成されるので好ましいことである。こ
こで記載している固液共存温度域とは、例えば、第1図
に示すにgurlandによるl!Ic−Co断面図の
(WC+γ+L)域における斜線で示した温度域のこと
を示ものである。なお、−ト記第!及び第2工程は、超
硬合金を通常の焼結後、−度焼結炉から取り出して研摩
などした後に再び加熱して行うことができるが、焼結後
The first step, which is the treatment step of the cemented carbide in the method for producing a high-toughness coated cemented carbide of the present invention, includes a mixture of a hydrocarbon gas such as C114 and a) 13 gas or an inert gas as necessary. 12 in a carburizing atmosphere with a mixed gas of
The surface of the cemented carbide that has been carburized in the first step is then decarburized in the second step, which can also be done at a constant temperature. However, if it is slowly cooled while passing through the solid-liquid coexistence temperature range of the bonded phase, the surface layer can be easily controlled. The atmosphere during this slow cooling has a decarburizing effect even in vacuum, but for example, CO
If a decarburizing atmosphere such as x + lln or IIJ + IIs is used, the surface layer can be significantly controlled. Further, the cemented carbide produced in the first and second steps may be produced by using a substance containing a trace amount of N in the starting material of the cemented carbide, or
Alternatively, in the sintering process before the first step, it is preferable to nitridize the cemented carbide to contain a small amount of N in the cemented carbide because the surface layer can be easily formed. . The solid-liquid coexistence temperature range described here is, for example, as shown in FIG. This shows the temperature range indicated by diagonal lines in the (WC+γ+L) region of the Ic-Co cross-sectional view. By the way, - Book G! The second step can be carried out by taking out the cemented carbide from the sintering furnace after normal sintering, polishing it, etc., and then heating it again, but after sintering.

同一炉内で連続して行うこと゛も可能である。It is also possible to carry out the process continuously in the same furnace.

この第1工程及び第2工程の処理に引続いて物理蒸着法
又は化学蒸着法でもって被覆層を形成する第3工程は、
従来の方法を適用することにより行うことができるもの
である。
Following the first and second steps, the third step is to form a coating layer by physical vapor deposition or chemical vapor deposition.
This can be done by applying conventional methods.

(作用) 本発明の高靭性被覆超硬合金は、超硬合金の表面層が脆
性な被覆層に発生した微小クラックを超硬合金の内部に
進展するのを抑制する作用をし、また、仮にクラックが
表面層及び周辺部を進展して超硬合金の芯部に達したと
しても、この芯部がクラックのエネルギーを吸収し合金
全体の破損を防止するという作用をし、超硬合金の周辺
部が圧縮強度を高める作用をし、これらの影響でもって
耐摩耗性、耐溶着性などにすぐれた被覆層の効果を充分
に発揮でき、また、これら全体の結果として耐チッピン
グ性、耐欠損性、耐破損性及び耐塑性変形性が著しくす
ぐれるものである。
(Function) The high-toughness coated cemented carbide of the present invention has the effect of suppressing microcracks generated in the brittle surface layer of the cemented carbide from propagating into the interior of the cemented carbide. Even if a crack propagates through the surface layer and the periphery and reaches the core of the cemented carbide, this core absorbs the energy of the crack and prevents damage to the entire alloy. The coating layer has the effect of increasing the compressive strength, and these effects allow the coating layer to fully demonstrate its excellent wear resistance and adhesion resistance, and as a result of these factors, chipping resistance and chipping resistance are improved. , it has extremely good breakage resistance and plastic deformation resistance.

本発明の高靭性被覆超硬合金の製造方法は、第1工程と
第2工程との組合わせが超硬合金の周辺部と表面層との
構成の制御を容易にするという作用をしているものであ
る。
The method for producing a high-toughness coated cemented carbide of the present invention has the effect that the combination of the first step and the second step facilitates control of the configuration of the peripheral portion and surface layer of the cemented carbide. It is something.

(実施例) 実施例1 市販の各種粉末(粒径0.7〜3,0μm)を、WC−
3%TiC−0,5%TiN −6%TaC−6%C。
(Example) Example 1 Various commercially available powders (particle size 0.7 to 3.0 μm) were processed into WC-
3% TiC-0,5% TiN-6% TaC-6%C.

(重量%)組成に配合し、常法の製法に従い、1450
℃、lhrの真空焼結により、JIS規格のTNIJN
160408形状の焼結体を複数個得た。このときの断
面組織観察によると2表面から内部まで遊離炭素は認め
られなかった。そして、これらの焼結体を3つのグルー
プに分けて、まず第!のグループは、反応容器中て13
50℃で30分間、 C114+ tla混合気流中で
浸炭した後、雰囲気をCOt+lllガスに切り替えて
 1200℃まで5℃/分の速度で徐冷した。そしてそ
の後室温まで真空中で冷却した。この試料の断面組織は
、表面から 150μmまでは遊離炭素がみられず、そ
れより内部は遊離炭素が出現していた。そして表面部に
は1表面から20μmの深さまでB−1型結品構造の相
がみられないIC−Co合金層となっており、かつ表面
から35μmの深さまで結合相が富化し、40μmの位
置で結合相量が内部より少ない最小値となった後、内部
に向って内部値まで増加しているのが認められた。
(wt%) according to the conventional manufacturing method, 1450
By vacuum sintering at ℃, lhr, TNIJN of JIS standard
A plurality of sintered bodies having a shape of 160408 were obtained. According to the observation of the cross-sectional structure at this time, no free carbon was observed from the surface to the inside. Then, we divided these sintered bodies into three groups. The group of 13 in the reaction vessel
After carburizing at 50°C for 30 minutes in a C114+TL gas mixture, the atmosphere was changed to COt+ll gas and slowly cooled to 1200°C at a rate of 5°C/min. It was then cooled to room temperature in vacuo. In the cross-sectional structure of this sample, no free carbon was observed up to 150 μm from the surface, and free carbon appeared in the interior. The surface part is an IC-Co alloy layer in which no B-1 crystal structure phase is observed from the surface to a depth of 20 μm, and the binder phase is enriched from the surface to a depth of 35 μm, with a 40 μm depth. It was observed that after the binder phase amount reached a minimum value at the position, which was smaller than the inside, it increased toward the inside to reach the inside value.

さらに第2のグループは、第1のグループと同じ熱サイ
クルのうち、第1の工程中で浸炭ガスを用いず、真空中
で1350℃で30分間保持したのち、CO,+l11
雰囲気で1200℃まで5℃/分の速度で徐冷した。そ
してその後室温まで真空中で冷却した。このときの断面
組織は、表面から20μmの深さまでB−1型結晶構造
の相がみられない領域が認められ、また表面から45μ
mの深さまで結合相が富化しているのが認められたが、
遊離炭素は表面から内部まで全く認められないものであ
った。
Furthermore, in the second group, during the same thermal cycle as the first group, no carburizing gas was used in the first step, and after holding in vacuum at 1350 ° C. for 30 minutes, CO, +l11
It was gradually cooled down to 1200°C in an atmosphere at a rate of 5°C/min. It was then cooled to room temperature in vacuo. In the cross-sectional structure at this time, a region where the B-1 type crystal structure phase was not observed was observed up to a depth of 20 μm from the surface, and a region of 45 μm from the surface was observed.
It was observed that the binder phase was enriched to a depth of m.
No free carbon was observed from the surface to the inside.

残る第3のグループはすべて真空中で同一の熱履歴を与
えた。このときの断面組織は、表面から20μmの深さ
までB−1型結晶構造の相がみられない領域が存在する
のみであった。そして以上の全試料を化学蒸着法により
、2μmTiC,1μm TiN。
The remaining third group all had the same thermal history in vacuum. In the cross-sectional structure at this time, there was only a region where no B-1 type crystal structure phase was observed up to a depth of 20 μm from the surface. All of the above samples were coated with 2 μm TiC and 1 μm TiN by chemical vapor deposition.

2 μmTicN、  1 μm ARsrJ* 、 
0.5 μmTiNを順次被覆して被覆合金を得た(第
1のグループ、本発明試料A:第2のグループ、比較試
料B:第3のグループ、比較試料c)。
2 μm TicN, 1 μm ARsrJ*,
A coated alloy was obtained by successively coating with 0.5 μm TiN (first group, inventive sample A: second group, comparative sample B: third group, comparative sample c).

上記の各試料について、被削材として、円筒形の外周部
に、長平方向に等間隔で平行な4本の溝のある348C
(11,250)を用い、切削速度 150m/min
For each of the above samples, the work material is 348C, which has four grooves parallel to each other at equal intervals in the longitudinal direction on the outer periphery of the cylindrical shape.
(11,250), cutting speed 150m/min
.

切込みr;il、5m1一定の下で外周旋削を行ない、
送り量を0.I n+n+/revからはじめて0.0
5m+++/rev刻みで上げていく (各送りで40
00回の衝撃をクリアしたら次の送りへ移る)方法で、
試料が欠損するときの送り量によって耐欠損性を評価し
た。その結果、各試料10回ずつの平均で、本発明試料
Δが0.45 mm/revまで切削可能であったのに
対し、比較試料Bは0.30 mm/rev 、同Cは
0.20m1/revでそ−れぞれ欠損した。
External turning is carried out under a constant depth of cut r:il of 5m1,
Set the feed amount to 0. 0.0 starting from I n+n+/rev
Raise it in 5m +++/rev increments (40 m + + + / rev increments)
After clearing 00 shocks, move on to the next feed) method,
Fracture resistance was evaluated based on the feed amount when the sample was fractured. As a result, on an average of 10 times for each sample, the present invention sample Δ was able to cut up to 0.45 mm/rev, whereas comparative sample B could cut 0.30 mm/rev and comparative sample C could cut 0.20 m1. /rev respectively deleted.

実施例2 市販の各種粉末(粒径0.9〜2.5μm)を用い、W
c −4%TiC−5%TaC−2%NbC−5%C。
Example 2 Using various commercially available powders (particle size 0.9 to 2.5 μm), W
c -4%TiC-5%TaC-2%NbC-5%C.

−2%Ni(中量%)に配合・混合し、プレス成形によ
り、JIS規格のSNMN1240El形状の成形体を
得た。これらを3つのグループに分けて、第1のグルー
プは、焼結時の昇温途中、 1IoO”cで20分間。
-2% Ni (medium weight %) was blended and mixed, and press molding was performed to obtain a molded body in the shape of SNMN1240El according to the JIS standard. These were divided into three groups, and the first group was heated at 1IoO"c for 20 minutes during heating during sintering.

20TorrのN1雰囲気中で窒化処理した後、 +4
20”cでlhr真空焼結した。そして焼結後、同一炉
内で1310℃で20分間、 C114+L雰囲気で浸
炭した後、引き続き雰囲気をnso+Haとして、3℃
/分で1200℃まで徐冷し、その後真空中で室温まで
炉冷した。このときの合金の断面組織は、表面から18
0μmまでは遊離炭素がみられず、それより内部は遊離
炭素が出現していた。また表面から32μmの深さまで
はB−1型結品構造の相が内部よりも極端に減じており
、さらに表面から45μmまでは結合相が内部より富化
していた。第2のグループは、第1のグループの工程中
、窒素処理を行わずに真空焼結した後、後工程は全く同
じ条件で処理した。このときの断面組織は、表面から 
200μmまでは遊離炭素がみられず、より内部は遊離
炭素が出現していた。また表面から48μmまでは結合
相の富化領域がみられたが、B−1型結品構造の相の量
は表面から内部まで変化なかった。さらに第3のグルー
プは、窒化処理、浸炭処理、徐冷処理を行なわず、真空
焼結の後直ちに炉冷した。このときの断面組織は、表面
から内部にわたって遊離炭素は全くなく、また表面部で
のB−1型結晶構造の相の量および結合相の量について
も変化は認められなかった。そしてこれら全試料につい
て、ホローカソード装置を用いた物理蒸着法により、T
iNを2μm被覆して被覆合金を得た(第1のグループ
、本発明試料D:第2のグループ、比較試料E:第の3
グループ、比較試料F)。
After nitriding in N1 atmosphere at 20 Torr, +4
Vacuum sintering was carried out at 20"C for lhr. After sintering, carburization was carried out in the same furnace at 1310℃ for 20 minutes in a C114+L atmosphere, and then the atmosphere was changed to nso+Ha and the temperature was increased to 3℃.
The mixture was slowly cooled to 1200° C./min, and then cooled in a vacuum to room temperature in a furnace. The cross-sectional structure of the alloy at this time is 18 mm from the surface.
No free carbon was observed up to 0 μm, and free carbon appeared in the inner part. In addition, the phase with the B-1 type crystal structure was significantly reduced from the surface to a depth of 32 μm compared to the inside, and furthermore, the binder phase was enriched from the inside to a depth of 45 μm from the surface. In the second group, vacuum sintering was performed without nitrogen treatment during the steps of the first group, and subsequent steps were performed under exactly the same conditions. The cross-sectional structure at this time is from the surface to
No free carbon was observed up to 200 μm, and free carbon appeared further inside. Furthermore, although a binder phase enriched region was observed up to 48 μm from the surface, the amount of the B-1 type crystalline structure phase did not change from the surface to the inside. Furthermore, in the third group, the nitriding treatment, carburizing treatment, and slow cooling treatment were not performed, and the furnace cooling was performed immediately after vacuum sintering. In the cross-sectional structure at this time, there was no free carbon at all from the surface to the inside, and no change was observed in the amount of the B-1 type crystal structure phase and the amount of the binder phase at the surface. Then, for all these samples, T
A coated alloy was obtained by coating iN with a thickness of 2 μm (first group, present invention sample D: second group, comparative sample E: third
Group, comparative sample F).

上記の各試料について、切削面形状が 150mmX8
0+amのFC060f11e270)のブロックを、
切削速度 160m/min 、切込み量2.0mm、
送り量0.4mm/刃、乾式、−枚刃の条件で正面フラ
イス切削を行なったところ本発明試料りは、20バス切
削して透面摩耗tが0.25v+mであったのに対し、
比較試料Eは16パスで欠損、同Fは7バスで欠損した
For each sample above, the cutting surface shape is 150mm x 8
0+am FC060f11e270) block,
Cutting speed 160m/min, depth of cut 2.0mm,
When face milling was performed under the conditions of a feed rate of 0.4 mm/blade, dry method, and -flute, the sample of the present invention had a through-surface wear t of 0.25 V+m after 20 bus cuts.
Comparative sample E was defective in 16 passes, and comparative sample F was defective in 7 passes.

(9,明の効果) 以上の結果から、本発明の高靭性被覆超硬合金は、従来
のような表面層の構成でなる超硬合金に被覆層を形成し
てなる被覆超硬合金に比べて、送りの大きさにおいて、
約1.5〜2.25倍も高めさせうること、耐摩耗性に
おいて、約1.25倍も向上させうること、従来の表面
層の存在しない超硬合金に被覆層を形成してなる被覆超
硬合金に比べて、耐欠損性において、約2.86倍も向
上させうろことができるという著しくすぐれた効果があ
る。
(9. Effect of light) From the above results, the high toughness coated cemented carbide of the present invention has a higher toughness than the coated cemented carbide made by forming a coating layer on a cemented carbide with a conventional surface layer structure. Therefore, in terms of the feed size,
A coating formed by forming a coating layer on a cemented carbide that does not have a conventional surface layer. Compared to cemented carbide, it has a remarkable effect of improving fracture resistance by about 2.86 times.

また、本発明の高靭性被覆超硬合金の製造方法は、芯部
と周辺部との制御並びに表面層の制御が容易であるとい
う効果がある。
Furthermore, the method for manufacturing a high-toughness coated cemented carbide of the present invention has the advantage that it is easy to control the core and peripheral portions as well as the surface layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、WC−16wL%CO組成における断+fj
相図である。第1図中、WCは炭化タングステン、γは
Co相、ηは■sco、cの相、Cはカーボンを小し、
斜線を施した部分は、結合相の固液共存温度領域を示す
Figure 1 shows the cut +fj in the WC-16wL%CO composition.
This is a phase diagram. In Figure 1, WC is tungsten carbide, γ is Co phase, η is ■sco, c phase, C is carbon,
The shaded area indicates the solid-liquid coexistence temperature range of the bonded phase.

Claims (5)

【特許請求の範囲】[Claims] (1) Co及び/又はNiを主成分とする結合相3〜
25重量%と、残り炭化タングステンの相と周期律表4
a,5a,6a族金属の炭化物,炭窒化物,炭酸化物,
炭窒酸化物及びこれらの相互固溶体の中の少なくとも1
種のB−1型結晶構造の相とでなる硬質相と不可避不純
物とからなる超硬合金の表面に単層又は多層の被覆層を
形成してなる被覆超硬合金において、該超硬合金は、遊
離炭素を含有している芯部と、該芯部を包囲して遊離炭
素を含有していない周辺部とからなり、しかも該超硬合
金の表面から少なくとも5μmまでの内部の表面層は、
該B−1型結晶構造の硬質相が該芯部に比べて相対的に
減少してなるB−1型結晶構造の相の貧化層と、かつ該
結合相が該芯部に比べて相対的に増加してなる結合相の
富化層とが存在していることを特徴とする高靭性被覆超
硬合金。
(1) Bonded phase 3 containing Co and/or Ni as a main component
25% by weight, remaining tungsten carbide phase and periodic table 4
Carbides, carbonitrides, carbonates of group a, 5a and 6a metals,
At least one of carbonitride oxides and mutual solid solutions thereof
In a coated cemented carbide formed by forming a single layer or multilayer coating layer on the surface of a cemented carbide consisting of a hard phase consisting of a phase with a B-1 type crystal structure and unavoidable impurities, the cemented carbide is , consisting of a core containing free carbon and a peripheral part surrounding the core and containing no free carbon, and an inner surface layer extending at least 5 μm from the surface of the cemented carbide,
The hard phase of the B-1 crystal structure is relatively reduced compared to the core, and the binder phase is A high-toughness coated cemented carbide characterized by the presence of an enriched layer of a binder phase.
(2) 上記周辺部は、上記超硬合金の表面から内部に
向って50〜400μmの深さであることを特徴とする
特許請求の範囲第1項記載の高靭性被覆超硬合金。
(2) The high-toughness coated cemented carbide according to claim 1, wherein the peripheral portion has a depth of 50 to 400 μm inward from the surface of the cemented carbide.
(3) 上記該B−1型結晶構造の相の貧化層は、上記
超硬合金の表面から内部に向って10〜50μmの深さ
であることを特徴とする特許請求の範囲第1項又は第2
項記載の高靭性被覆超硬合金。
(3) Claim 1, wherein the phase depletion layer having the B-1 type crystal structure has a depth of 10 to 50 μm from the surface of the cemented carbide toward the inside. or second
High-toughness coated cemented carbide as described in .
(4) 上記結合相の富化層は、上記超硬合金の表面で
最大値の結合相濃度となった後、該超硬合金の表面から
少なくとも5μmまでは内部に向って減少し、該超硬合
金の表面から少なくとも10μmの所で最小値の結合相
濃度となってから再び増加して内部の平均的結合相濃度
となることを特徴とする特許請求の範囲第1項,第2項
又は第3項記載の高靭性被覆超硬合金。
(4) The binder phase enriched layer has a maximum binder phase concentration on the surface of the cemented carbide, and then decreases inward from the surface of the cemented carbide to at least 5 μm, and Claims 1 or 2, characterized in that the binder phase concentration reaches a minimum value at least 10 μm from the surface of the hard metal, and then increases again to reach an average binder phase concentration inside. High toughness coated cemented carbide according to item 3.
(5) Co及び/又はNiを主成分とする結合相3〜
25重量%と、残り炭化タングステンの相と周期律表4
a,5a,6a族金属の炭化物,炭窒化物,炭酸化物,
炭窒酸化物及びこれらの相互固溶体の中の少なくとも1
種のB−1型結晶構造の相とでなる硬質相と不可避不純
物とからなる超硬合金の表面に単層又は多層の被覆層を
形成してなる被覆超硬合金の製造方法において、該超硬
合金を反応容器内に設置した後、該反応容器内を浸炭性
雰囲気にして加熱する第1工程と、該反応容器内を脱炭
性雰囲気に切換えた状態で冷却し、該冷却時に10℃/
分以下の速度で徐冷しながら該結合相の固液共存温度域
を通過させる第2工程とにより処理し、引続いて物理蒸
着法又は化学蒸着法でもって該被覆層を形成する第3工
程とを経て、該超硬合金が遊離炭素を含有していない周
辺部と該周辺部を除いた内部の遊離炭素を含有している
芯部とからなり、該超硬合金の表面から少なくとも5μ
mまでの内部の表面層における該B−1型結晶構造の硬
質相が該表面層を除いた内部に比べて相対的に減少して
なるB−1型結晶構造の相の貧化層と、該結合相が該表
面層を除いた内部に比べて相対的に増加してなる結合相
の富化層とを存在させることを特徴とする高靭性被覆超
硬合金の製造方法。
(5) Bonded phase 3 containing Co and/or Ni as main components
25% by weight, remaining tungsten carbide phase and periodic table 4
Carbides, carbonitrides, carbonates of group a, 5a and 6a metals,
At least one of carbonitride oxides and mutual solid solutions thereof
A method for producing a coated cemented carbide comprising forming a single or multilayer coating layer on the surface of a cemented carbide comprising a hard phase consisting of a phase with a B-1 type crystal structure and unavoidable impurities. After placing the hard alloy in a reaction vessel, the first step is heating the reaction vessel in a carburizing atmosphere, cooling the reaction vessel in a decarburizing atmosphere, and heating the reaction vessel at 10°C during the cooling. /
a second step of passing the binder phase through a solid-liquid coexistence temperature range while slowly cooling at a rate of less than 10 minutes, and a third step of forming the coating layer by a physical vapor deposition method or a chemical vapor deposition method. The cemented carbide consists of a peripheral part that does not contain free carbon and a core part that contains free carbon outside the peripheral part, and at least 5 μm from the surface of the cemented carbide.
a phase depletion layer of the B-1 type crystal structure in which the hard phase of the B-1 type crystal structure in the inner surface layer up to m is relatively reduced compared to the inside excluding the surface layer; 1. A method for producing a high-toughness coated cemented carbide, characterized in that a binder phase-enriched layer is present in which the binder phase is relatively increased compared to the inside excluding the surface layer.
JP1337657A 1989-12-26 1989-12-26 High toughness coated cemented carbide Expired - Lifetime JPH0784643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337657A JPH0784643B2 (en) 1989-12-26 1989-12-26 High toughness coated cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337657A JPH0784643B2 (en) 1989-12-26 1989-12-26 High toughness coated cemented carbide

Publications (2)

Publication Number Publication Date
JPH03197664A true JPH03197664A (en) 1991-08-29
JPH0784643B2 JPH0784643B2 (en) 1995-09-13

Family

ID=18310719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337657A Expired - Lifetime JPH0784643B2 (en) 1989-12-26 1989-12-26 High toughness coated cemented carbide

Country Status (1)

Country Link
JP (1) JPH0784643B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188857A (en) * 2012-03-15 2013-09-26 Sumitomo Electric Ind Ltd Cutting edge replaceable type cutting tip

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169356A (en) * 1987-01-05 1988-07-13 Toshiba Tungaloy Co Ltd Surface-tempered sintered alloy and its production
JPH01228703A (en) * 1988-03-07 1989-09-12 Mitsubishi Metal Corp Surface coated cutting tip provided with al or al alloy cutting breaker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169356A (en) * 1987-01-05 1988-07-13 Toshiba Tungaloy Co Ltd Surface-tempered sintered alloy and its production
JPH01228703A (en) * 1988-03-07 1989-09-12 Mitsubishi Metal Corp Surface coated cutting tip provided with al or al alloy cutting breaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188857A (en) * 2012-03-15 2013-09-26 Sumitomo Electric Ind Ltd Cutting edge replaceable type cutting tip

Also Published As

Publication number Publication date
JPH0784643B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
EP0438916B1 (en) Coated cemented carbides and processes for the production of same
RU2106932C1 (en) Cutting plate from hard alloy and cutting plate manufacture method
CA1319497C (en) Surface-coated cemented carbide and a process for the production of the same
US5283030A (en) Coated cemented carbides and processes for the production of same
JPH09323204A (en) Multilayer coated hard tool
JPH068008A (en) Cutting tool made of surface coating tungsten carbide group supper hard alloy excellent in chipping resistance property
JPS6117909B2 (en)
EP1352697B1 (en) Coated cutting tool insert
JPH0293036A (en) Ticn-base cermet and its manufacture
JPH03197664A (en) High-toughness coated sintered hard alloy and its production
JP2019155569A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP2003013102A (en) Multicomponent carbonitride powder, manufacturing method therefor, and sintered compact by using it as raw material
JP3358696B2 (en) High strength coating
JPS644989B2 (en)
JP3872544B2 (en) Coated cemented carbide
JPH02190403A (en) Production of cutting tool made of surface-coated tungsten carbide-based sintered hard alloy
JPH0547633B2 (en)
JPS6335591B2 (en)
JPH01287245A (en) Surface heat-treated sintered alloy, its manufacture and coated surface heat-treated sintered alloy with hard film
JPH0238559A (en) Cutting tool having excellent impact resistance made of surface coated tungsten carbide-base sintered hard alloy
JPS61194131A (en) Manufacture of high toughness covered sintered alloy
JPH0363949B2 (en)
JPS6117908B2 (en)
JPH0649646A (en) Cutting tool made of surface coated titanium carbon nitride base cermet excellent in chipping resistance and wear resistance
JPS6312135B2 (en)