JPH03196842A - Catalyst for purification of exhaust gas and method for using the same - Google Patents

Catalyst for purification of exhaust gas and method for using the same

Info

Publication number
JPH03196842A
JPH03196842A JP1337249A JP33724989A JPH03196842A JP H03196842 A JPH03196842 A JP H03196842A JP 1337249 A JP1337249 A JP 1337249A JP 33724989 A JP33724989 A JP 33724989A JP H03196842 A JPH03196842 A JP H03196842A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
zeolite
cobalt
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1337249A
Other languages
Japanese (ja)
Other versions
JP2901295B2 (en
Inventor
Akinori Eshita
明徳 江下
Senji Kasahara
泉司 笠原
Shinichi Matsumoto
伸一 松本
Kazunobu Ishibashi
一伸 石橋
Koji Yokota
幸治 横田
Shiro Kondo
近藤 四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Tosoh Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Tosoh Corp
Priority to JP1337249A priority Critical patent/JP2901295B2/en
Priority to EP90124965A priority patent/EP0434063B1/en
Priority to AU68281/90A priority patent/AU634005B2/en
Priority to CA002032799A priority patent/CA2032799C/en
Priority to DE69030161T priority patent/DE69030161T2/en
Publication of JPH03196842A publication Critical patent/JPH03196842A/en
Priority to US08/176,290 priority patent/US5433933A/en
Application granted granted Critical
Publication of JP2901295B2 publication Critical patent/JP2901295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a catalyst for purification of exhaust gas contg. excess oxygen with high activity and long service life by incorporating cobalt and an alkaline earth metal into zeolite having a certain ratio of SiO2 to Al2O3. CONSTITUTION:A zeolite catalyst for removal of NOx, CO and hydrocarbon from exhaust gas contg. excess oxygen is made of zeolite having >=15 molar ratio of SiO2 to Al2O3, and cobalt and an alkaline earth metal such as Be or Mg are incorporated into the zeolite. When the resulting catalyst is used, NOx, CO and hydrocarbon are simultaneously removed from exhaust gas contg. excess oxygen. The catalyst hardly causes heat deterioration and has superior durability and high activity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば、自動車エンジン等の内燃機関から排
出される排ガス中の窒素酸化物、酸化炭素及び炭化水素
を除去する排ガス浄化触媒に関し、特に、酸素過剰の燃
料排ガスを浄化する方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an exhaust gas purification catalyst that removes nitrogen oxides, carbon oxides, and hydrocarbons from exhaust gas discharged from an internal combustion engine such as an automobile engine. In particular, it relates to a method for purifying oxygen-excess fuel exhaust gas.

(従来の技術) 内燃機関から排出される排ガス中の有害物質である窒素
酸化物、一酸化炭素及び炭化水素は、例えばPt、 R
h、 Pd等を担体上に担持させた三元触媒により除去
されている。しかしながら、ディーゼルエンジン排ガス
については、排ガス中に酸素が多く含まれているために
、窒素酸化物については有効な触媒がなく、触媒による
排ガス浄化は行われていない。
(Prior art) Nitrogen oxides, carbon monoxide, and hydrocarbons, which are harmful substances in the exhaust gas emitted from internal combustion engines, include, for example, Pt, R
It is removed by a three-way catalyst in which H, Pd, etc. are supported on a carrier. However, since diesel engine exhaust gas contains a large amount of oxygen, there is no effective catalyst for nitrogen oxides, and exhaust gas purification by catalysts has not been carried out.

また近年のガソリンエンジンにおいては、低燃費化や排
出炭酸ガスの低減の目的で希薄燃焼させることが必要と
なってきている。しかしながら、この希薄燃焼ガソリン
エンジンの排ガスは、酸素過剰雰囲気であるため、上記
のような従来の三元触媒は使用できず、有害成分を除去
する方法は実用化されていない。
Furthermore, in recent years, gasoline engines have become required to perform lean combustion in order to improve fuel efficiency and reduce carbon dioxide emissions. However, since the exhaust gas of this lean-burn gasoline engine is an oxygen-rich atmosphere, the conventional three-way catalyst as described above cannot be used, and no method for removing harmful components has been put into practical use.

このような酸素過剰の排ガス中の特に窒素酸化物を除去
する方法としては、アンモニア等の還元剤を添加する方
法、窒素酸化物をアルカリに吸収させて除去する方法等
も知られているか、これらの方法は移動発生源である自
動車に用いるには有効な方法ではなく、通用か限定され
る。
There are also known methods for removing nitrogen oxides, especially nitrogen oxides, from such oxygen-excess exhaust gas, such as adding a reducing agent such as ammonia, and removing nitrogen oxides by absorbing them in alkali. This method is not an effective method for use with automobiles, which are mobile sources, and its applicability is limited.

遷移金属をイオン交換したセオライト触媒は、従来の三
元触媒と同様に使用出来ることが知られている。例えば
特開平1−130735号公報には、未燃焼の一酸化炭
素及び炭化水素等の還元剤が微量に含まれている酸素過
剰な排ガス中でも窒素酸化物を選択的に還元させること
が出来るM[が提案されている。
It is known that a theolite catalyst with ion-exchanged transition metals can be used in the same way as a conventional three-way catalyst. For example, Japanese Patent Application Laid-Open No. 1-130735 discloses that M[ is proposed.

しかしなからこの従来提案に係わる触媒は、長時間の高
温下での使用による活性の劣化が著しく、耐久性、触媒
性能等の点で更に改善すべき壱があり、未だ実用化され
るに至っていない (発明が解決しようとする課題) 本発明の目的は、以上のような従来技術の問題点を解消
するためになされたものであり、自動車等の内燃機関か
ら排出される排ガスから、窒素酸化物、一酸化炭素及び
炭化水素を同時に除去する熱劣化を起こしにくい、耐久
性に優れた、触媒活性の高い触媒を提供するところにあ
る。
However, the activity of this conventionally proposed catalyst deteriorates significantly when used at high temperatures for long periods of time, and there is still room for further improvement in terms of durability, catalytic performance, etc., and it has yet to be put into practical use. (Problem to be Solved by the Invention) The purpose of the present invention was to solve the problems of the prior art as described above. The purpose of the present invention is to provide a catalyst that simultaneously removes carbon monoxide, carbon monoxide, and hydrocarbons, is resistant to thermal deterioration, has excellent durability, and has high catalytic activity.

また本発明の別の目的は、このような触媒を用いた排ガ
スの浄化方法を提供することにある。
Another object of the present invention is to provide a method for purifying exhaust gas using such a catalyst.

(課題を解決するための手段) 本発明者等は、上記問題点について鋭意検討した結果、
本発明を完成するに至った。
(Means for Solving the Problems) As a result of intensive study on the above-mentioned problems, the inventors have found that
The present invention has now been completed.

すなわち本発明は、窒素酸化物、一酸化炭素及び炭化水
素を含む酸素過剰の排ガスから、窒素酸化物、一酸化炭
素及び炭化水素を除去するセオライト触媒であって、S
iO□/八920へモル比か少なくとも15以上のゼオ
ライトであり、かつコバルトおよびアルカリ土類金属を
含有することを特徴とする排ガス浄化触媒、及び該jJ
lカス浄化触媒に、窒素酸化物、一酸化炭素及び炭化水
素を含む燃焼排カスを接触させることを特徴とする排ガ
ス中の窒素酸化物、一酸化炭素及び炭化水素を除去する
方法を提供するものである。
That is, the present invention provides a theolite catalyst for removing nitrogen oxides, carbon monoxide, and hydrocarbons from oxygen-excess exhaust gas containing nitrogen oxides, carbon monoxide, and hydrocarbons,
An exhaust gas purification catalyst characterized by being a zeolite having a molar ratio of at least 15 to iO□/8920 and containing cobalt and an alkaline earth metal, and the jJ
Provided is a method for removing nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas, the method comprising bringing combustion exhaust gas containing nitrogen oxides, carbon monoxide, and hydrocarbons into contact with a residue purification catalyst. It is.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

上記ゼオライトは一般的には XM>yIIO’Alxo3’ MSIO2’ZH20
(ただしnは陽イオンの原子価、Xは0.8〜2の範囲
の数、yは2以上の数、Zは0以上の数である) の組成を有するものであるが、本発明において用いられ
るゼオライトはこのうち、 5i(h/A4203モル
比が15以上のものであることを必須とする。5i02
ハ璧。05モル比はその上限は特に限定されるものでは
ないが、5r02/Altosモル比が15未満である
とゼオライト自体の耐熱性、耐久性か低いため、触媒の
十分な耐熱性、耐久性か得られない。−数的には5i0
2/^92o3モル比が10〜1000程度のものか用
いられる。
The above zeolite is generally XM>yIIO'Alxo3'MSIO2'ZH20
(However, n is the valence of the cation, X is a number in the range of 0.8 to 2, y is a number of 2 or more, and Z is a number of 0 or more). Among these, the zeolite used must have a molar ratio of 5i (h/A4203 of 15 or more. 5i02
Ha perfect. The upper limit of the 5r02/Altos molar ratio is not particularly limited, but if the 5r02/Altos molar ratio is less than 15, the heat resistance and durability of the zeolite itself will be low, making it difficult to obtain sufficient heat resistance and durability of the catalyst. I can't do it. -Numerically 5i0
Those having a 2/^92o3 molar ratio of about 10 to 1000 are used.

本発明の触媒を構成するゼオライトは天然品、合成品の
何れであってもよく、これらゼオライトの製造方法は特
に限定されるものではないが、代表的にはフェリエライ
ト、Y、 ZSM−5、ZSM−11,ZSM−12、
zSM−20,モルデナイト等のゼオライトが使用でき
る。また、これらのゼオライトは、そのままあるいはア
ンモニウム塩、鉱酸等で処理してNH4”型あるいはH
型にイオン交換してから本発明の触媒として使用するこ
ともできる。
The zeolite constituting the catalyst of the present invention may be either a natural product or a synthetic product, and the method for producing these zeolites is not particularly limited, but typically ferrierite, Y, ZSM-5, ZSM-11, ZSM-12,
Zeolites such as zSM-20 and mordenite can be used. In addition, these zeolites can be converted into NH4'' type or H
It can also be used as a catalyst in the present invention after being ion-exchanged into a mold.

本発明で用いるゼオライトは、コバルトおよびアルカリ
土類金属を含有することが必須である。コバルトおよび
アルカリ土類金属を含有させる方法としては特に限定は
されず、イオン交換、含浸担持等が使用できるが、イオ
ン交換が最も好ましい。
It is essential that the zeolite used in the present invention contains cobalt and alkaline earth metals. The method for incorporating cobalt and alkaline earth metals is not particularly limited, and ion exchange, impregnation and support, etc. can be used, but ion exchange is most preferred.

アルカリ土類金属のイオン交換で用いる塩類は水溶性で
あれば良く、好ましくは溶解度の大きい硝酸塩及び塩化
物である。アルカリ土類金属としてはBe、 Mg、 
Ca、 Sr、 Ba、 Raが使用てきる。
The salts used in the ion exchange of alkaline earth metals may be water-soluble, preferably nitrates and chlorides, which have high solubility. Alkaline earth metals include Be, Mg,
Ca, Sr, Ba, and Ra can be used.

イオン交換方法としては、ゼオライトのスラリーヘアル
カリ土類金属の塩類を投入し攪拌する、または、アルカ
リ土類金属塩の水溶液にゼオライトを投入し攪拌する、
などの−数的なイオン交換方法でよい。しいて言うなら
ば液温は20〜100℃、好ましくは40〜90℃が良
い。水溶液中のアルカリ土類金属塩の濃度は、0.01
〜5 moR/L 、好ましくは0.1〜2 mol/
Lが良い。ゼオライトと水溶液の固液比は特に限定され
ないが、攪拌が充分に行なわれれば良く、スラリーの固
形分濃度は5〜50%が好ましい。
Ion exchange methods include adding alkaline earth metal salts to a zeolite slurry and stirring, or adding zeolite to an aqueous solution of alkaline earth metal salts and stirring.
Numerical ion exchange methods such as these may be used. In other words, the liquid temperature is preferably 20 to 100°C, preferably 40 to 90°C. The concentration of alkaline earth metal salt in the aqueous solution is 0.01
~5 moR/L, preferably 0.1-2 mol/
L is good. The solid-liquid ratio between the zeolite and the aqueous solution is not particularly limited, as long as sufficient stirring is performed, and the solid content concentration of the slurry is preferably 5 to 50%.

コバルトのイオン交換では、塩類としては水溶液塩類で
あれば良く、好ましくは2価の酢酸塩である。コバルト
のイオン交換では、交換回数に特に制限はなく、交換率
が高くなればよいか、低い場合には2回以上イオン交換
を繰り返しても良い。イオン交換回数の上限は特に定め
ないが、2〜5回で良い。
In the ion exchange of cobalt, the salts may be aqueous salts, preferably divalent acetates. In cobalt ion exchange, there is no particular restriction on the number of times of exchange, and it is sufficient as long as the exchange rate is high, or if the exchange rate is low, ion exchange may be repeated two or more times. There is no particular upper limit to the number of times of ion exchange, but it may be 2 to 5 times.

イオン交換方法としては、アルカリ土類金属と同様な方
法で良い。水溶液中のコバルト酢酸塩の濃度は、0.0
1〜1 moR/L 、好ましくは0.1〜1 mol
/ ’が良い。0.01moi/L未満では大量の溶液
を必要とするため、操作性が低下する。また、1 mo
Ll/Lより大きい場合では、イオン交換率が投入した
試薬量に見合うほど向上しない。
The ion exchange method may be the same as that for alkaline earth metals. The concentration of cobalt acetate in aqueous solution is 0.0
1-1 moR/L, preferably 0.1-1 mol
/' is good. If it is less than 0.01 moi/L, a large amount of solution is required, resulting in poor operability. Also, 1 mo
If it is larger than Ll/L, the ion exchange rate will not improve to the extent commensurate with the amount of reagent added.

アルカリ土類金属およびコバルトの含有順序について特
に制限はないが、イオン交換を用いて含有させる場合に
は、アルカリ土類金属、コバルトの順が好ましい。
There is no particular restriction on the order in which alkaline earth metals and cobalt are contained, but when they are contained using ion exchange, the order of alkaline earth metals and cobalt is preferred.

アルカリ土類金属及びコバルトの含有量としては、ゼオ
ライト中のアルミナモル数に対してモル比でアルカリ土
類金属は0.1〜1倍、コバルトは0.5〜1.7倍、
好ましくはアルカリ土類金属量とコバルト量を合計して
1.0〜2.5倍である。アルカリ土類金属量が0.1
未満であると耐久性・触媒活性の向上効果が小さい恐れ
があり、また1倍より犬であると添加量にみあうだけの
効果か得られにくい。コバルト量か05倍未満であると
触媒としての使用に適合しない恐れかあり、また1、7
倍より大であると添加量にみあうだけの耐久性・活性が
得られにくい。
As for the content of alkaline earth metals and cobalt, the molar ratio of alkaline earth metals to the number of moles of alumina in the zeolite is 0.1 to 1 times, cobalt 0.5 to 1.7 times,
Preferably, the total amount of alkaline earth metal and cobalt is 1.0 to 2.5 times. Alkaline earth metal content is 0.1
If the amount is less than 1, the effect of improving durability and catalytic activity may be small, and if the amount is more than 1, it is difficult to obtain an effect commensurate with the amount added. If the amount of cobalt is less than 0.5 times, it may not be suitable for use as a catalyst;
If the amount is more than double, it will be difficult to obtain durability and activity commensurate with the amount added.

また、アルカリ土類金属やコバルトを蒸発乾固等で担持
して使用することもできる。蒸発乾固の方法としては通
常の方法でよく、ゼオライトをアルカリ土類金属あるい
はコバルトを含む水溶液に没入し、乾燥器等で、溶媒で
ある水を蒸発させる等の方法でよい。水溶液中のアルカ
リ土類金属およびコバルト塩の濃度は特に定めないが、
アルカリ土類金属或いはコバルトを均に付着させればよ
く、通常0.01〜1 moJl/L テよい。
Furthermore, alkaline earth metals and cobalt may be supported by evaporation to dryness or the like. The evaporation to dryness may be carried out by any conventional method, such as by immersing the zeolite in an aqueous solution containing an alkaline earth metal or cobalt, and then evaporating water as a solvent in a dryer or the like. The concentrations of alkaline earth metals and cobalt salts in the aqueous solution are not particularly defined, but
The alkaline earth metal or cobalt may be deposited evenly, usually in an amount of 0.01 to 1 moJl/L.

イオン交換した試料は、固液分離、洗浄、乾燥した後、
触媒として使用される。また必要に応じて焼成してから
用いることもできる。
After the ion-exchanged sample is solid-liquid separated, washed, and dried,
Used as a catalyst. It can also be used after being fired if necessary.

本発明の排ガス浄化触媒の5i(h/AQ2(hモル比
は、使用したゼオライト基材の5i02/Affi20
3モル比と実質的に変らない。また、排ガス浄化触媒の
結晶構造もイオン交換前後で本質的に異なるものではな
い。
The 5i (h/AQ2 (h molar ratio) of the exhaust gas purification catalyst of the present invention is 5i02/Affi20 of the zeolite base material used.
3 molar ratio is substantially unchanged. Furthermore, the crystal structure of the exhaust gas purification catalyst is not essentially different before and after ion exchange.

本発明の排ガス浄化触媒は、粘土鉱物等のバインダーと
混合し成形して使用することもできるし、また予めゼオ
ライトを成形し、その成形体にコバルトをイオン交換し
て含有させることもできる。このゼオライトを成形する
際に用いられるバインダーとしては、例えばカオリン、
アタパルガイド、モンモリロナイト、ベントナイト、ア
ロフェン、セピオライト等の粘土鉱物又はシリカゾル、
アルミナゾルなどを例示することができる。あるいはバ
インダーを用いずに直接合成したバインダレスゼオライ
ト成形体であっても良い。
The exhaust gas purification catalyst of the present invention can be used by being mixed with a binder such as a clay mineral and molded, or zeolite can be molded in advance and cobalt can be contained in the molded product by ion exchange. Examples of binders used when molding this zeolite include kaolin,
Clay minerals such as attapulgite, montmorillonite, bentonite, allophane, sepiolite, or silica sol,
Examples include alumina sol. Alternatively, it may be a binderless zeolite molded body synthesized directly without using a binder.

またさらに、コージェライト族あるいは金属製等のハニ
カム状基材にゼオライトをウォッシュコートして用いる
こともできる。
Furthermore, zeolite can also be wash-coated onto a honeycomb-shaped substrate made of cordierite or metal.

酸素過剰排ガス中の窒素酸化物、一酸化炭素及び炭化水
素の除去は、本発明の排ガス浄化触媒と、窒素酸化物、
一酸化炭素及び炭化水素を含む酸素過剰排ガスを接触さ
せることにより行うことができる。本発明か対象とする
酸素過剰の排ガスとは、排ガス中に含まれる一酸化炭素
、炭化水素及び水素を完全に酸化するのに必要な酸素量
よりも過剰な酸素が含まれている排ガスをいい、このよ
うな排ガスとしては例えば、自動車等の内燃機関から排
出される排ガス、特に空燃比が大きい状態(所謂リーン
領域)での排ガス等が具体的に例示される。
Removal of nitrogen oxides, carbon monoxide, and hydrocarbons in oxygen-excess exhaust gas is achieved by using the exhaust gas purification catalyst of the present invention, nitrogen oxides,
This can be carried out by contacting oxygen-rich exhaust gas containing carbon monoxide and hydrocarbons. The oxygen-excessive exhaust gas that is the object of the present invention refers to exhaust gas that contains oxygen in excess of the amount of oxygen required to completely oxidize carbon monoxide, hydrocarbons, and hydrogen contained in the exhaust gas. Specific examples of such exhaust gas include exhaust gas discharged from internal combustion engines such as automobiles, particularly exhaust gas in a state where the air-fuel ratio is high (so-called lean region).

なお上記排ガス触媒は、一酸化炭素、炭化水素及び水素
を含み酸素過剰でない排ガスの場合に通用されても、何
等その性能が変化することはない。
Note that even if the above-mentioned exhaust gas catalyst is used for exhaust gas containing carbon monoxide, hydrocarbons, and hydrogen and not in excess of oxygen, its performance will not change in any way.

以下、本発明を実施例により更に詳細に説明するが、本
発明はこれら実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

(実 施 例) 実施例1 く触媒1の調製〉 SiO2/AN203モル比が40のアンモニウム型X
5M−5,20gを、濃度1.09moN/Lの塩化バ
リウムの水溶液180 gに没入し、80℃で16時間
攪拌した。固液分離後、充分水洗し、続けて0.23m
o文/Lの酢酸コバルト(II)4水和物の水溶液18
0 gに投入し、80℃で16時間攪拌した。スラリー
を固液分離後、ゼオライトケーキを再度調製した上記組
成の水溶液に投入して同様な操作を行った。固液分離後
、充分水洗し、110℃で10時間乾燥し、触媒1とし
た。この触媒のバリウムおよびコバルト含有量を化学分
析で調べたところ、ゼオライトのAQ20sモル数に対
してバリウムは044倍およびコバルトは2価として1
.13倍含まれていた。
(Example) Example 1 Preparation of catalyst 1> Ammonium type X with a SiO2/AN203 molar ratio of 40
20 g of 5M-5 was immersed in 180 g of an aqueous solution of barium chloride with a concentration of 1.09 moN/L, and stirred at 80° C. for 16 hours. After solid-liquid separation, wash thoroughly with water and continue to 0.23 m
Og/L aqueous solution of cobalt(II) acetate tetrahydrate 18
0 g and stirred at 80°C for 16 hours. After solid-liquid separation of the slurry, the zeolite cake was added to the prepared aqueous solution having the above composition and the same operation was performed. After solid-liquid separation, it was thoroughly washed with water and dried at 110° C. for 10 hours to obtain Catalyst 1. When the barium and cobalt contents of this catalyst were investigated by chemical analysis, barium was 0.44 times the number of moles of AQ20s of zeolite, and cobalt was 1 times as divalent.
.. It contained 13 times more.

実施例2 く触媒2の調製〉 実施例1と同様な操作でイオン交換を行ったか、アルカ
リ土類金属をストロンチウムとした。この触媒を触媒2
とし、この触媒のストロンチウムおよびコバルト含有量
を化学分析で調へたところ、ゼオライトのAl2O3モ
ル数に対して、ストロンチウムは023倍およびコバル
トは2価として1.12倍含まれていた。
Example 2 Preparation of Catalyst 2> Ion exchange was performed in the same manner as in Example 1, or strontium was used as the alkaline earth metal. This catalyst is used as catalyst 2.
When the strontium and cobalt contents of this catalyst were investigated by chemical analysis, it was found that strontium was contained 0.23 times and cobalt was contained 1.12 times as divalent relative to the number of moles of Al2O3 in the zeolite.

実施例3 〈触媒3の調製〉 実施例1と同様な操作でイオン交換を行ったか、アルカ
リ土類金属をマグネシウムとした。
Example 3 <Preparation of Catalyst 3> Ion exchange was performed in the same manner as in Example 1, or magnesium was used as the alkaline earth metal.

この触媒を触媒3とし、この触媒のマグネシウムおよび
コバルト含有量を化学分析で調へたところ、ゼオライト
のA4□03モル数に対して、マグネシウムは0,18
倍およびコバルトは2価として1.08倍含まれていた
This catalyst was designated as Catalyst 3, and the magnesium and cobalt contents of this catalyst were investigated by chemical analysis, and it was found that magnesium was 0.18% of the number of A4□03 moles of zeolite.
The amount of cobalt and cobalt was 1.08 times as divalent.

実施例4 く触媒4の調製〉 実施例1と同様な操作でイオン交換を行ったが、アルカ
リ土類金属をカルシウムとした。この触媒を触媒4とし
、この触媒のカルシウムおよびコバルト含有量を化学分
析で調べたところ、ゼオライトのA4203モル数に対
して、カルシウムは0.16倍およびコバルトは2価と
して10404倍含ていた。
Example 4 Preparation of Catalyst 4> Ion exchange was carried out in the same manner as in Example 1, except that calcium was used as the alkaline earth metal. This catalyst was designated as Catalyst 4, and when the calcium and cobalt contents of this catalyst were investigated by chemical analysis, it was found that the calcium and cobalt contents were 0.16 times and divalent cobalt 10,404 times the number of A4203 moles of zeolite.

実施例5 く触媒5の調製〉 5i02/Ap2Q8モル比が40のアンモニウム型2
5Mづ、20gを、濃度1.23moR/Lの酢酸コバ
ルト(11)4水和物の本78液180gに投入し、8
0℃で16時間攪拌した。スラリーを固液分離後、ゼオ
ライトケーキを再度調製した上記組成の水溶液に投入し
て同様な操作を行った。続けて濃度1.09mofl/
Lの塩化バリウムの水溶液180 gに没入し、80℃
で16時間攪拌した。
Example 5 Preparation of catalyst 5> Ammonium type 2 with a 5i02/Ap2Q8 molar ratio of 40
Add 20g of 5M to 180g of Cobalt acetate (11) tetrahydrate solution 78 with a concentration of 1.23moR/L.
Stirred at 0°C for 16 hours. After solid-liquid separation of the slurry, the zeolite cake was added to the prepared aqueous solution having the above composition and the same operation was performed. Continue to increase the concentration to 1.09 mofl/
immersed in 180 g of barium chloride aqueous solution and heated to 80°C.
The mixture was stirred for 16 hours.

固液分離後、充分水洗し、 110℃で10時間乾燥し
、この触媒を触媒5とした。この触媒のバリウムおよび
コバルト含有量を化学分析で調へたところ、ゼオライト
のAU203上20に対してバリウムは058倍、コバ
ルトは2価として1.22倍含まれていた。
After solid-liquid separation, the catalyst was thoroughly washed with water and dried at 110°C for 10 hours, and this catalyst was designated as Catalyst 5. When the barium and cobalt contents of this catalyst were determined by chemical analysis, it was found that barium was contained 058 times and cobalt was contained 1.22 times as divalent compared to 20 times as much as the zeolite AU203.

実施例6 く触媒6の調製〉 5i02/A4zO++モル比か40のアンモニウム型
ZSM−5,20gを、濃度0.23[1lo9./L
 (7)酢酸コバルト(11)4水和物の水溶液180
gに投入し、80℃で16時間攪拌した。スラリーを固
液分離後、ゼオライトケーキを再度調製した上記組成の
水溶液に投入して同様な操作を行った。固液分離後、充
分水洗し、 110℃で10時間乾燥し、このゼオライ
トのコバルト含有量を化学分析で調へたところ、ゼオラ
イトのAP203上20に対してコバルト2価として1
.40倍含まれていた。更に該ゼオライト20gを、金
属バリウムとして1wt%に相当するバリウム量を含む
0.05moLlへの硝酸バリウム水溶液29 mLl
に投入し、85℃で10時間、つづけて110℃で10
時間乾燥させることによって、蒸発乾固を行った。
Example 6 Preparation of Catalyst 6> 20 g of ammonium type ZSM-5 with a 5i02/A4zO++ molar ratio of 40 was mixed with a concentration of 0.23 [1lo9. /L
(7) Aqueous solution of cobalt acetate (11) tetrahydrate 180
g and stirred at 80°C for 16 hours. After solid-liquid separation of the slurry, the zeolite cake was added to the prepared aqueous solution having the above composition and the same operation was performed. After solid-liquid separation, it was thoroughly washed with water and dried at 110°C for 10 hours.The cobalt content of this zeolite was determined by chemical analysis, and it was found that the cobalt content was 1 as divalent cobalt per 20 on AP203 of the zeolite.
.. It contained 40 times more. Further, 20 g of the zeolite was added to 29 mL of a barium nitrate aqueous solution to 0.05 moL containing a barium amount corresponding to 1 wt% as metallic barium.
and heated at 85℃ for 10 hours, then at 110℃ for 10 hours.
Evaporation to dryness was performed by drying for hours.

この触媒を触媒6とした。This catalyst was designated as Catalyst 6.

比較例1 く比較触媒1の調製〉 s;o2/ AR2(hモル比が40のアンモニウム型
ZSM−5,20gを、濃度0.23moN/Lの酢酸
コバルト(II)4水和物の水溶液180gに投入し、
80℃で16時間攪拌した。スラリーを固液分離後、ゼ
オライトケーキを再度調製した上記組成の水溶液に投入
して同様な操作を行った。固液分離後、充分水洗し、1
10℃で10時間乾燥し、この触媒を比較触媒1とした
。この触媒のコバルト含有量を化学分析で調べたところ
、ゼオラドの肩、03モル数に対して、コバルト2価と
して1.39倍含まれていた。
Comparative Example 1 Preparation of Comparative Catalyst 1>s; o2/AR2 (h) 20 g of ammonium type ZSM-5 with a molar ratio of 40 was mixed with 180 g of an aqueous solution of cobalt (II) acetate tetrahydrate with a concentration of 0.23 moN/L. put it into
The mixture was stirred at 80°C for 16 hours. After solid-liquid separation of the slurry, the zeolite cake was added to the prepared aqueous solution having the above composition and the same operation was performed. After solid-liquid separation, wash thoroughly with water,
The catalyst was dried at 10° C. for 10 hours and designated as Comparative Catalyst 1. When the cobalt content of this catalyst was investigated by chemical analysis, it was found that it contained 1.39 times as divalent cobalt compared to the number of moles of zeolade.

比較例2 〈比較触媒2の調製〉 5i(h/ Al2O3モル比が40のアンモニウム型
ZSM−5,20gを、その中に含まれているアルミナ
モル数に対して2倍となるように秤量された濃度0.1
moLl/Lの酢酸銅(II)水和物の水溶液に投入し
、直ちに2.5%アンモニア水を加えて水溶液のpHを
1O35とし、室温で16時間攪拌した。固液分離後、
充分水洗し、110℃で10時間乾燥し、この触媒を比
較触媒2とした。この触媒の銅含有量を化学分析で調べ
たところ、ゼオライトのARz03モル数に対して銅2
価として1.04倍含まれていた。
Comparative Example 2 <Preparation of Comparative Catalyst 2> 20g of ammonium type ZSM-5 with a 5i(h/Al2O3 molar ratio of 40) was weighed so as to be twice the number of moles of alumina contained therein. Concentration 0.1
The mixture was poured into an aqueous solution of copper (II) acetate hydrate of moLl/L, and immediately 2.5% aqueous ammonia was added to adjust the pH of the aqueous solution to 1O35, followed by stirring at room temperature for 16 hours. After solid-liquid separation,
The catalyst was thoroughly washed with water and dried at 110° C. for 10 hours, and this catalyst was designated as Comparative Catalyst 2. When the copper content of this catalyst was investigated by chemical analysis, it was found that 2 copper per mole of ARz03 of zeolite.
The value was 1.04 times higher.

比較例3 く比較触媒3の調製〉 SiO2/八、Q、03モル比が40のアンモニウム型
ZSM−5,20gを、濃度1.09moLlへの塩化
バリウムの水溶液180 gに投入し、80℃で16時
間攪拌した。固液分離後、充分水洗し、110℃で10
時間乾燥し、比較触媒3とした。この触媒のバリウム含
有量を化学分析で調べたところ、ゼオライトのAMz(
hモル数に対して、バリウムは07676倍含ていた。
Comparative Example 3 Preparation of Comparative Catalyst 3> 20 g of ammonium type ZSM-5 with a SiO2/8, Q, 03 molar ratio of 40 was added to 180 g of an aqueous solution of barium chloride at a concentration of 1.09 moLl, and the mixture was heated at 80°C. Stirred for 16 hours. After solid-liquid separation, thoroughly washed with water and heated at 110°C for 10
The catalyst was dried for a period of time to obtain Comparative Catalyst 3. When the barium content of this catalyst was investigated by chemical analysis, it was found that the AMz of zeolite (
The barium content was 07,676 times the h mole number.

実施例7 〈触媒の活性評価〉 実施例1〜6で調製した触媒1〜6をプレス成形後破砕
して12〜20メツシユに整粒し、その0.65グラム
を常圧固定床反応管に充填した。以下に示す組成のガス
(以下、反応ガスという)を600m交/min、で流
通し、500℃まで昇温し、05時間保持し前処理とし
た。その後、200℃まで降温し、5℃/win、の昇
温速度で800℃まで昇温した(反応1)。そまま続け
て800℃で5時間保持し、流通ガスを窒素にかえて、
放冷した。室温まで冷却し、流通ガスを反応ガスとし、
200℃まで昇温、0.5時間保持し前処理とした。そ
の後、5℃/min、の昇温速度800℃まで昇温した
(反応2)。反応ガス中の有害成分である窒素酸化物を
NOとし、反応1及び反応2での最高活性値の変化によ
って触媒の耐久性を評価した結果を表1に示す。N0浄
化率とは、次式で示される。
Example 7 <Catalyst activity evaluation> Catalysts 1 to 6 prepared in Examples 1 to 6 were press-molded and then crushed and sized into 12 to 20 meshes, and 0.65 g of the catalysts were placed in an atmospheric fixed bed reaction tube. Filled. A gas having the composition shown below (hereinafter referred to as reaction gas) was circulated at a rate of 600 m/min, heated to 500° C., and held for 05 hours to serve as pretreatment. Thereafter, the temperature was lowered to 200°C, and the temperature was increased to 800°C at a temperature increase rate of 5°C/win (reaction 1). Continue to hold at 800℃ for 5 hours, change the circulating gas to nitrogen,
It was left to cool. Cool to room temperature, use the circulating gas as a reaction gas,
The temperature was raised to 200° C. and held for 0.5 hours as a pretreatment. Thereafter, the temperature was raised to 800°C at a rate of 5°C/min (reaction 2). Table 1 shows the results of evaluating the durability of the catalyst based on the change in the maximum activity value in Reaction 1 and Reaction 2, using NO as nitrogen oxide, which is a harmful component in the reaction gas. The N0 purification rate is expressed by the following formula.

NO浄化率(%) = (N0In  N0out ) / NOl、x 
10 ONo、、  ・固定床反応管人口NO濃度N0
0ut:固定床反応管比ロNO濃度反応ガス組成 No
   700 ppm02  4零 (:0  1000 ppm (38,400ppm H2O3!k N2   バランス 比較例4 〈比較触媒活性評価〉 比較例1〜3で得られた比較触媒1〜3を、実施例7と
同じ方法を用いて活性を評価した結果を表1に示す。
NO purification rate (%) = (N0In N0out) / NOl, x
10 ONo, ・Fixed bed reaction tube population NO concentration N0
0ut: Fixed bed reaction tube ratio NO concentration reaction gas composition No.
700 ppm02 4 zero (:0 1000 ppm (38,400 ppm H2O3!k N2 Balance Comparative Example 4 <Comparative catalyst activity evaluation> Comparative catalysts 1 to 3 obtained in Comparative Examples 1 to 3 were subjected to the same method as Example 7. Table 1 shows the results of evaluating the activity.

表1 触媒の活性評価結果 とができると言う効果が得られる。Table 1 Catalyst activity evaluation results The effect of being able to do this is obtained.

他4名 (発明の効果) 表1より、本発明の触媒は、初期および反応ガス中80
0℃5時間保持後の活性ともに、比較触媒より酸素過剰
排ガス中での排ガス浄化能が高く、非常に優れた耐熱性
、耐久性を示すと言う効果がある。
Other 4 people (effects of the invention) From Table 1, it is clear that the catalyst of the present invention has 80%
Both the activity after holding at 0° C. for 5 hours and the ability to purify oxygen-rich exhaust gas in oxygen-excessive exhaust gas are higher than those of the comparative catalyst, and the catalyst exhibits extremely excellent heat resistance and durability.

Claims (1)

【特許請求の範囲】 1、窒素酸化物、一酸化炭素及び炭化水素を含む酸素過
剰の排ガスから、窒素酸化物、一酸化炭素及び炭化水素
を除去するゼオライト触媒であつて、SiO_2/Al
_2O_3モル比が少なくとも15以上のゼオライトで
あり、かつコバルトおよびアルカリ土類金属を含有する
ことを特徴とする排ガス浄化触媒。 2、請求項1の排ガス浄化触媒に、窒素酸化物、一酸化
炭素および炭化水素を含む燃焼排ガスを接触させること
を特徴とする排ガス中の窒素酸化物、一酸化炭素及び炭
化水素を除去する方法。
[Scope of Claims] 1. A zeolite catalyst for removing nitrogen oxides, carbon monoxide and hydrocarbons from oxygen-excess exhaust gas containing nitrogen oxides, carbon monoxide and hydrocarbons, which comprises SiO_2/Al
An exhaust gas purification catalyst characterized by being a zeolite having a _2O_3 molar ratio of at least 15 or more, and containing cobalt and an alkaline earth metal. 2. A method for removing nitrogen oxides, carbon monoxide, and hydrocarbons from exhaust gas, which comprises bringing combustion exhaust gas containing nitrogen oxides, carbon monoxide, and hydrocarbons into contact with the exhaust gas purification catalyst of claim 1. .
JP1337249A 1989-12-21 1989-12-26 Exhaust gas purification catalyst and method of using the same Expired - Fee Related JP2901295B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1337249A JP2901295B2 (en) 1989-12-26 1989-12-26 Exhaust gas purification catalyst and method of using the same
EP90124965A EP0434063B1 (en) 1989-12-21 1990-12-20 Method of purifying oxygen-excess exhaust gas
AU68281/90A AU634005B2 (en) 1989-12-21 1990-12-20 Catalyst for and method of purifying oxygen-excess exhaust gas
CA002032799A CA2032799C (en) 1989-12-21 1990-12-20 Catalyst for and method of purifying oxygen-excess exhaust gas
DE69030161T DE69030161T2 (en) 1989-12-21 1990-12-20 Process for cleaning exhaust gases with excess oxygen
US08/176,290 US5433933A (en) 1989-12-21 1993-12-30 Method of purifying oxygen-excess exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337249A JP2901295B2 (en) 1989-12-26 1989-12-26 Exhaust gas purification catalyst and method of using the same

Publications (2)

Publication Number Publication Date
JPH03196842A true JPH03196842A (en) 1991-08-28
JP2901295B2 JP2901295B2 (en) 1999-06-07

Family

ID=18306846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337249A Expired - Fee Related JP2901295B2 (en) 1989-12-21 1989-12-26 Exhaust gas purification catalyst and method of using the same

Country Status (1)

Country Link
JP (1) JP2901295B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443803A (en) * 1991-08-07 1995-08-22 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443803A (en) * 1991-08-07 1995-08-22 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas

Also Published As

Publication number Publication date
JP2901295B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
US5208198A (en) Catalyst for purifying exhaust gas
CA2032799C (en) Catalyst for and method of purifying oxygen-excess exhaust gas
US5443803A (en) Catalyst for purifying exhaust gas
AU650698B2 (en) Catalyst for purifying exhaust gas
US5514355A (en) Method for purifying an oxygen-rich exhaust gas
JPH05220403A (en) Exhaust gas purifying catalyst
JPH03196842A (en) Catalyst for purification of exhaust gas and method for using the same
JPH04219147A (en) Exhaust gas purification catalyst
JPH04219143A (en) Exhaust gas purification catalyst
JP3114982B2 (en) Exhaust gas purification catalyst and method of using the same
JP2939484B2 (en) Exhaust gas purification method
JPH04219146A (en) Exhaust gas purification catalyst
JP3362401B2 (en) Exhaust gas purification catalyst
JPH04210244A (en) Catalyst for cleaning exhaust gas
JP3324130B2 (en) Exhaust gas purification catalyst
JPH04219150A (en) Exhaust gas purification catalyst
JPH04219144A (en) Exhaust gas purification catalyst
JPH04219149A (en) Exhaust gas purification catalyst
JP2969843B2 (en) How to use exhaust gas purification catalyst
JPH04219145A (en) Exhaust gas purification catalyst
JPH04222635A (en) Catalyst for purifying exhaust gas
JPH04219142A (en) Exhaust gas purification catalyst
JPH03202157A (en) Catalyst for purifying exhaust gas
JPH06126187A (en) Removing method for nitrogen oxide
JPH04219148A (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees