WO2011152321A1 - Oil cooling device - Google Patents

Oil cooling device Download PDF

Info

Publication number
WO2011152321A1
WO2011152321A1 PCT/JP2011/062263 JP2011062263W WO2011152321A1 WO 2011152321 A1 WO2011152321 A1 WO 2011152321A1 JP 2011062263 W JP2011062263 W JP 2011062263W WO 2011152321 A1 WO2011152321 A1 WO 2011152321A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
vent
cooling device
oil cooler
disposed
Prior art date
Application number
PCT/JP2011/062263
Other languages
French (fr)
Japanese (ja)
Inventor
典三 山口
光 清家
順 中辻
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201180026319.6A priority Critical patent/CN102917837B/en
Publication of WO2011152321A1 publication Critical patent/WO2011152321A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/14Methods or arrangements for maintaining a constant temperature in parts of machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • B23Q11/121Arrangements for cooling or lubricating parts of the machine with lubricating effect for reducing friction

Definitions

  • the present invention relates to an oil cooling device that cools oil supplied from the outside.
  • Patent Document 1 discloses a cooling oil circuit that circulates between a refrigerant circuit that performs a refrigeration cycle, and cooling oil cooled by exchanging heat with the refrigerant in an evaporator of the refrigerant circuit.
  • the oil cooling device using the refrigeration cycle includes two circuits of the refrigerant circuit and the cooling oil circuit, and has a relatively complicated configuration.
  • an air-cooled oil cooler (hereinafter simply referred to as “oil cooler”) is provided in the middle of a pipeline through which high-temperature lubricating oil flows, and a fan is provided at a position facing the oil cooler.
  • An oil cooling device is disclosed. In such an oil cooling device, the lubricating oil flowing in the oil cooler is cooled by air blown by a fan. As described above, the oil cooling device using the fan has a simpler configuration than the oil cooling device using the refrigeration cycle.
  • an object of the present invention is to provide an oil cooling device capable of improving the cooling efficiency and reducing the installation space.
  • An oil cooling device includes a housing having a first vent provided in a side wall and a second vent provided in an upper wall, an oil cooler through which oil supplied from outside flows, And a fan for sucking air from the first vent and discharging the air from the second vent, and the oil cooler is provided at either the first vent or the second vent.
  • the fan is disposed at the other of the first vent and the second vent.
  • the distance between the fan and the oil cooler can be increased without increasing the installation area of the housing. Thereby, air comes to pass uniformly through an oil cooler. Therefore, the cooling efficiency in the oil cooler can be improved. Moreover, since hot air is discharged
  • An oil cooling device is the oil cooling device according to the first invention, wherein the oil cooler is disposed in the first vent and the fan is disposed in the second vent. ing.
  • An oil cooling device is the oil cooling device according to the first aspect of the invention, further comprising a tank in which oil that has flowed out of the oil cooler is stored, and the inside of the housing includes the oil cooler and the fan Is partitioned by a partition plate into a first space in which is disposed and a second space in which the tank is disposed.
  • This oil cooling device can prevent the temperature of the oil stored in the tank from rising even if the temperature in the first space where the oil cooler is arranged rises.
  • An oil cooling device is the oil cooling device according to any one of the first to third aspects of the invention, wherein the oil cooling device is disposed in the housing and the flow of air sucked from the first vent is the first. 2
  • An airflow changing plate that changes in a direction toward the vent is provided.
  • the distance between the fan and the oil cooler can be increased without increasing the size of the housing. As the distance between the fan and the oil cooler increases, the air uniformly passes through the oil cooler. Therefore, the cooling efficiency in the oil cooler can be improved. Moreover, since hot air is discharged
  • the cooling area of the oil cooler can be used effectively, the heat exchange capability can be improved.
  • the fan is arranged on the upper wall, the maintenance of the fan is easy.
  • the third invention even if the temperature in the first space where the oil cooler is arranged rises, it is possible to prevent the temperature of the oil stored in the tank from rising.
  • the air flow change plate reduces air stagnation in the housing, and the air flow from the first vent to the second vent can be made smooth. Therefore, the cooling efficiency in the oil cooler can be further improved.
  • the oil cooling device 1 of the present embodiment cools the lubricating oil used in the bearing of the main shaft of the machine tool 90.
  • the oil cooling device 1 includes an oil cooler 11 through which lubricating oil sent from the machine tool 90 through the inflow pipe 61 flows, fans 20 a and 20 b that cool the lubricating oil flowing through the oil cooler 11, and the oil cooler 11. And a housing 30 that houses the fans 20a and 20b.
  • the housing 30 has a substantially rectangular parallelepiped shape.
  • the vertical direction of the housing 30 is referred to as “front-rear direction”, and the left-right direction of the housing 30 is referred to as “width direction”.
  • the interior of the housing 30 is partitioned by a partition plate 35 into a cooling chamber 38 positioned above and a pump motor chamber 39 positioned below.
  • a rectangular first vent 31 is formed on the front side wall of the portion of the housing 30 corresponding to the cooling chamber 38.
  • an oil cooler 11 is attached to the inner surface of the front side wall of the cooling chamber 38. The oil cooler 11 is disposed so as to substantially face the entire surface of the first vent 31.
  • two circular second vent holes 33 a and 33 b are formed on the upper wall of the housing 30 side by side in the width direction (left and right direction in the figure).
  • grills 34 a and 34 b that cover the second ventilation holes 33 a and 33 b are attached so that fingers and the like do not contact the fan via the ventilation holes 33 a and 33 b.
  • the vent holes 33a and 33b may be formed in a slit shape.
  • two fans 20a and 20b are attached to the inner surface of the upper wall of the housing 30 so as to face the two second vent holes 33a and 33b, respectively.
  • the fans 20a and 20b are driven by the electric motors 21a and 21b, respectively, and send the air in the cooling chamber 38 to the outside through the second vent holes 33a and 33b. At this time, due to a pressure difference between the inside and outside of the cooling chamber 38, air is drawn into the cooling chamber 38 through the first vent 31. That is, by driving the fans 20a and 20b, air can be sucked from the first vent 31 and the air can be discharged from the second vent 33a and 33b.
  • the length in the width direction of the first vent 31 (length along the left-right direction in FIG. 2) L1 and the length in the width direction of the two second vents 33a and 33b (in the left-right direction in FIG. 5) Length) is almost the same as L2.
  • the first vent 31 and the second vents 33a and 33b are provided at substantially the same position in the width direction. That is, the position in the width direction of the right end portion of the second vent 33 a located on the right side in FIG. 5 substantially matches the position of the right end of the first vent 31. Further, the position in the width direction of the left end portion of the second vent port 33 b located on the left side in FIG. 5 substantially matches the position of the left end portion of the first vent port 31.
  • the length of the first vent 31 in the height direction (length along the vertical direction in FIG. 2) L3 and the length of the second vents 33a and 33b in the front-rear direction (length along the vertical direction in FIG. 5). A) It is almost the same as L4. Therefore, the airflow that flows into the cooling chamber 38 of the housing 30 from the first vent 31 is discharged from the second vents 33a and 33b with almost no change in the width.
  • a tank 13 that stores the lubricating oil cooled by the oil cooler 11 and a hydraulic pump 15 that sends the lubricating oil in the tank 13 to the machine tool 90 by driving the electric motor 16 are arranged. Yes.
  • the tank 13 is connected to the oil cooler 11 by a first connection pipe 62, and the hydraulic pump 15 is connected to the tank 13 by a second connection pipe 63.
  • the lubricating oil sent out by the hydraulic pump 15 is sent to the machine tool 90 through the outflow pipe 65. That is, as shown in FIG. 1, the lubricating oil cooled by the oil cooler 11 circulates between the machine tool 90 by the inflow pipe 61, the first connection pipe 62, the second connection pipe 63, and the outflow pipe 65.
  • the circuit is built.
  • the lubricating oil heated by the machine tool 90 is sent to the oil cooler 11 via the inflow pipe 61 and cooled while flowing in the oil cooler 11. Then, the lubricating oil cooled by the oil cooler 11 is sent to the tank 13 via the first connection pipe 62. The cooled lubricating oil stored in the tank 13 is sucked by the hydraulic pump 15 through the second connection pipe 63 and sent to the machine tool 90 through the outflow pipe 65.
  • an insertion port 36 through which the inflow pipe 61 is inserted is formed on the left side wall of the housing 30.
  • an opening 37 that exposes a part of the hydraulic pump 15 and the electric motor 16 to the outside of the housing 30 is formed on the left side wall of the housing 30.
  • the outflow pipe 65 is connected to the outlet 15 a of the hydraulic pump 15 exposed through the opening 37.
  • the oil cooling device 1 includes the housing 30 having the first vent 31 provided on the front side wall and the second vents 33a and 33b provided on the upper wall, and the machine tool.
  • 90 includes an oil cooler 11 through which lubricating oil supplied from 90 flows, and fans 20a and 20b for sucking air from the first vent 31 and discharging the air from the second vents 33a and 33b.
  • the oil cooler 11 is disposed in the first vent 31 and the fans 20a and 20b are disposed in the second vents 33a and 33b.
  • the length of the casing 30 in the front-rear direction is not increased, and the fan 20a, 20b and the oil cooler 11 are The distance between them can be lengthened.
  • the hot air after passing through the oil cooler 11 is discharged above the casing 30, it is possible to prevent the hot air from hitting other machines arranged around the oil cooler 11. Therefore, the installation space can be reduced.
  • the oil cooler 11 is arranged on the first vent 31, that is, on the suction side of the fans 20 a and 20 b. Therefore, since the cooling area of the oil cooler 11 can be used effectively, the heat exchange capability in the oil cooler 11 can be improved. Further, since the fans 20a and 20b are disposed in the second vent holes 33a and 33b formed in the upper wall, the maintenance of the fans 20a and 20b is easy.
  • the inside of the housing 30 includes a cooling chamber 38 in which the oil cooler 11 and the fans 20a and 20b are disposed, and a tank in which lubricating oil that has flowed out of the oil cooler 11 is stored. 13 and a pump motor chamber 39 in which a hydraulic pump 15 driven by an electric motor 16 is arranged by a partition plate 35. Therefore, even if the temperature in the cooling chamber 38 in which the oil cooler 11 is disposed rises, the temperature of the cooled lubricating oil stored in the tank 13 can be prevented from rising.
  • an air flow changing plate 40a is disposed in the cooling chamber 38 as shown in FIG.
  • the air flow changing plate 40a is a flat plate-like member that is disposed at a position facing the oil cooler 11 and has a surface facing forward and upward (left obliquely upward in FIG. 7).
  • the angle formed by the air flow changing plate 40a and the floor surface of the housing 30 is 45 degrees, but the angle of the air flow changing plate 40a can be adjusted as appropriate. is there.
  • the air flow changing plate 40 a is configured to cause the air flow sucked into the cooling chamber 38 from the first vent 31 along the horizontal direction toward the upper second vents 33 a and 33 b. Change to
  • the air flow change plate 40a reduces the air retention in the cooling chamber 38, and the air sucked from the first vent 31 flows smoothly to the second vents 33a and 33b. . Thereby, the cooling efficiency in the oil cooler 11 can be further improved.
  • an air flow changing plate 40b is disposed in the cooling chamber 38 as shown in FIG.
  • the air flow changing plate 40 b is disposed at a position facing the oil cooler 11.
  • the air flow changing plate 40b is a curved plate-like member that faces forward and upward (diagonally upward to the left in FIG. 8) and has a curved surface that protrudes downward and downward (diagonally to the right and downward in FIG. 8).
  • the degree of bending of the air flow changing plate 40b can be adjusted as appropriate.
  • the air flow changing plate 40 b is configured so that the air flow sucked into the cooling chamber 38 from the first vent 31 along the horizontal direction is directed to the upper second vents 33 a and 33 b. Change to
  • the air flow change plate 40b reduces the air retention in the cooling chamber 38, and the air sucked from the first vent 31 flows smoothly to the second vents 33a and 33b. . Thereby, the cooling efficiency in the oil cooler 11 can be further improved.
  • the oil cooling device 101 according to the present embodiment is mainly different from the oil cooling device 1 according to the first embodiment in that in the first embodiment, the fans 20a and 20b are driven by the electric motors 21a and 21b. On the other hand, in this embodiment, the fans 20a and 20b are driven by the hydraulic motors 121a and 121b. Since other points are the same as the configuration of the first embodiment, detailed description thereof is omitted.
  • the hydraulic motors 121 a and 121 b are driven by the lubricating oil fed from the hydraulic pump 15 being supplied via the third connection pipe 164.
  • the lubricating oil sent out from the hydraulic motors 121a and 121b is sent to the machine tool 90 via the outflow pipe 165.
  • the cooling efficiency in the oil cooler 11 can be improved as in the first embodiment. Further, by using hydraulic motors 121a and 121b that are driven by supplying lubricating oil that circulates with the machine tool 90 as the power source for the fans 20a and 20b, the power can be effectively used. Furthermore, since the wiring required when the fans 20a and 20b are driven by an electric motor is not necessary, the apparatus can be simplified. Furthermore, the motor does not stop due to foreign matter or oil mist contained in the air passing through the cooling chamber 38 and cannot be cooled.
  • the oil cooling device 201 according to this embodiment is mainly different from the oil cooling device 1 according to the first embodiment in that, in the first embodiment, fans 20a and 20b for cooling the lubricating oil flowing in the oil cooler 11 are provided.
  • the hydraulic pump 15 that is driven by the electric motors 21a and 21b and sends the lubricating oil in the tank 13 to the machine tool 90 is driven by the electric motor 16, whereas in the present embodiment, the fan 20a and the hydraulic pump 215 are driven.
  • the hydraulic pump 215 of this embodiment is connected to an electric motor 221 that drives a fan 20 a disposed in the cooling chamber 38.
  • the second connection pipe 263 connects the tank 13 disposed in the pump motor chamber 39 and the hydraulic pump 215 disposed in the cooling chamber 38.
  • the outflow pipe 265 connects the hydraulic pump 215 disposed in the cooling chamber 38 and the machine tool 90.
  • the cooling efficiency in the oil cooler 11 can be improved as in the first embodiment.
  • the number of parts can be reduced by using the drive source of the hydraulic pump 215 also as the drive source of the fan 20a.
  • the drive source of the hydraulic pump 215 may also serve as the drive source of the other fan 20b.
  • the oil cooler 11 is disposed in the first vent 31 provided in the front side wall of the housing 30, and the fans 20 a and 20 b are disposed on the upper wall of the housing 30.
  • the fans 20a and 20b may be disposed in the first vent provided in the side wall, and the oil cooler may be disposed in the second vent provided in the upper wall.
  • the air is sucked into the cooling chamber 38 through the first vent by driving the fans 20 a and 20 b, and the second vent vent to the outside of the cooling chamber 38 due to the pressure difference inside and outside the cooling chamber 38. And air flows out.
  • the length L1 in the width direction of the first vent 31 and the length L2 in the width direction of the two second vents 33a and 33b are substantially the same length.
  • the case where the first vent 31 and the two second vents 33a and 33b are provided at substantially the same position in the width direction has been described.
  • the size and the positional relationship between the first vent 31 and the second vents 33a and 33b are not limited to those described above.
  • the air cooling device 101 according to the second embodiment and the oil cooling device 201 according to the third embodiment are added to the air flow changing plate 40a described in the first modification of the first embodiment or the second according to the first embodiment. You may provide the airflow change board 40b demonstrated in the modification.
  • the application of the present invention is not limited to the oil cooling device for cooling the bearing of the main shaft of the machine tool, but can be applied as a device for cooling the bearing in all machines having a shaft that rotates at high speed. .
  • the cooling efficiency can be improved and the installation space can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

Disclosed is an oil cooling device such that the cooling efficiency is improved, and that the installation space is made compact. A housing (30) comprises a first vent hole (31) which is provided on a front sidewall, and second vent holes (33a, 33b) which are provided in an upper wall. An oil cooler (11) and fans (20a, 20b) are provided in the housing (30), said oil cooler (11) being an oil cooler through which there flows lubricating oil supplied by a machine tool (90), and said fans (20a, 20b) serving to suck air from the first vent hole (31) and to discharge the air from the second vent holes (33a, 33b). The oil cooler (11) is disposed in the first vent hole (31), and the fans (20a, 20b) are disposed in the second vent holes (33a, 33b).

Description

油冷却装置Oil cooling device
 本発明は、外部から供給された油を冷却する油冷却装置に関するものである。 The present invention relates to an oil cooling device that cools oil supplied from the outside.
 工作機械等の高速回転する主軸の軸受を冷却すべく、軸受で用いられる潤滑油を冷却する油冷却装置が知られている。かかる油冷却装置としては、特許文献1に、冷凍サイクルを行う冷媒回路と、この冷媒回路の蒸発器で冷媒と熱交換して冷却された冷却油を工作機械との間で循環させる冷却油回路とを備えたものが開示されている。このように、冷凍サイクルを利用した油冷却装置は、冷媒回路及び冷却油回路の2つの回路を備えており、比較的構成が複雑である。 2. Description of the Related Art An oil cooling device that cools lubricating oil used in a bearing is known to cool a main shaft bearing that rotates at high speed such as a machine tool. As such an oil cooling device, Patent Document 1 discloses a cooling oil circuit that circulates between a refrigerant circuit that performs a refrigeration cycle, and cooling oil cooled by exchanging heat with the refrigerant in an evaporator of the refrigerant circuit. Are provided. As described above, the oil cooling device using the refrigeration cycle includes two circuits of the refrigerant circuit and the cooling oil circuit, and has a relatively complicated configuration.
 特許文献2には、高温の潤滑油が流れる管路の途中に空冷オイルクーラ(以降、単に「オイルクーラ」と称する)が設けられていると共に、オイルクーラに対向する位置にファンが設けられた、油冷却装置が開示されている。かかる油冷却装置においては、オイルクーラ内を流れる潤滑油を、ファンにより吹き付けられた空気により冷却する。このようにファンを利用した油冷却装置は、冷凍サイクルを利用した油冷却装置に比べて構成が簡易である。 In Patent Document 2, an air-cooled oil cooler (hereinafter simply referred to as “oil cooler”) is provided in the middle of a pipeline through which high-temperature lubricating oil flows, and a fan is provided at a position facing the oil cooler. An oil cooling device is disclosed. In such an oil cooling device, the lubricating oil flowing in the oil cooler is cooled by air blown by a fan. As described above, the oil cooling device using the fan has a simpler configuration than the oil cooling device using the refrigeration cycle.
特開2007-100967号公報Japanese Patent Laid-Open No. 2007-1000096 特開平11-33426号公報JP-A-11-33426
 上述の特許文献2に開示されているように、対向して配置されたファンとオイルクーラとを備えた油冷却装置においては、装置を小型化すべく、ファンとオイルクーラとの間の距離が短く設定されている。このような場合には、オイルクーラにおいてファンから送られる空気が通過しない部分が生じ、冷却効率が著しく低くなる。 As disclosed in Patent Document 2 described above, in an oil cooling device including a fan and an oil cooler that are arranged to face each other, the distance between the fan and the oil cooler is short in order to reduce the size of the device. Is set. In such a case, a portion where the air sent from the fan does not pass in the oil cooler is generated, and the cooling efficiency is remarkably lowered.
 また、ファンとオイルクーラとが水平方向に対向しており、ファン及びオイルクーラが収容された筐体の側壁から、オイルクーラにより熱せられた空気が排出される場合には、油冷却装置の周囲に配置される機械に熱風が当たる。熱風が当たった機械は、熱歪みにより精度が低下する。よって、油冷却装置を設置する際には、筐体から排出される熱風が周囲の機械に当たらないようにするために、広いスペースが必要となる。 In addition, when the air is heated by the oil cooler from the side wall of the housing in which the fan and the oil cooler are opposed to each other in the horizontal direction, Hot air hits the machine placed in Machines that have been exposed to hot air have reduced accuracy due to thermal distortion. Therefore, when installing the oil cooling device, a large space is required to prevent the hot air discharged from the casing from hitting surrounding machines.
 そこで、本発明は、上記のような課題を解決するためになされたものであり、冷却効率を向上させると共に設置スペースを小さくできる油冷却装置を提供することを目的とする。 Therefore, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an oil cooling device capable of improving the cooling efficiency and reducing the installation space.
 第1の発明にかかる油冷却装置は、側壁に設けられた第1通気口及び上壁に設けられた第2通気口を有する筐体と、外部から供給された油が流れるオイルクーラと、前記第1通気口から空気を吸引すると共に、その空気を前記第2通気口から排出するためのファンとを備え、前記オイルクーラは、前記第1通気口及び前記第2通気口のいずれか一方に配置されており、前記ファンは、前記第1通気口及び前記第2通気口の他方に配置されている。 An oil cooling device according to a first aspect of the present invention includes a housing having a first vent provided in a side wall and a second vent provided in an upper wall, an oil cooler through which oil supplied from outside flows, And a fan for sucking air from the first vent and discharging the air from the second vent, and the oil cooler is provided at either the first vent or the second vent. The fan is disposed at the other of the first vent and the second vent.
 この油冷却装置では、ファンとオイルクーラとをほぼ90°の角度で配置することによって、筐体の設置面積を大きくすることなく、ファンとオイルクーラとの間の距離を長くすることができる。これにより、オイルクーラを空気が均一に通過するようになる。したがって、オイルクーラにおける冷却効率を向上させることができる。また、熱風が筐体の上方に排出されるので、他の機械に熱風が当たるのを防ぐことができる。よって、設置スペースを小さくできる。 In this oil cooling device, by disposing the fan and the oil cooler at an angle of approximately 90 °, the distance between the fan and the oil cooler can be increased without increasing the installation area of the housing. Thereby, air comes to pass uniformly through an oil cooler. Therefore, the cooling efficiency in the oil cooler can be improved. Moreover, since hot air is discharged | emitted above a housing | casing, it can prevent that a hot air hits another machine. Therefore, the installation space can be reduced.
 第2の発明にかかる油冷却装置は、第1の発明にかかる油冷却装置において、前記オイルクーラは、前記第1通気口に配置されており、前記ファンは、前記第2通気口に配置されている。 An oil cooling device according to a second invention is the oil cooling device according to the first invention, wherein the oil cooler is disposed in the first vent and the fan is disposed in the second vent. ing.
 この油冷却装置では、オイルクーラの冷却面積を有効に使うことができるので、熱交換能力を向上させることができる。また、ファンが上壁に配置されているので、ファンのメンテナンスが容易である。 In this oil cooling device, since the cooling area of the oil cooler can be used effectively, the heat exchange capacity can be improved. In addition, since the fan is arranged on the upper wall, the maintenance of the fan is easy.
 第3の発明にかかる油冷却装置は、第1の発明にかかる油冷却装置において、前記オイルクーラから流出した油が貯留されるタンクを備え、前記筐体の内部は、前記オイルクーラ及び前記ファンが配置された第1空間と、前記タンクが配置された第2空間とに仕切板によって仕切られている。 An oil cooling device according to a third aspect of the invention is the oil cooling device according to the first aspect of the invention, further comprising a tank in which oil that has flowed out of the oil cooler is stored, and the inside of the housing includes the oil cooler and the fan Is partitioned by a partition plate into a first space in which is disposed and a second space in which the tank is disposed.
 この油冷却装置では、オイルクーラが配置された第1空間内の温度が上昇しても、タンク内に貯留された油の温度が上昇するのを防止できる。 This oil cooling device can prevent the temperature of the oil stored in the tank from rising even if the temperature in the first space where the oil cooler is arranged rises.
 第4の発明にかかる油冷却装置は、第1~第3のいずれかの発明にかかる油冷却装置において、前記筐体内に配置され、前記第1通気口から吸引された空気の流れを前記第2通気口に向かう方向に変更する空気流変更板を備えている。 An oil cooling device according to a fourth aspect of the present invention is the oil cooling device according to any one of the first to third aspects of the invention, wherein the oil cooling device is disposed in the housing and the flow of air sucked from the first vent is the first. 2 An airflow changing plate that changes in a direction toward the vent is provided.
 この油冷却装置では、空気流変更板により筐体内の空気滞留が減り、第1通気口から第2通気口にむかう空気の流れをスムーズにすることができる。したがって、オイルクーラにおける冷却効率をさらに向上させることができる。 In this oil cooling device, air retention in the housing is reduced by the air flow changing plate, and the flow of air from the first vent to the second vent can be made smooth. Therefore, the cooling efficiency in the oil cooler can be further improved.
 以上の説明に述べたように、本発明によれば、以下の効果が得られる。 As described in the above description, according to the present invention, the following effects can be obtained.
 第1の発明では、筐体を大型化することなく、ファンとオイルクーラとの間の距離を長くできる。ファンとオイルクーラとの間の距離が長くなることにより、オイルクーラ内を空気が均一に通過するようになる。したがって、オイルクーラにおける冷却効率を向上させることができる。また、熱風が筐体の上方に排出されるので、他の機械に熱風が当たるのを防ぐことができる。よって、設置スペースを小さくできる。 In the first invention, the distance between the fan and the oil cooler can be increased without increasing the size of the housing. As the distance between the fan and the oil cooler increases, the air uniformly passes through the oil cooler. Therefore, the cooling efficiency in the oil cooler can be improved. Moreover, since hot air is discharged | emitted above a housing | casing, it can prevent that a hot air hits another machine. Therefore, the installation space can be reduced.
 第2の発明では、オイルクーラの冷却面積を有効に使うことができるので、熱交換能力を向上させることができる。また、ファンが上壁に配置されているので、ファンのメンテナンスが容易である。 In the second invention, since the cooling area of the oil cooler can be used effectively, the heat exchange capability can be improved. In addition, since the fan is arranged on the upper wall, the maintenance of the fan is easy.
 また、第3の発明では、オイルクーラが配置された第1空間内の温度が上昇しても、タンク内に貯留された油の温度が上昇するのを防止できる。 Further, in the third invention, even if the temperature in the first space where the oil cooler is arranged rises, it is possible to prevent the temperature of the oil stored in the tank from rising.
 さらに、第4の発明では、空気流変更板により筐体内の空気滞留が減り、第1通気口から第2通気口にむかう空気の流れをスムーズにすることができる。したがって、オイルクーラにおける冷却効率をさらに向上させることができる。 Furthermore, in the fourth aspect of the invention, the air flow change plate reduces air stagnation in the housing, and the air flow from the first vent to the second vent can be made smooth. Therefore, the cooling efficiency in the oil cooler can be further improved.
本発明の第1実施形態にかかる油冷却装置の回路図である。It is a circuit diagram of the oil cooling device concerning a 1st embodiment of the present invention. 図1に示す油冷却装置の前面図である。It is a front view of the oil cooling device shown in FIG. 図1に示す油冷却装置の右側面図である。It is a right view of the oil cooling device shown in FIG. 図1に示す油冷却装置の左側面図である。It is a left view of the oil cooling device shown in FIG. 図1に示す油冷却装置の上面図である。It is a top view of the oil cooling device shown in FIG. 図2に示す油冷却装置のV-V線に沿う断面図である。It is sectional drawing which follows the VV line of the oil cooling device shown in FIG. 第1実施形態の第1変形例にかかる油冷却装置の回路図である。It is a circuit diagram of the oil cooling device concerning the 1st modification of a 1st embodiment. 第1実施形態の第2変形例にかかる油冷却装置の回路図である。It is a circuit diagram of the oil cooling device concerning the 2nd modification of a 1st embodiment. 本発明の第2実施形態にかかる油冷却装置の回路図である。It is a circuit diagram of the oil cooling device concerning a 2nd embodiment of the present invention. 本発明の第3実施形態にかかる油冷却装置の回路図である。It is a circuit diagram of the oil cooling device concerning a 3rd embodiment of the present invention.
[第1実施形態]
 以下、本発明にかかる油冷却装置の第1実施形態について、図1~図6を参照しつつ説明する。
[First embodiment]
Hereinafter, a first embodiment of an oil cooling device according to the present invention will be described with reference to FIGS.
 本実施形態の油冷却装置1は、工作機械90の主軸の軸受で用いられる潤滑油を冷却するものである。そして、油冷却装置1は、流入管61を介して工作機械90から送られた潤滑油が流れるオイルクーラ11と、オイルクーラ11内を流れる潤滑油を冷却するファン20a、20bと、オイルクーラ11及びファン20a、20bを収容する筐体30とを主に備えている。 The oil cooling device 1 of the present embodiment cools the lubricating oil used in the bearing of the main shaft of the machine tool 90. The oil cooling device 1 includes an oil cooler 11 through which lubricating oil sent from the machine tool 90 through the inflow pipe 61 flows, fans 20 a and 20 b that cool the lubricating oil flowing through the oil cooler 11, and the oil cooler 11. And a housing 30 that houses the fans 20a and 20b.
 筐体30は、略直方体形状を有している。以下の説明においては、図5の上面視において、筐体30の上下方向を「前後方向」とし、筐体30の左右方向を「幅方向」とする。筐体30の内部は、仕切板35により上方に位置する冷却室38と下方に位置するポンプモータ室39とに仕切られている。 The housing 30 has a substantially rectangular parallelepiped shape. In the following description, in the top view of FIG. 5, the vertical direction of the housing 30 is referred to as “front-rear direction”, and the left-right direction of the housing 30 is referred to as “width direction”. The interior of the housing 30 is partitioned by a partition plate 35 into a cooling chamber 38 positioned above and a pump motor chamber 39 positioned below.
 図2に示すように、筐体30の冷却室38に対応する部分の前方側壁には、矩形形状の第1通気口31が形成されている。図3に示すように、冷却室38の前方側壁の内面には、オイルクーラ11が取り付けられている。オイルクーラ11は、第1通気口31の全面とほぼ対向するように配置されている。 As shown in FIG. 2, a rectangular first vent 31 is formed on the front side wall of the portion of the housing 30 corresponding to the cooling chamber 38. As shown in FIG. 3, an oil cooler 11 is attached to the inner surface of the front side wall of the cooling chamber 38. The oil cooler 11 is disposed so as to substantially face the entire surface of the first vent 31.
 図5に示すように、筐体30の上壁には、円形形状の2つの第2通気口33a、33bが幅方向(図中左右方向)に並んで形成されている。筐体30の上面には、通気口33a、33bを介して指等がファンに接触しないようにすべく、第2通気口33a、33bを覆うグリル34a、34bが取り付けられている。なお、グリル34a、34bを設ける代わりに、通気口33a、33bをスリット状に形成してもよい。図3に示すように、筐体30の上壁の内面には、2つの第2通気口33a、33bにそれぞれ対向するように、2つのファン20a、20bが取り付けられている。ファン20a、20bは、電気モータ21a、21bによりそれぞれ駆動され、冷却室38内の空気を第2通気口33a、33bを介して外部に送り出す。このとき、冷却室38の内外の圧力差により、第1通気口31を介して冷却室38内に空気が引き込まれる。すなわち、ファン20a、20bを駆動することにより、第1通気口31から空気を吸引すると共に、その空気を第2通気口33a、33bから排出することができる。 As shown in FIG. 5, two circular second vent holes 33 a and 33 b are formed on the upper wall of the housing 30 side by side in the width direction (left and right direction in the figure). On the upper surface of the housing 30, grills 34 a and 34 b that cover the second ventilation holes 33 a and 33 b are attached so that fingers and the like do not contact the fan via the ventilation holes 33 a and 33 b. Instead of providing the grilles 34a and 34b, the vent holes 33a and 33b may be formed in a slit shape. As shown in FIG. 3, two fans 20a and 20b are attached to the inner surface of the upper wall of the housing 30 so as to face the two second vent holes 33a and 33b, respectively. The fans 20a and 20b are driven by the electric motors 21a and 21b, respectively, and send the air in the cooling chamber 38 to the outside through the second vent holes 33a and 33b. At this time, due to a pressure difference between the inside and outside of the cooling chamber 38, air is drawn into the cooling chamber 38 through the first vent 31. That is, by driving the fans 20a and 20b, air can be sucked from the first vent 31 and the air can be discharged from the second vent 33a and 33b.
 第1通気口31の幅方向の長さ(図2中左右方向に沿う長さ)L1と、2つの第2通気口33a、33bを合わせた幅方向の長さ(図5中左右方向に沿う長さ)L2とはほぼ同じである。また、第1通気口31と第2通気口33a、33bとは、幅方向に関してほぼ同じ位置に設けられている。つまり、図5において右方に位置する第2通気口33aの右側端部の幅方向に関する位置は、第1通気口31の右側端部の位置とほぼ一致している。また、図5において左方に位置する第2通気口33bの左側端部の幅方向に関する位置は、第1通気口31の左側端部の位置とほぼ一致している。さらに、第1通気口31の高さ方向の長さ(図2中上下方向に沿う長さ)L3と、第2通気口33a、33bの前後方向の長さ(図5中上下方向に沿う長さ)L4とはほぼ同じである。したがって、第1通気口31から筐体30の冷却室38内に流れ込む空気流は、その幅がほとんど変更されることなく第2通気口33a、33bから排出される。 The length in the width direction of the first vent 31 (length along the left-right direction in FIG. 2) L1 and the length in the width direction of the two second vents 33a and 33b (in the left-right direction in FIG. 5) Length) is almost the same as L2. The first vent 31 and the second vents 33a and 33b are provided at substantially the same position in the width direction. That is, the position in the width direction of the right end portion of the second vent 33 a located on the right side in FIG. 5 substantially matches the position of the right end of the first vent 31. Further, the position in the width direction of the left end portion of the second vent port 33 b located on the left side in FIG. 5 substantially matches the position of the left end portion of the first vent port 31. Further, the length of the first vent 31 in the height direction (length along the vertical direction in FIG. 2) L3 and the length of the second vents 33a and 33b in the front-rear direction (length along the vertical direction in FIG. 5). A) It is almost the same as L4. Therefore, the airflow that flows into the cooling chamber 38 of the housing 30 from the first vent 31 is discharged from the second vents 33a and 33b with almost no change in the width.
 ポンプモータ室39には、オイルクーラ11により冷却された潤滑油を貯留するタンク13と、電気モータ16の駆動によりタンク13内の潤滑油を工作機械90へと送る油圧ポンプ15とが配置されている。タンク13は、第1接続管62によりオイルクーラ11と接続されており、油圧ポンプ15は、第2接続管63によりタンク13と接続されている。油圧ポンプ15により送り出された潤滑油は、流出管65により工作機械90へと送られる。すなわち、図1に示すように、流入管61、第1接続管62、第2接続管63、及び流出管65により、オイルクーラ11により冷却された潤滑油が工作機械90との間で循環する回路が構築されている。 In the pump motor chamber 39, a tank 13 that stores the lubricating oil cooled by the oil cooler 11 and a hydraulic pump 15 that sends the lubricating oil in the tank 13 to the machine tool 90 by driving the electric motor 16 are arranged. Yes. The tank 13 is connected to the oil cooler 11 by a first connection pipe 62, and the hydraulic pump 15 is connected to the tank 13 by a second connection pipe 63. The lubricating oil sent out by the hydraulic pump 15 is sent to the machine tool 90 through the outflow pipe 65. That is, as shown in FIG. 1, the lubricating oil cooled by the oil cooler 11 circulates between the machine tool 90 by the inflow pipe 61, the first connection pipe 62, the second connection pipe 63, and the outflow pipe 65. The circuit is built.
 したがって、工作機械90で熱せられた潤滑油は、流入管61を介してオイルクーラ11に送られ、オイルクーラ11内を流れる間に冷却される。そして、オイルクーラ11で冷却された潤滑油は、第1接続管62を介してタンク13に送られる。タンク13に貯留された冷却済みの潤滑油は、油圧ポンプ15により、第2接続管63を介して吸引されると共に流出管65を介して工作機械90へと送られる。 Therefore, the lubricating oil heated by the machine tool 90 is sent to the oil cooler 11 via the inflow pipe 61 and cooled while flowing in the oil cooler 11. Then, the lubricating oil cooled by the oil cooler 11 is sent to the tank 13 via the first connection pipe 62. The cooled lubricating oil stored in the tank 13 is sucked by the hydraulic pump 15 through the second connection pipe 63 and sent to the machine tool 90 through the outflow pipe 65.
 なお、図4に示すように、筐体30の左方側壁には、流入管61が挿通される挿通口36が形成されている。また、筐体30の左方側壁には、油圧ポンプ15及び電気モータ16の一部を筐体30外に露出させる開口37が形成されている。流出管65は、開口37を介して露出している油圧ポンプ15の流出口15aに接続される。 As shown in FIG. 4, an insertion port 36 through which the inflow pipe 61 is inserted is formed on the left side wall of the housing 30. In addition, an opening 37 that exposes a part of the hydraulic pump 15 and the electric motor 16 to the outside of the housing 30 is formed on the left side wall of the housing 30. The outflow pipe 65 is connected to the outlet 15 a of the hydraulic pump 15 exposed through the opening 37.
 以上のように、第1実施形態の油冷却装置1は、前方側壁に設けられた第1通気口31及び上壁に設けられた第2通気口33a、33bを有する筐体30と、工作機械90から供給された潤滑油が流れるオイルクーラ11と、第1通気口31から空気を吸引すると共に、その空気を第2通気口33a、33bから排出するためのファン20a、20bとを備えている。そして、オイルクーラ11は、第1通気口31に配置されており、ファン20a、20bは、第2通気口33a、33bに配置されている。したがって、ファン20a、20bとオイルクーラ11とが対向するように配置されている場合に比べて、筐体30の前後方向の長さを長くすることなく、ファン20a、20bとオイルクーラ11との間の距離を長くできる。ファン20a、20bとオイルクーラ11との間の距離が長くなることにより、オイルクーラ11内を空気が均一に通過するようになる。よって、オイルクーラ11における冷却効率を向上させることができる。また、オイルクーラ11通過後の熱風が筐体30の上方に排出されるので、周囲に配置された他の機械に熱風が当たるのを防ぐことができる。よって、設置スペースを小さくできる。 As described above, the oil cooling device 1 according to the first embodiment includes the housing 30 having the first vent 31 provided on the front side wall and the second vents 33a and 33b provided on the upper wall, and the machine tool. 90 includes an oil cooler 11 through which lubricating oil supplied from 90 flows, and fans 20a and 20b for sucking air from the first vent 31 and discharging the air from the second vents 33a and 33b. . The oil cooler 11 is disposed in the first vent 31 and the fans 20a and 20b are disposed in the second vents 33a and 33b. Therefore, compared with the case where the fans 20a, 20b and the oil cooler 11 are arranged to face each other, the length of the casing 30 in the front-rear direction is not increased, and the fan 20a, 20b and the oil cooler 11 are The distance between them can be lengthened. As the distance between the fans 20a, 20b and the oil cooler 11 increases, the air uniformly passes through the oil cooler 11. Therefore, the cooling efficiency in the oil cooler 11 can be improved. Moreover, since the hot air after passing through the oil cooler 11 is discharged above the casing 30, it is possible to prevent the hot air from hitting other machines arranged around the oil cooler 11. Therefore, the installation space can be reduced.
 また、第1実施形態の油冷却装置1では、オイルクーラ11が第1通気口31、すなわちファン20a、20bの吸引側に配置されている。したがって、オイルクーラ11の冷却面積を有効に使うことができるので、オイルクーラ11における熱交換能力を向上させることができる。また、ファン20a、20bが上壁に形成された第2通気口33a、33bに配置されているので、ファン20a、20bのメンテナンスが容易である。 Further, in the oil cooling device 1 of the first embodiment, the oil cooler 11 is arranged on the first vent 31, that is, on the suction side of the fans 20 a and 20 b. Therefore, since the cooling area of the oil cooler 11 can be used effectively, the heat exchange capability in the oil cooler 11 can be improved. Further, since the fans 20a and 20b are disposed in the second vent holes 33a and 33b formed in the upper wall, the maintenance of the fans 20a and 20b is easy.
 さらに、第1実施形態の油冷却装置1では、筐体30の内部は、オイルクーラ11及びファン20a、20bが配置された冷却室38と、オイルクーラ11から流出した潤滑油が貯留されるタンク13及び電気モータ16により駆動される油圧ポンプ15が配置されたポンプモータ室39とに、仕切板35によって仕切られている。したがって、オイルクーラ11が配置された冷却室38内の温度が上昇しても、タンク13内に貯留された冷却済みの潤滑油の温度が上昇するのを防止できる。 Furthermore, in the oil cooling device 1 of the first embodiment, the inside of the housing 30 includes a cooling chamber 38 in which the oil cooler 11 and the fans 20a and 20b are disposed, and a tank in which lubricating oil that has flowed out of the oil cooler 11 is stored. 13 and a pump motor chamber 39 in which a hydraulic pump 15 driven by an electric motor 16 is arranged by a partition plate 35. Therefore, even if the temperature in the cooling chamber 38 in which the oil cooler 11 is disposed rises, the temperature of the cooled lubricating oil stored in the tank 13 can be prevented from rising.
[第1実施形態の第1変形例]
 ここで、図7を参照しつつ、第1実施形態の第1変形例にかかる油冷却装置について説明する。
[First Modification of First Embodiment]
Here, an oil cooling device according to a first modification of the first embodiment will be described with reference to FIG.
 本変形例にかかる油冷却装置1aでは、図7に示すように、冷却室38内に空気流変更板40aが配置されている。空気流変更板40aは、オイルクーラ11と対向する位置に配置されており、前方上方(図7中左斜め上方)に向いた面を有する平板状部材である。本変形例においては、空気流変更板40aと筐体30の床面とのなす角度(図7においてθで示す角度)は45度であるが、空気流変更板40aの角度は適宜調整可能である。空気流変更板40aは、図7に示すように、水平方向に沿って第1通気口31から冷却室38内に吸い込まれた空気の流れを、上方の第2通気口33a、33bに向かう方向に変更する。 In the oil cooling device 1a according to this modification, an air flow changing plate 40a is disposed in the cooling chamber 38 as shown in FIG. The air flow changing plate 40a is a flat plate-like member that is disposed at a position facing the oil cooler 11 and has a surface facing forward and upward (left obliquely upward in FIG. 7). In this modification, the angle formed by the air flow changing plate 40a and the floor surface of the housing 30 (the angle indicated by θ in FIG. 7) is 45 degrees, but the angle of the air flow changing plate 40a can be adjusted as appropriate. is there. As shown in FIG. 7, the air flow changing plate 40 a is configured to cause the air flow sucked into the cooling chamber 38 from the first vent 31 along the horizontal direction toward the upper second vents 33 a and 33 b. Change to
 本変形例にかかる油冷却装置1aでは、空気流変更板40aにより冷却室38内の空気滞留が減り、第1通気口31から吸い込まれた空気がスムーズに第2通気口33a、33bへと流れる。これにより、オイルクーラ11における冷却効率をさらに向上させることができる。 In the oil cooling device 1a according to this modification, the air flow change plate 40a reduces the air retention in the cooling chamber 38, and the air sucked from the first vent 31 flows smoothly to the second vents 33a and 33b. . Thereby, the cooling efficiency in the oil cooler 11 can be further improved.
[第1実施形態の第2変形例]
 また、図8を参照しつつ、第1実施形態の第2変形例にかかる油冷却装置について説明する。
[Second Modification of First Embodiment]
In addition, an oil cooling device according to a second modification of the first embodiment will be described with reference to FIG.
 本変形例にかかる油冷却装置1bでは、図8に示すように、冷却室38内に空気流変更板40bが配置されている。空気流変更板40bは、オイルクーラ11と対向する位置に配置されている。空気流変更板40bは、前方上方(図8中左斜め上方)に向いていると共に、後方下方(図8中右斜め下方)に凸状に湾曲した面を有する湾曲板状部材である。空気流変更板40bの曲がり度合いは適宜調整可能である。空気流変更板40bは、図8に示すように、水平方向に沿って第1通気口31から冷却室38内に吸い込まれた空気の流れを、上方の第2通気口33a、33bに向かう方向に変更する。 In the oil cooling device 1b according to this modification, an air flow changing plate 40b is disposed in the cooling chamber 38 as shown in FIG. The air flow changing plate 40 b is disposed at a position facing the oil cooler 11. The air flow changing plate 40b is a curved plate-like member that faces forward and upward (diagonally upward to the left in FIG. 8) and has a curved surface that protrudes downward and downward (diagonally to the right and downward in FIG. 8). The degree of bending of the air flow changing plate 40b can be adjusted as appropriate. As shown in FIG. 8, the air flow changing plate 40 b is configured so that the air flow sucked into the cooling chamber 38 from the first vent 31 along the horizontal direction is directed to the upper second vents 33 a and 33 b. Change to
 本変形例にかかる油冷却装置1bでは、空気流変更板40bにより冷却室38内の空気滞留が減り、第1通気口31から吸い込まれた空気がスムーズに第2通気口33a、33bへと流れる。これにより、オイルクーラ11における冷却効率をさらに向上させることができる。 In the oil cooling device 1b according to this modification, the air flow change plate 40b reduces the air retention in the cooling chamber 38, and the air sucked from the first vent 31 flows smoothly to the second vents 33a and 33b. . Thereby, the cooling efficiency in the oil cooler 11 can be further improved.
[第2実施形態]
 次に、図9を参照しつつ、第2実施形態にかかる油冷却装置について説明する。
[Second Embodiment]
Next, an oil cooling device according to a second embodiment will be described with reference to FIG.
 本実施形態にかかる油冷却装置101が、第1実施形態にかかる油冷却装置1と主に異なる点は、第1実施形態では、ファン20a、20bが電気モータ21a、21bによって駆動されるのに対し、本実施形態では、ファン20a、20bが油圧モータ121a、121bによって駆動される点である。その他の点については、第1実施形態の構成と同様であるため、詳細な説明は省略する。 The oil cooling device 101 according to the present embodiment is mainly different from the oil cooling device 1 according to the first embodiment in that in the first embodiment, the fans 20a and 20b are driven by the electric motors 21a and 21b. On the other hand, in this embodiment, the fans 20a and 20b are driven by the hydraulic motors 121a and 121b. Since other points are the same as the configuration of the first embodiment, detailed description thereof is omitted.
 図9に示すように、油圧モータ121a、121bは、油圧ポンプ15から送り出された潤滑油が第3接続管164を介して供給されることで駆動する。油圧モータ121a、121bから送り出された潤滑油は、流出管165を介して工作機械90へと送られる。 As shown in FIG. 9, the hydraulic motors 121 a and 121 b are driven by the lubricating oil fed from the hydraulic pump 15 being supplied via the third connection pipe 164. The lubricating oil sent out from the hydraulic motors 121a and 121b is sent to the machine tool 90 via the outflow pipe 165.
 本実施形態にかかる油冷却装置101では、第1実施形態と同様に、オイルクーラ11における冷却効率を向上させることができる。また、ファン20a、20bの動力源として、工作機械90との間で循環する潤滑油の供給により駆動する油圧モータ121a、121bを用いることにより、動力の有効利用を図ることができる。さらに、ファン20a、20bを電気モータで駆動する場合に必要な配線が不要となるので、装置を簡素化することができる。さらに、冷却室38内を通過する空気に含まれている異物やオイルミストなどによりモータが停止し冷却不可となることがない。 In the oil cooling device 101 according to the present embodiment, the cooling efficiency in the oil cooler 11 can be improved as in the first embodiment. Further, by using hydraulic motors 121a and 121b that are driven by supplying lubricating oil that circulates with the machine tool 90 as the power source for the fans 20a and 20b, the power can be effectively used. Furthermore, since the wiring required when the fans 20a and 20b are driven by an electric motor is not necessary, the apparatus can be simplified. Furthermore, the motor does not stop due to foreign matter or oil mist contained in the air passing through the cooling chamber 38 and cannot be cooled.
[第3実施形態]
 次に、図10を参照しつつ、第3実施形態にかかる油冷却装置について説明する。
[Third Embodiment]
Next, an oil cooling device according to a third embodiment will be described with reference to FIG.
 本実施形態にかかる油冷却装置201が、第1実施形態にかかる油冷却装置1と主に異なる点は、第1実施形態では、オイルクーラ11内を流れる潤滑油を冷却するファン20a、20bが電気モータ21a、21bによって駆動されると共に、タンク13内の潤滑油を工作機械90へと送る油圧ポンプ15が電気モータ16によって駆動されるのに対し、本実施形態では、ファン20aと油圧ポンプ215とが同一の電気モータ221によって駆動される点である。その他の点については、第1実施形態の構成と同様であるため、詳細な説明は省略する。 The oil cooling device 201 according to this embodiment is mainly different from the oil cooling device 1 according to the first embodiment in that, in the first embodiment, fans 20a and 20b for cooling the lubricating oil flowing in the oil cooler 11 are provided. The hydraulic pump 15 that is driven by the electric motors 21a and 21b and sends the lubricating oil in the tank 13 to the machine tool 90 is driven by the electric motor 16, whereas in the present embodiment, the fan 20a and the hydraulic pump 215 are driven. Are driven by the same electric motor 221. Since other points are the same as the configuration of the first embodiment, detailed description thereof is omitted.
 図10に示すように、本実施形態の油圧ポンプ215は、冷却室38内に配置されたファン20aを駆動する電気モータ221に接続されている。そして、第2接続管263は、ポンプモータ室39内に配置されたタンク13と冷却室38内に配置された油圧ポンプ215とを接続する。また、流出管265は、冷却室38内に配置された油圧ポンプ215と工作機械90とを接続する。 As shown in FIG. 10, the hydraulic pump 215 of this embodiment is connected to an electric motor 221 that drives a fan 20 a disposed in the cooling chamber 38. The second connection pipe 263 connects the tank 13 disposed in the pump motor chamber 39 and the hydraulic pump 215 disposed in the cooling chamber 38. The outflow pipe 265 connects the hydraulic pump 215 disposed in the cooling chamber 38 and the machine tool 90.
 本実施形態にかかる油冷却装置201では、第1実施形態と同様に、オイルクーラ11における冷却効率を向上させることができる。また、油圧ポンプ215の駆動源をファン20aの駆動源と兼ねることで、部品点数を減らすことができる。なお、油圧ポンプ215の駆動源をもう一方のファン20bの駆動源と兼ねるようにしてもよい。 In the oil cooling device 201 according to the present embodiment, the cooling efficiency in the oil cooler 11 can be improved as in the first embodiment. Moreover, the number of parts can be reduced by using the drive source of the hydraulic pump 215 also as the drive source of the fan 20a. Note that the drive source of the hydraulic pump 215 may also serve as the drive source of the other fan 20b.
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes meanings equivalent to the scope of claims for patent and all modifications within the scope.
 例えば、上述の第1~第3実施形態では、オイルクーラ11が筐体30の前方側壁に設けられた第1通気口31に配置されており、ファン20a、20bが筐体30の上壁に設けられた第2通気口33a、33bに配置されている場合について説明したが、これには限定されない。すなわち、ファン20a、20bが側壁に設けられた第1通気口に配置されており、オイルクーラが上壁に設けられた第2通気口に配置されていてもよい。この場合、ファン20a、20bの駆動により、第1通気口を介して冷却室38内へと空気が吸い込まれ、冷却室38の内外の圧力差により、第2通気口から冷却室38の外へと空気が流れ出る。 For example, in the first to third embodiments described above, the oil cooler 11 is disposed in the first vent 31 provided in the front side wall of the housing 30, and the fans 20 a and 20 b are disposed on the upper wall of the housing 30. Although the case where it has arrange | positioned in the provided 2nd ventilation holes 33a and 33b was demonstrated, it is not limited to this. That is, the fans 20a and 20b may be disposed in the first vent provided in the side wall, and the oil cooler may be disposed in the second vent provided in the upper wall. In this case, the air is sucked into the cooling chamber 38 through the first vent by driving the fans 20 a and 20 b, and the second vent vent to the outside of the cooling chamber 38 due to the pressure difference inside and outside the cooling chamber 38. And air flows out.
 また、上述の第1~第3実施形態では、仕切板35によって、筐体30の内部が冷却室38とポンプモータ室39とに仕切られている場合について説明したが、仕切板35はなくてもよい。 In the first to third embodiments, the case where the inside of the housing 30 is partitioned into the cooling chamber 38 and the pump motor chamber 39 by the partition plate 35 has been described. However, the partition plate 35 is not provided. Also good.
 さらに、上述の第1~第3実施形態では、2つのファン20a、20bを備えている場合について説明したが、ファンの設置個数はこれには限定されない。 Furthermore, in the first to third embodiments described above, the case where the two fans 20a and 20b are provided has been described, but the number of fans installed is not limited to this.
 さらに、上述の第1~第3の実施形態では、第1通気口31の幅方向長さL1と、2つの第2通気口33a、33bを合わせた幅方向の長さL2とがほぼ同じ長さであり、これら第1通気口31と2つの第2通気口33a、33bとが幅方向に関してほぼ同じ位置に設けられている場合について説明した。また、第1通気口31の高さ方向の長さL3と、第2通気口33a、33bの前後方向の長さL4とがほぼ同じである場合について説明した。しかしながら、第1通気口31と第2通気口33a、33bとのサイズ及びそれらの位置関係は、上述のものに限定されない。 Furthermore, in the above-described first to third embodiments, the length L1 in the width direction of the first vent 31 and the length L2 in the width direction of the two second vents 33a and 33b are substantially the same length. The case where the first vent 31 and the two second vents 33a and 33b are provided at substantially the same position in the width direction has been described. Further, a case has been described in which the length L3 in the height direction of the first vent 31 and the length L4 in the front-rear direction of the second vents 33a and 33b are substantially the same. However, the size and the positional relationship between the first vent 31 and the second vents 33a and 33b are not limited to those described above.
 また、上述の第2実施形態の油冷却装置101や第3実施形態の油冷却装置201に、第1実施形態の第1変形例で説明した空気流変更板40aや第1実施形態の第2変形例で説明した空気流変更板40bを設けてもよい。 Further, the air cooling device 101 according to the second embodiment and the oil cooling device 201 according to the third embodiment are added to the air flow changing plate 40a described in the first modification of the first embodiment or the second according to the first embodiment. You may provide the airflow change board 40b demonstrated in the modification.
 加えて、本発明の適用は、工作機械の主軸の軸受を冷却するための油冷却装置に限られるものではなく、高速回転する軸を備えた機械全般において軸受を冷却する装置として適用可能である。 In addition, the application of the present invention is not limited to the oil cooling device for cooling the bearing of the main shaft of the machine tool, but can be applied as a device for cooling the bearing in all machines having a shaft that rotates at high speed. .
 本発明を利用すれば、冷却効率を向上させると共に設置スペースを小さくできる。 If the present invention is used, the cooling efficiency can be improved and the installation space can be reduced.
 1、1a、1b、101、201 油冷却装置
 11 オイルクーラ
 13 タンク
 20a、20b ファン
 30 筐体
 31 第1通気口
 33 第2通気口
 35 仕切板
 38 冷却室(第1空間)
 39 ポンプモータ室(第2空間)
 40a、40b 空気流変更板
DESCRIPTION OF SYMBOLS 1, 1a, 1b, 101, 201 Oil cooling device 11 Oil cooler 13 Tank 20a, 20b Fan 30 Housing | casing 31 1st ventilation port 33 2nd ventilation port 35 Partition plate 38 Cooling chamber (1st space)
39 Pump motor room (second space)
40a, 40b Air flow change plate

Claims (4)

  1.  側壁に設けられた第1通気口及び上壁に設けられた第2通気口を有する筐体と、
     外部から供給された油が流れるオイルクーラと、
     前記第1通気口から空気を吸引すると共に、その空気を前記第2通気口から排出するためのファンとを備え、
     前記オイルクーラは、前記第1通気口及び前記第2通気口のいずれか一方に配置されており、
     前記ファンは、前記第1通気口及び前記第2通気口の他方に配置されていることを特徴とする油冷却装置。
    A housing having a first vent provided in the side wall and a second vent provided in the upper wall;
    An oil cooler through which oil supplied from the outside flows,
    A fan for sucking air from the first vent and discharging the air from the second vent;
    The oil cooler is disposed in one of the first vent and the second vent,
    The oil cooling device according to claim 1, wherein the fan is disposed on the other of the first vent and the second vent.
  2.  前記オイルクーラは、前記第1通気口に配置されており、
     前記ファンは、前記第2通気口に配置されていることを特徴とする請求項1に記載の油冷却装置。
    The oil cooler is disposed in the first vent;
    The oil cooling device according to claim 1, wherein the fan is disposed in the second ventilation port.
  3.  前記オイルクーラから流出した油が貯留されるタンクを備え、
     前記筐体の内部は、前記オイルクーラ及び前記ファンが配置された第1空間と、前記タンクが配置された第2空間とに仕切板によって仕切られていることを特徴とする請求項1または2に記載の油冷却装置。
    A tank in which oil flowing out from the oil cooler is stored;
    The interior of the housing is partitioned by a partition plate into a first space in which the oil cooler and the fan are disposed and a second space in which the tank is disposed. The oil cooling device described in 1.
  4.  前記筐体内に配置され、前記第1通気口から吸引された空気の流れを前記第2通気口に向かう方向に変更する空気流変更板を備えていることを特徴とする請求項1から3のいずれかに記載の油冷却装置。 4. The air flow change plate according to claim 1, further comprising an air flow change plate that is disposed in the housing and changes a flow of air sucked from the first vent in a direction toward the second vent. The oil cooling device according to any one of the above.
PCT/JP2011/062263 2010-06-03 2011-05-27 Oil cooling device WO2011152321A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180026319.6A CN102917837B (en) 2010-06-03 2011-05-27 Oil cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-128259 2010-06-03
JP2010128259A JP4930625B2 (en) 2010-06-03 2010-06-03 Oil cooling device

Publications (1)

Publication Number Publication Date
WO2011152321A1 true WO2011152321A1 (en) 2011-12-08

Family

ID=45066688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062263 WO2011152321A1 (en) 2010-06-03 2011-05-27 Oil cooling device

Country Status (3)

Country Link
JP (1) JP4930625B2 (en)
CN (1) CN102917837B (en)
WO (1) WO2011152321A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2615999C2 (en) * 2011-11-29 2017-04-12 Оно Фармасьютикал Ко., Лтд. Hydrochloride of derivative purinona

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6030980B2 (en) * 2013-03-26 2016-11-24 株式会社荏原製作所 Polishing apparatus temperature control system and polishing apparatus
TWM498082U (en) * 2014-04-15 2015-04-01 Accutex Technologies Co Ltd Process liquid cooling system of tool machine
KR101666305B1 (en) * 2015-04-24 2016-10-13 현대위아 주식회사 Cooling device of main spindle for machine center
CN111947010A (en) * 2019-09-24 2020-11-17 卢思雨 Thin oil lubrication station with air cooling heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196941A (en) * 1989-12-26 1991-08-28 Nippondenso Co Ltd Spindle structure
JPH06190679A (en) * 1992-12-25 1994-07-12 Isobe Tekkosho:Kk Cutting machine
JP2007038329A (en) * 2005-08-02 2007-02-15 Kanto Seiki Kk Temperature control method and device of machine tool
JP2010029974A (en) * 2008-07-29 2010-02-12 Orion Mach Co Ltd Cooling device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2404041Y (en) * 1999-10-28 2000-11-01 张帆 Air regulator
CN2540255Y (en) * 2002-04-12 2003-03-19 周庆龙 Machine tool heat exchanger structure
CN2560023Y (en) * 2002-07-22 2003-07-09 陈伟军 Radiator and fan separated duct, connecting computer radiating system
CN2820431Y (en) * 2005-09-23 2006-09-27 威海华东数控股份有限公司 Temperature controller for machine tool
KR20070060876A (en) * 2005-12-09 2007-06-13 삼성전자주식회사 Air conditioner
US20100107675A1 (en) * 2006-12-26 2010-05-06 Carrier Corporation Heat exchanger with improved condensate removal
EP1998108B1 (en) * 2007-05-30 2015-04-29 OSRAM GmbH Cooling apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196941A (en) * 1989-12-26 1991-08-28 Nippondenso Co Ltd Spindle structure
JPH06190679A (en) * 1992-12-25 1994-07-12 Isobe Tekkosho:Kk Cutting machine
JP2007038329A (en) * 2005-08-02 2007-02-15 Kanto Seiki Kk Temperature control method and device of machine tool
JP2010029974A (en) * 2008-07-29 2010-02-12 Orion Mach Co Ltd Cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2615999C2 (en) * 2011-11-29 2017-04-12 Оно Фармасьютикал Ко., Лтд. Hydrochloride of derivative purinona

Also Published As

Publication number Publication date
JP2011251393A (en) 2011-12-15
CN102917837B (en) 2015-06-24
JP4930625B2 (en) 2012-05-16
CN102917837A (en) 2013-02-06

Similar Documents

Publication Publication Date Title
US8649173B2 (en) Operation processor
JP4930625B2 (en) Oil cooling device
JP5870553B2 (en) Air conditioner outdoor unit
JP2009030829A (en) Air conditioning device
KR100898911B1 (en) External case structure of a turbo blower
CN107110555A (en) The indoor set of air-conditioning device
JP2020180709A (en) Outdoor unit of air conditioner
JP2014105948A (en) Outdoor unit of air conditioner
JP4492747B2 (en) Wind direction adjustment unit and refrigeration unit heat source unit
JP6298542B2 (en) Outdoor unit of refrigeration cycle equipment
WO2014073166A1 (en) Cooling device, and heating element housing device equipped with same
KR100970719B1 (en) External case structure of a turbo blower
JP2013194960A (en) Outdoor unit of refrigeration apparatus
JP6632733B2 (en) Outdoor unit of air conditioner
WO2012124274A1 (en) Air conditioner
JP2015175557A (en) duct type air conditioner
CN209840293U (en) Outdoor unit and air conditioner with same
KR100765163B1 (en) Air conditioner
WO2020066334A1 (en) Outdoor unit of air-conditioner
JP2016161205A (en) Heat source unit of refrigeration device
JP2015161475A (en) Outdoor unit of air conditioner
JP2010129779A (en) Air conditioning device
CN213841139U (en) Outdoor unit of refrigeration cycle device
WO2022213474A1 (en) Air conditioner
JP6688370B2 (en) Air conditioner outdoor unit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026319.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789724

Country of ref document: EP

Kind code of ref document: A1