JPH03196941A - Spindle structure - Google Patents

Spindle structure

Info

Publication number
JPH03196941A
JPH03196941A JP33772589A JP33772589A JPH03196941A JP H03196941 A JPH03196941 A JP H03196941A JP 33772589 A JP33772589 A JP 33772589A JP 33772589 A JP33772589 A JP 33772589A JP H03196941 A JPH03196941 A JP H03196941A
Authority
JP
Japan
Prior art keywords
mist
quill
bearing
air
main shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33772589A
Other languages
Japanese (ja)
Other versions
JPH0811349B2 (en
Inventor
Katsumi Nagasaka
長坂 勝己
Tomio Endo
富男 遠藤
Atsusuke Sakaida
敦資 坂井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP1337725A priority Critical patent/JPH0811349B2/en
Publication of JPH03196941A publication Critical patent/JPH03196941A/en
Publication of JPH0811349B2 publication Critical patent/JPH0811349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)

Abstract

PURPOSE:To keep off any thermal deformation in a spindle structure by installing a passage for air, containing a water mist, in a quill supporting a turning shaft via a bearing, and cooling the whole spindle structure through a latent heat of vaporization in this water mist, in the spindle structure of a machine tool. CONSTITUTION:Driving force of a motor is transmitted to a turning shaft 2 via a rear end member of a spindle structure 1, and this turning shaft 2 is supported by a quill 4 via a bearing 3. This quill 4 is supported by a housing 5, and a binary-fluid mixing nozzle 12 is set up in this housing 5 in and around a mist feeding port 9. The water mist is jetted into the bearing 3 after passing through this mist feeding port 9 and each of mist feeding passages 81- 8e. At this time, the water mist is stuck to the bearing 3, but this mist is vaporized by generation of heat by rotation of the turning shaft 2. Air contained with humidity by vaporization passes through each of main exhaust ports 10a-10e and discharged out of an exhaust port 11a after being fed to an exhaust passage 11. Consequently, a quantity of heat generated in the bearing 3 is absorbed by a latent heat of vaporization in the mist and carried to the outside. Thus, cooling efficiency is extremely enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は工作機械の主軸の構造に関するものである。[Detailed description of the invention] [Industrial application field] This invention relates to the structure of a main shaft of a machine tool.

し従来技術] 従来の主軸構造の第1例は第4.5図の構造を有してい
る。両図により従来の主軸構造を説明すると、主軸10
1は被加工物を加工する工具107を先端に有する回転
軸102を支持する軸受103、軸受103を保持する
クイル104及びクイル104を保持するハウジング1
05により構成されている。回転軸102をモータ等に
よりプーリ106を介して回転させると第5図に示す軸
受球119と軸受内、外輪120.118との摩擦で摩
擦熱が発生する。この摩擦熱は回転軸102の回転数及
び負荷が高くなるほど高くなるので、伝熱により主軸構
造101全体が昇温し、かつ彫版するので被加工物の所
望の加工形状に対し加工誤差が生じる。
Prior Art] A first example of a conventional main shaft structure has the structure shown in FIG. 4.5. To explain the conventional spindle structure using both figures, the spindle 10
Reference numeral 1 denotes a bearing 103 that supports a rotating shaft 102 having a tool 107 at its tip for processing a workpiece, a quill 104 that holds the bearing 103, and a housing 1 that holds the quill 104.
05. When the rotating shaft 102 is rotated by a motor or the like via the pulley 106, frictional heat is generated due to friction between the bearing ball 119 shown in FIG. 5 and the inner and outer rings 120 and 118 of the bearing. This frictional heat increases as the rotational speed and load of the rotating shaft 102 increases, so the temperature of the entire main shaft structure 101 rises due to heat transfer, and since engraving occurs, machining errors occur in the desired machined shape of the workpiece. .

この加工誤差を防止するためクイル104に給油路10
8a〜108e(108Cは108bの位相のずれた位
置にある)を設ける。これらの給油路10Bに、ポンプ
114から供給され、更に定量ピストン式分配器115
を有するミキシングバルブ121から定量で吐出された
潤滑油(以後オイルとも言う)と、フィルタ113を通
過した圧縮空気とを連続的に供給して軸受103を潤滑
、冷却する。この結果オイルは軸受103に発生する熱
を吸収する。吸熱後のオイルは第4図下方の軸受排出口
110a〜110eから排出路111を通り、排出口1
11aから排出される。
In order to prevent this machining error, an oil supply path 10 is provided in the quill 104.
8a to 108e (108C is located out of phase with 108b). These oil supply paths 10B are supplied with oil from a pump 114, and are further supplied with a metering piston type distributor 115.
The bearing 103 is lubricated and cooled by continuously supplying a fixed amount of lubricating oil (hereinafter also referred to as oil) discharged from a mixing valve 121 having a filter 113 and compressed air that has passed through a filter 113. As a result, the oil absorbs the heat generated in the bearing 103. After absorbing heat, the oil passes through the discharge passage 111 from the bearing discharge ports 110a to 110e in the lower part of FIG.
It is discharged from 11a.

上記の冷却システムはオイルの顕熱を利用した冷却方法
であり、潜熱に比べ熱の移動量が極めて少ないため冷却
効率が悪く、又オイルは水や空気に比べ室温において約
1000倍粘性が高く回転軸102の回転により撹伴さ
れて撹伴熱を発生し、主軸構造101から排出されたオ
イルは周囲の環境を悪くする。更に空気とオイルとを供
給するためのユニット112.121が必要でありコス
トが高くなる等の問題がある。
The above cooling system is a cooling method that uses the sensible heat of oil, and the amount of heat transfer is extremely small compared to latent heat, resulting in poor cooling efficiency.Also, oil is about 1000 times more viscous than water or air at room temperature, so it rotates. The oil that is stirred by the rotation of the shaft 102 and generates stirring heat and discharged from the main shaft structure 101 worsens the surrounding environment. Furthermore, units 112 and 121 for supplying air and oil are required, resulting in problems such as increased cost.

又従来の冷却システムを有する別の主軸構造201は第
7図に示すように回転軸202を支持する軸受203、
軸受203を保持するクイル204、クイル204を保
持するハウジング205等により構成されている。ここ
で第6図に示す主軸構造201と被加工物230との関
係は先ず送りねじ229をモータ225等により回転さ
せる。
Another main shaft structure 201 having a conventional cooling system includes a bearing 203 supporting a rotating shaft 202, as shown in FIG.
It is composed of a quill 204 that holds a bearing 203, a housing 205 that holds the quill 204, and the like. Here, regarding the relationship between the main shaft structure 201 and the workpiece 230 shown in FIG. 6, first, the feed screw 229 is rotated by the motor 225 or the like.

この回転はハウジング205と連結固定された支持部材
228によりハウジング205に設けられた直線案内2
26.227に導かれ、被加工物230に対し主軸構造
201は垂直方向に直線運動し、回転軸202の先端に
設置された工具207により被加工物230を加工する
。なお、上記の運動はラックアンドビニオン機構等によ
っても可能である。
This rotation is controlled by the linear guide 2 provided in the housing 205 by a supporting member 228 connected and fixed to the housing 205.
26 and 227, the spindle structure 201 linearly moves perpendicularly to the workpiece 230, and the workpiece 230 is machined by the tool 207 installed at the tip of the rotary shaft 202. Note that the above movement is also possible by a rack-and-binion mechanism or the like.

回転軸202が高速回転するとこれに比例して発熱量が
大きくなり、この発熱により回転軸202、ハウジング
205が昇温、熱彫版するので被加工物230の加工精
度に影響する。即ち、支持部材228からハウジング2
05前端までの突出量L1がハウジング205の昇温に
よりΔ1だけ増加し、ハウジング205支持部から主軸
構造201の中心までの直線案内226.227の芯高
目がハウジング205の昇温により△hだけ増加し、直
線案内226.227が支持されているハウジング20
5の温度差(t2−11)が大きくなれば変位Δθが大
きくなる等により被加工物230に要求される加工形状
に対し加工誤差が生じる。
When the rotating shaft 202 rotates at a high speed, the amount of heat generated increases in proportion to this, and this heat generation causes the rotating shaft 202 and the housing 205 to heat up and perform thermal engraving, which affects the processing accuracy of the workpiece 230. That is, from the support member 228 to the housing 2
05 The protrusion amount L1 to the front end increases by Δ1 due to the temperature increase of the housing 205, and the center height of the linear guides 226 and 227 from the housing 205 support part to the center of the main shaft structure 201 increases by Δh due to the temperature increase of the housing 205. housing 20 with increased linear guides 226, 227 supported;
If the temperature difference (t2-11) of 5 increases, the displacement Δθ increases, and a machining error occurs in the machining shape required for the workpiece 230.

そこで第7図に示すように回転軸202が回転すること
により軸受203の発熱によるハウジング205等の昇
温、彫版を抑制するためにクイル204の外周にリード
溝208を設けて冷却ジャゲット部とし、オイル等の媒
体210を流入させ又はヒートパイプを組み込み、オイ
ル210等がジャケットを通過する際に軸受203から
の熱量を吸収し、吸熱後のオイル210は外部に移動し
、冷却ユニット209の液タンク211へ、更に循環ポ
ンプ212により冷却器213に送られる。
Therefore, as shown in FIG. 7, a lead groove 208 is provided on the outer periphery of the quill 204 as a cooling jacket part in order to suppress the temperature rise and engraving of the housing 205 etc. due to the heat generated by the bearing 203 when the rotating shaft 202 rotates. , a medium 210 such as oil is introduced or a heat pipe is incorporated, and when the oil 210 and the like passes through the jacket, it absorbs the amount of heat from the bearing 203. After absorbing heat, the oil 210 moves to the outside, and the liquid in the cooling unit 209 is absorbed. It is sent to the tank 211 and further to the cooler 213 by the circulation pump 212.

冷却器213においてはフロンガス218がコンプレッ
サ214により圧縮され、高温高圧ガスとなる。高温高
圧ガスとなったフロン218はコンデンサー215に運
ばれ、冷却ファン216による低温の空気と接触し放熱
して液化する。コンデンサー215により液化したフロ
ン218は彫版弁217に入り低温低圧液となり冷却器
213に運ばれる。この低温低圧液と前述の軸受203
から吸熱した媒体(オイル)210が接触し、フロン2
18は気化し再びコンプレッサ214に運ばれる。この
伝熱サイクルにより吸熱後の媒体210は冷却器213
によって冷却され、液タンク211に戻されて圧送ポン
プにより再び主軸ジャケットに送られる。
In the cooler 213, the fluorocarbon gas 218 is compressed by the compressor 214 to become a high-temperature, high-pressure gas. Freon 218, which has become a high-temperature, high-pressure gas, is transported to a condenser 215, where it comes into contact with low-temperature air produced by a cooling fan 216, radiates heat, and liquefies. The fluorocarbon 218 liquefied by the condenser 215 enters the engraving valve 217 and becomes a low-temperature, low-pressure liquid and is conveyed to the cooler 213. This low-temperature, low-pressure liquid and the aforementioned bearing 203
The medium (oil) 210 that has absorbed heat from the fluorocarbon 2 comes into contact with the
18 is vaporized and transported to the compressor 214 again. Through this heat transfer cycle, the medium 210 after absorbing heat is transferred to the cooler 213.
The liquid is cooled by the water, returned to the liquid tank 211, and sent to the main shaft jacket again by the pressure pump.

以上のシステムは冷却ジャケット部のみに就いて考慮す
るとオイルの顕熱を利用して主軸構造201の冷却を行
なっているので、第1例の主軸構造101と同じ欠点を
有している。更に設備が大きくなり、冷却ジャケット2
0Bがリード溝であるため圧力損失が大きくなり冷却効
果が低下する。
Considering only the cooling jacket portion, the above system cools the main shaft structure 201 using the sensible heat of the oil, so it has the same drawbacks as the main shaft structure 101 of the first example. Furthermore, the equipment has become larger and cooling jacket 2 has been added.
Since 0B is a lead groove, pressure loss increases and the cooling effect decreases.

又クイル204の外周部に冷却ジャケット208を設け
たのでハウジング205の直径りは冷却ジャケットを有
しない低速回転、低荷重の主軸と比べて大きくなり、こ
れに伴い直線案内226.227を支持するハウジング
205のスライダ幅B(第8図)も大きくなり主軸構造
201全体が大型となる。このため直線運動を行なう主
軸部の慣性が大きくなり、駆動モータへの負荷が大きく
なり、サイクルタイムに影響を与える等の問題を有して
いる。
Furthermore, since a cooling jacket 208 is provided on the outer circumference of the quill 204, the diameter of the housing 205 is larger than that of a low-speed rotating, low-load main shaft that does not have a cooling jacket. The slider width B (FIG. 8) of 205 also increases, and the entire main shaft structure 201 becomes large. For this reason, the inertia of the main shaft portion that performs linear motion increases, which increases the load on the drive motor, causing problems such as affecting cycle time.

[発明が解決しようとする課題] この発明は冷却効率が高く、高速回転、高負荷に耐え、
かつ小型、低コストの主軸構造の提供を課題とする。
[Problem to be solved by the invention] This invention has high cooling efficiency, can withstand high speed rotation and high load,
The objective is to provide a spindle structure that is also small and low cost.

[課題を解決するための技術的手段] 上記の課題を解決するためこの発明は回転軸が軸受を介
してクイルに支持され、クイルにはハウジングが外嵌さ
れ、クイルには水ミストを含む空気の通路が設けられ、
この空気通路は液体ミストを含む空気の供給口と排出口
とを有し、前記供給口は液体ミストを含む空気の供給装
置に連通している構成を有している。
[Technical Means for Solving the Problems] In order to solve the above problems, the present invention includes a rotating shaft supported by a quill via a bearing, a housing fitted onto the quill, and an air containing water mist installed in the quill. A passageway is provided,
The air passage has a supply port and a discharge port for air containing liquid mist, and the supply port is configured to communicate with a supply device for air containing liquid mist.

[作用] 液体ミストを含んだ空気がクイル外周面の空気通路を通
過する際、ミストはクイル外面に付着する。クイル外面
に付着したミストは回転軸の高速回転により主軸構造に
発生した熱により蒸発し、蒸発潜熱によりクイルを介し
て主軸構造全体を冷却して主軸構造の熱による変形を防
止し、被加工物に対する加工精度を高める。
[Operation] When air containing liquid mist passes through the air passage on the outer circumferential surface of the quill, the mist adheres to the outer surface of the quill. The mist attached to the outer surface of the quill is evaporated by the heat generated in the spindle structure by the high-speed rotation of the rotating shaft, and the latent heat of evaporation cools the entire spindle structure through the quill to prevent the spindle structure from deforming due to heat, and the workpiece is Improve machining accuracy for

[実施例] 以下実施例を示す図面によりこの発明を説明する。第1
図は第1実施例を示す。同図において、図示しないモー
タの駆動力は主軸構造1の後端部〈第1図では右端部)
外周に固定された動力伝達部材(例えばギヤ、プーリ等
)を介して回転軸2に伝達される。回転軸2は軸受3に
より回転自在に支持され、軸受3はクイル4により支持
されている。クイル4には後述の互いに位相のずれた5
個の給霧口9と、それに連通ずる5個の給霧路8a〜8
eと、1個の排出通路11と、1個の排出口11aとが
設けられている。クイル4はハウジング5に保持され、
給霧口9近傍のハウジング5には二流体混合ノズル12
が設置されている。
[Examples] The present invention will be described below with reference to drawings showing examples. 1st
The figure shows a first embodiment. In the figure, the driving force of the motor (not shown) is applied to the rear end of the main shaft structure 1 (the right end in Figure 1).
The power is transmitted to the rotating shaft 2 via a power transmission member (for example, a gear, a pulley, etc.) fixed to the outer periphery. The rotating shaft 2 is rotatably supported by a bearing 3, and the bearing 3 is supported by a quill 4. The quill 4 has 5 out of phase with each other, which will be described later.
five mist supply ports 9 and five mist supply paths 8a to 8 communicating therewith.
e, one discharge passage 11, and one discharge port 11a are provided. The quill 4 is held in the housing 5,
A two-fluid mixing nozzle 12 is installed in the housing 5 near the mist supply port 9.
is installed.

図示しない加圧空気源から供給され、フィルタ16を通
った空気と、水タンク14からポンプ13を経て送られ
てきた微量の水15とは二流体混合ノズル12で混合さ
れてミスト(噴霧)状となり、給霧口9、給霧路8a〜
8e(8Cは8bと位相が違うため図示しない)を通過
し軸受3に噴入する。この際軸受3に水ミスト(以後単
にミストと言う)が付着するがこのミストは回転軸2の
回転による軸受3の発熱により蒸発する。蒸発により湿
気を帯びた空気は主軸排出口108〜10eを通り、排
出路11に送られ排出口11aより排出される。従って
軸受3に発生した熱量はミストの蒸発潜熱により吸収さ
れ外部に運ばれる。このため従来の顕然方式による冷却
に比べ熱の移動が100倍以上となり、冷却効率が極め
て高くなる。又オイルによる冷却と比較して水と空気は
粘性が低いので撹伴熱も低い。更に排出された空気がミ
ストを含んでいても環境汚染はクーラントオイルに水溶
性のものを使用すれば問題はない。又ミストの供給手段
は非常に簡単なシステムが可能であり、小型、低コスト
となり、高速化、重負荷に対応できる等の数々の優れた
効果を有する。
Air supplied from a pressurized air source (not shown) and passed through a filter 16 and a small amount of water 15 sent from a water tank 14 via a pump 13 are mixed in a two-fluid mixing nozzle 12 to form a mist (spray). Therefore, the mist supply port 9, the mist supply path 8a~
8e (8C is not shown because the phase is different from 8b) and is injected into the bearing 3. At this time, water mist (hereinafter simply referred to as mist) adheres to the bearing 3, but this mist evaporates due to the heat generated by the bearing 3 due to the rotation of the rotating shaft 2. Humid air due to evaporation passes through the spindle exhaust ports 108 to 10e, is sent to the exhaust path 11, and is discharged from the exhaust port 11a. Therefore, the amount of heat generated in the bearing 3 is absorbed by the latent heat of vaporization of the mist and transported to the outside. Therefore, the heat transfer is 100 times or more compared to the conventional cooling method, and the cooling efficiency is extremely high. Also, since water and air have lower viscosity than cooling with oil, the heat generated by stirring is also lower. Furthermore, even if the discharged air contains mist, environmental pollution will not be a problem if a water-soluble coolant oil is used. Further, the mist supply means can be a very simple system, and has many excellent effects such as being small, low cost, high speed, and capable of handling heavy loads.

上記の構成において、5個の給霧口9、給霧路8a〜8
eを設けたがこれは軸受3の個数に合せたからであり、
これらの数は任意である。
In the above configuration, five mist supply ports 9 and mist supply paths 8a to 8 are provided.
e was provided because it matched the number of bearings 3,
These numbers are arbitrary.

又回転軸2に回転力を伝達する際に回転軸2に固定され
た動力伝達部材6を使用したが、ビルトインモータによ
り、回転軸2を回転させる方法あるいは主動力源と回転
軸2とを直結して回転軸2を直接回転させてもよい。
Although the power transmission member 6 fixed to the rotating shaft 2 is used to transmit the rotational force to the rotating shaft 2, it is also possible to use a built-in motor to rotate the rotating shaft 2 or directly connect the main power source to the rotating shaft 2. Alternatively, the rotating shaft 2 may be directly rotated.

冷却媒体の一つである水15に防錆油を混合して水タン
ク14に入れておくと軸受3と給霧路8、排出口10と
の防錆が可能であり、かつ軸受3を潤滑する効果がある
By mixing anti-rust oil with water 15, which is one of the cooling media, and placing it in the water tank 14, it is possible to prevent rust between the bearing 3, the mist supply path 8, and the discharge port 10, and to lubricate the bearing 3. It has the effect of

第2.3図は第2実施例を示す。第2図(イ)の主軸構
造21においては、図示しないモータの駆動力が回転軸
22の後端部(第2図で右端部)外周に固定されたプー
リ26を介して回転軸22に伝達される。回転軸22は
軸受23により支持され、軸受23はクイル24に保持
されている。
Figure 2.3 shows a second embodiment. In the main shaft structure 21 in FIG. 2(A), the driving force of a motor (not shown) is transmitted to the rotating shaft 22 via a pulley 26 fixed to the outer periphery of the rear end (right end in FIG. 2) of the rotating shaft 22. be done. The rotating shaft 22 is supported by a bearing 23, and the bearing 23 is held by a quill 24.

クイル24の外周にはクイル24の円周方向に等ピッチ
で配置された、多列の軸方向の直線溝28が設けられ、
更に直線溝28の両端において円周方向の溝29.30
が設けられている。ハウジング25の近傍に設置された
二流体混合弁31によりフィルタ37からの空気と水タ
ンク33からポンプ36を経て送られた微量の水とが混
合され、ミスト(噴霧)状にして■具27側の円周溝部
(以後円形ヘッダと呼ぶ)29内に第2図(・口)に示
すように接線方向に旋回流を発生するよう噴出する・こ
の時円形ヘッダ29に送られたミストの流速はかなり高
速(1,5m/5eC)のため円形ヘッダ29の圧力分
布、ミストの分布が均一となり、又円形ヘッダ29から
軸方向溝部28にもミストが均一に分布される。クイル
24の外周面にある直線溝部28に付着したミストは回
転軸22の回転に伴う軸受23の発熱により蒸発する。
The outer periphery of the quill 24 is provided with multiple rows of axial straight grooves 28 arranged at equal pitches in the circumferential direction of the quill 24.
Additionally, circumferential grooves 29,30 are provided at both ends of the straight groove 28.
is provided. A two-fluid mixing valve 31 installed near the housing 25 mixes the air from the filter 37 with a small amount of water sent from the water tank 33 via the pump 36 and forms a mist (spray) on the tool 27 side. The mist is ejected into the circumferential groove portion (hereinafter referred to as the circular header) 29 to generate a swirling flow in the tangential direction as shown in Fig. 2. At this time, the flow velocity of the mist sent to the circular header 29 is Because of the fairly high speed (1.5 m/5 eC), the pressure distribution and mist distribution in the circular header 29 are uniform, and the mist is also uniformly distributed from the circular header 29 to the axial groove portion 28. The mist adhering to the linear groove 28 on the outer peripheral surface of the quill 24 evaporates due to the heat generated by the bearing 23 as the rotating shaft 22 rotates.

このため軸受23に発生した熱量はミストの蒸発潜熱に
より吸収され外部に運ばれる。第3図(イ)(ロ)に示
すように軸方向直線溝28を面取りしてほぼ蒲鉾状の溝
とし、ランド部32をクイル24の円周方向に等分布さ
せる。ランド部32とハウジング25の内面との間には
微小な隙間があり、ここにミストが侵入する。侵入した
ミストは上記の隙間で膜を形成し隣接する溝部相互のシ
ールの働きをし、溝部相互間のミストの分布を更に均一
にする。又ミストが過剰に前記の隙間に侵入した場合で
も水分は溝部へ流れ蒸発潜熱となって冷却効果を発揮す
る。又ランド部32と溝部28の構成を有しない溝部の
み、即ち円筒状の冷却溝とするとヘッダを持たなくなり
ミストの分布が不均一で軸方向、径方向に冷却誤差(ば
らつき)が生じ温度分布が不均一になる。
Therefore, the amount of heat generated in the bearing 23 is absorbed by the latent heat of vaporization of the mist and transported to the outside. As shown in FIGS. 3(A) and 3(B), the axial straight groove 28 is chamfered to form a substantially semi-cylindrical groove, and the land portions 32 are evenly distributed in the circumferential direction of the quill 24. There is a minute gap between the land portion 32 and the inner surface of the housing 25, into which mist enters. The mist that has entered forms a film in the above-mentioned gap and acts as a seal between adjacent grooves, making the mist distribution between the grooves more uniform. Furthermore, even if the mist enters the gap in excess, water flows into the groove and becomes latent heat of evaporation, exerting a cooling effect. Moreover, if only the groove part does not have the configuration of the land part 32 and the groove part 28, that is, a cylindrical cooling groove, it will not have a header and the mist distribution will be uneven, causing cooling errors (variations) in the axial and radial directions, and the temperature distribution will change. becomes uneven.

本実施例は円形ヘッダ29、直線溝28、ランド部32
を有しているので隣接溝部とのシール性を高め、かつ高
速旋回流を発生させてミスト分布を均一化させ主軸構造
の冷却を安定させる。
This embodiment has a circular header 29, a straight groove 28, and a land portion 32.
This improves sealing performance with adjacent grooves, generates high-speed swirling flow, makes mist distribution uniform, and stabilizes cooling of the main shaft structure.

次に直線溝28の深さに就いて説明する。クイル24は
ハウジング25に嵌合され、その嵌合の部位はクイル2
4の前後端の一部34.35であり、その中央部に普通
の「ぬすみ」を設ける。ぬすみの深さは本実施例ではハ
ウジング5の内径とクイル4の外径との間の微小のクリ
アランスで約0.2〜1.0鵬である。これはクイル2
4とハウジング25との嵌合部34.35の加工精度を
維持するためと嵌合時の組付は性を容易にするために設
けである。このクリアランスと直線溝28の深さとを同
じにし、円形ヘッダ29、直線溝28、ランド部32の
構成により前記の潜熱を利用した冷却を行なう。従来の
オイルを使用した冷却では上記の溝の深さではオイルの
必要流量を確保することができないが低い粘性の空気を
使用すると空気の流量はオイルの流量の約10000倍
確保できので上記のぬすみを利用してミスト冷却が可能
になる。このぬすみを冷却ジャケットとして利用するこ
とで従来のオイル冷却と比較してクイル24及びハウジ
ング25の外径が小さく、重量は1/2となり、これに
ともない直線案内のガイド部であるスライダ幅も小さく
なり、主軸構造全体が小型になり、被加工物に対して直
線運動を行なわせるモータへの負荷イナーシャが172
となり、負荷低減に伴うモータの加減速時間も1/2と
短縮され、サイクルタイムの短縮(高速化)が得られる
などの優れた効果がある。
Next, the depth of the straight groove 28 will be explained. The quill 24 is fitted into the housing 25, and the fitting part is the quill 24.
It is part 34.35 of the front and rear ends of 4, and a normal ``sink'' is provided in the center. In this embodiment, the depth of the clearance is a minute clearance between the inner diameter of the housing 5 and the outer diameter of the quill 4, and is approximately 0.2 to 1.0 mm. This is Quill 2
4 and the housing 25 in order to maintain the machining accuracy of the fitting parts 34 and 35 and to facilitate the assembly at the time of fitting. This clearance and the depth of the linear groove 28 are made the same, and the configuration of the circular header 29, the linear groove 28, and the land portion 32 performs cooling using the latent heat described above. With conventional cooling using oil, it is not possible to secure the necessary oil flow rate with the groove depth described above, but if low viscosity air is used, the air flow rate can be secured approximately 10,000 times the oil flow rate, so the above gap can be achieved. Mist cooling is possible using By using this gap as a cooling jacket, the outer diameter of the quill 24 and housing 25 is smaller and the weight is halved compared to conventional oil cooling, and the width of the slider, which is the guide part of the linear guide, is also smaller. As a result, the entire spindle structure has become smaller, and the load inertia on the motor that performs linear motion on the workpiece is 172.
Therefore, the acceleration/deceleration time of the motor due to the load reduction is also shortened to 1/2, and there are excellent effects such as shortening (speeding up) the cycle time.

次に上記の構成に就いての具体例を述べる。Next, a specific example of the above configuration will be described.

本実施例の主軸構造21の回転軸22の回転に伴う軸受
23の発熱量Qhは回転軸径d=φ50m1軸回転数N
=1500Orpmとすると、Qh=172kca l
で蒸発潜熱の冷却熱量Q。との熱収支条件Qh=Qcで
溝内(冷却ジャケット内)絶対圧力p= 1.1kgf
oci、空気流量W=13ON I/mi n (工場
空気露点−20℃)、注水IV=4q/mi n、溝の
深さ=0.58により主軸部の冷却を行なった。
The heat generation amount Qh of the bearing 23 accompanying the rotation of the rotating shaft 22 of the main shaft structure 21 of this embodiment is the rotating shaft diameter d=φ50m1 shaft rotation speed N
=1500Orpm, Qh=172kcal
The amount of cooling heat of latent heat of vaporization is Q. Under the heat balance condition Qh=Qc, the absolute pressure inside the groove (inside the cooling jacket) p= 1.1kgf
The main shaft portion was cooled using air flow rate W = 13ON I/min (factory air dew point -20°C), water injection IV = 4q/min, and groove depth = 0.58.

以上の結果主軸構造の室温からの昇温量を8℃以下に押
えることができた。これは従来のリード溝構造の代りに
本実施例は円形ヘッダと、直線多列溝と、ランド部とか
らなる構成を有しているので、圧力損失がなくなり、ミ
スト分布が均一となり、そのため主軸構造の温度分布が
均一化し安定した冷却を行えるからである。即ち冷媒を
オイルから粘性の低い空気に代えることにより1000
0倍の流量を確保でき、又冷却方法を顕熱から蒸発潜熱
にすることで100倍以上の熱移動が可能になったため
、従来の構造より高い効率で冷却でき、又ぬすみをジャ
ケットに利用したので主軸構造が小型になる。
As a result of the above, it was possible to suppress the temperature rise of the main shaft structure from room temperature to 8°C or less. This is because, instead of the conventional lead groove structure, this embodiment has a configuration consisting of a circular header, linear multi-row grooves, and a land part, so there is no pressure loss, and the mist distribution is uniform, so that the main axis This is because the temperature distribution of the structure becomes uniform and stable cooling can be performed. In other words, by replacing the refrigerant from oil to air with low viscosity,
It is possible to secure 0 times the flow rate, and by changing the cooling method from sensible heat to latent heat of vaporization, it is possible to transfer more than 100 times the heat, so it can be cooled with higher efficiency than the conventional structure, and the slack can be used as a jacket. Therefore, the main shaft structure becomes smaller.

上記両実施例はミスト成分として水を使用したが水に限
定するものでなく、他の蒸発潜熱の大きな液体を使用し
てもよい。
Although water is used as the mist component in both of the above embodiments, the mist component is not limited to water, and other liquids with large latent heat of vaporization may be used.

[効果] この発明の主軸構造は上記の構成を有するので次の優れ
た効果を有する。
[Effects] Since the main shaft structure of the present invention has the above configuration, it has the following excellent effects.

(イ)主軸構造が高速回転、高負荷を受けてもこれに耐
え冷却効率が極めて高い。
(a) The main shaft structure can withstand high speed rotation and high loads and has extremely high cooling efficiency.

(ロ)小型であるので狭いスペースにも設置が可能であ
る。
(b) Since it is small, it can be installed even in a narrow space.

(ハ)構造が簡単であるので製作が簡単であり、コスト
が安い。
(c) Since the structure is simple, manufacturing is easy and the cost is low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1実施例の縦断正面図を示す。第2図(イ)
は第2実施例の縦断正面図を示す。第2図(ロ)は第2
図(イ)の要部の斜視図を示す。 第3図(イ)は第2図(イ)のA−A線断面図を示す。 第3図(ロ)は第3図・(イ)の一部の斜視図を示す。 第4図は冷却装置を含めて従来の主軸構造の一例の正断
面図を示す。第5図は第4図のA部の拡大正面断面図を
示す。第6図は第4図の主軸構造の動作時での工具の変
位の状態を示す正面図である。第7図は冷却装置を含め
て第4図とは別個の従来の主軸構造の正断面図を示す。 第8図は第7図の側面図を示す。 1.21・・・主軸構造 2.22・・・回転軸 3.23・・・軸受 4.24・・・クイル 5.25・・・ハウジング 8・・・給霧路(空気通路) 9・・・給霧口(供給口) 11a・・・排出口 12・・・二流体混合ノズル(液体ミストを含む空気の
供給装置) 31・・・二流体混合弁(液体ミストを含む空気の供給
装置)
FIG. 1 shows a longitudinal sectional front view of the first embodiment. Figure 2 (a)
shows a longitudinal sectional front view of the second embodiment. Figure 2 (b) is the second
A perspective view of the main part of Figure (A) is shown. FIG. 3(a) shows a sectional view taken along the line A--A in FIG. 2(a). FIG. 3(B) shows a perspective view of a part of FIG. 3(A). FIG. 4 shows a front sectional view of an example of a conventional main shaft structure including a cooling device. FIG. 5 shows an enlarged front sectional view of section A in FIG. 4. FIG. 6 is a front view showing the state of displacement of the tool during operation of the spindle structure of FIG. 4. FIG. 7 shows a front sectional view of a conventional main shaft structure including a cooling device, which is different from FIG. 4. FIG. 8 shows a side view of FIG. 7. 1.21...Main shaft structure 2.22...Rotating shaft 3.23...Bearing 4.24...Quill 5.25...Housing 8...Mist supply path (air passage) 9. ...Mist supply port (supply port) 11a...Discharge port 12...Two-fluid mixing nozzle (supply device for air containing liquid mist) 31...Two-fluid mixing valve (supply device for air containing liquid mist) )

Claims (5)

【特許請求の範囲】[Claims] (1)回転軸が軸受を介してクイルに支持され、クイル
にはハウジングが外嵌され、クイルには液体ミストを含
む空気の通路が設けられ、この空気通路は液体ミストを
含む空気の供給口と排出口とを有し、前記供給口は液体
ミストを含む空気の供給装置に連通していることを特徴
とする主軸構造。
(1) A rotating shaft is supported by a quill via a bearing, a housing is fitted onto the quill, an air passage containing liquid mist is provided in the quill, and this air passage is a supply port for air containing liquid mist. and a discharge port, the supply port communicating with an air supply device containing liquid mist.
(2)前記液体は水であることを特徴とする請求項(1
)記載の主軸構造。
(2) Claim (1) characterized in that the liquid is water.
) Main shaft structure as described.
(3)前記の液体ミストを含む空気の供給装置は加圧空
気の供給機構と液体の供給機構と空気及び液体を混合す
る機構とから構成されていることを特徴とする請求項(
1)記載の主軸構造。
(3) The above-mentioned air supply device containing liquid mist is comprised of a pressurized air supply mechanism, a liquid supply mechanism, and a mechanism for mixing air and liquid.
1) Main shaft structure described.
(4)前記の液体ミストを含む空気の通路は前記軸受の
数に対応してクイルに設けた給霧路と、この給霧路に連
通する1個の排出通路とからなるを特徴とする請求項(
1)記載の主軸構造。
(4) A claim characterized in that the passage for the air containing the liquid mist comprises a mist supply passage provided in the quill corresponding to the number of the bearings, and one discharge passage communicating with the mist supply passage. term (
1) Main shaft structure described.
(5)前記液体ミストを含む空気の通路はクイルの外周
面の両端に配置された、円周方向の円形溝と、この両円
形溝に連通し、クイルの外周面において円周方向に等分
布に配置され、クイルの軸方向に延出する直線溝とから
なり、直線溝はランド部を有することを特徴とする請求
項(1)記載の主軸構造。
(5) The air passage containing the liquid mist communicates with circumferential circular grooves arranged at both ends of the outer circumferential surface of the quill, and is distributed evenly in the circumferential direction on the outer circumferential surface of the quill. 2. The main shaft structure according to claim 1, further comprising a straight groove arranged in the quill and extending in the axial direction of the quill, the straight groove having a land portion.
JP1337725A 1989-12-26 1989-12-26 Machine tool with spindle structure Expired - Lifetime JPH0811349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337725A JPH0811349B2 (en) 1989-12-26 1989-12-26 Machine tool with spindle structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337725A JPH0811349B2 (en) 1989-12-26 1989-12-26 Machine tool with spindle structure

Publications (2)

Publication Number Publication Date
JPH03196941A true JPH03196941A (en) 1991-08-28
JPH0811349B2 JPH0811349B2 (en) 1996-02-07

Family

ID=18311381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337725A Expired - Lifetime JPH0811349B2 (en) 1989-12-26 1989-12-26 Machine tool with spindle structure

Country Status (1)

Country Link
JP (1) JPH0811349B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328889A (en) * 1994-06-06 1995-12-19 Hitachi Seiko Ltd Main spindle unit cooling system in printed circuit board work machine
EP1205278A1 (en) * 2000-11-14 2002-05-15 Ecoreg Ltd. Cooler for machine tool
EP1207008A1 (en) * 2000-11-14 2002-05-22 Ecoreg Ltd. Cooler for machine tool
WO2011152321A1 (en) * 2010-06-03 2011-12-08 ダイキン工業株式会社 Oil cooling device
CN112975570A (en) * 2021-03-23 2021-06-18 广州市昊志机电股份有限公司 Machine tool spindle cooling device and machine tool
CN113118867A (en) * 2021-04-09 2021-07-16 凯柏精密机械(嘉兴)有限公司 Directly link main shaft cooling device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124448U (en) * 1987-02-06 1988-08-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124448U (en) * 1987-02-06 1988-08-12

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328889A (en) * 1994-06-06 1995-12-19 Hitachi Seiko Ltd Main spindle unit cooling system in printed circuit board work machine
EP1205278A1 (en) * 2000-11-14 2002-05-15 Ecoreg Ltd. Cooler for machine tool
EP1207008A1 (en) * 2000-11-14 2002-05-22 Ecoreg Ltd. Cooler for machine tool
WO2011152321A1 (en) * 2010-06-03 2011-12-08 ダイキン工業株式会社 Oil cooling device
CN112975570A (en) * 2021-03-23 2021-06-18 广州市昊志机电股份有限公司 Machine tool spindle cooling device and machine tool
CN113118867A (en) * 2021-04-09 2021-07-16 凯柏精密机械(嘉兴)有限公司 Directly link main shaft cooling device
CN113118867B (en) * 2021-04-09 2022-06-07 凯柏精密机械(嘉兴)有限公司 Directly link main shaft cooling device

Also Published As

Publication number Publication date
JPH0811349B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
US4602874A (en) Support of a machine tool spindle with cooling device in a headstock
JP3349358B2 (en) Self-pressurized journal bearing assembly
Jeng et al. Investigation of the ball-bearing temperature rise under an oil-air lubrication system
US8038385B2 (en) Spindle device with rotor jetting driving fluid
US8443941B2 (en) Cooling/lubricating device for machine tool feed shaft
KR980009984A (en) Self-pressing journal bearing assembly
JPH03196941A (en) Spindle structure
JP5401006B2 (en) Method and apparatus for lubricating a bearing part, especially in machine tools or parts thereof
KR101503010B1 (en) high speed/high frequency spindle
CN110293415B (en) Electric spindle pipeline layout system
JP5845652B2 (en) Bearing device and spindle device for machine tool
JP2005076858A (en) Rotary distribution valve and lubricating device
US5848845A (en) Configuration of lubrication nozzle in high speed rolling-element bearings
CN214534064U (en) Small hole and slit composite throttling gas static pressure thrust bearing
CN215147366U (en) Machine tool spindle cooling device and machine tool
CN210451007U (en) Ultra-precise liquid dynamic and static piezoelectric main shaft
CN210451818U (en) Electric spindle pipeline layout system
JPH09257037A (en) Spindle head for machine tool
JP3448732B2 (en) Lead screw cooling system
KR100397972B1 (en) Spindle cooling device of machine tools
CN111207922A (en) High-power high-rotation-speed planetary speed change mechanism test device
JP2007120767A (en) Machine tool
JP3310938B2 (en) High-speed rolling bearing lubrication nozzle
JP2599646Y2 (en) High-speed rotary joint
JP2005054913A (en) Rotary distribution valve, and lubrication device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 14

EXPY Cancellation because of completion of term