JPH04219148A - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst

Info

Publication number
JPH04219148A
JPH04219148A JP2411260A JP41126090A JPH04219148A JP H04219148 A JPH04219148 A JP H04219148A JP 2411260 A JP2411260 A JP 2411260A JP 41126090 A JP41126090 A JP 41126090A JP H04219148 A JPH04219148 A JP H04219148A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
zeolite
cobalt
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2411260A
Other languages
Japanese (ja)
Inventor
Masao Nakano
中野 雅雄
Akinori Eshita
明徳 江下
Kazuhiko Sekizawa
関沢 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2411260A priority Critical patent/JPH04219148A/en
Priority to CA002057510A priority patent/CA2057510C/en
Priority to US07/805,611 priority patent/US5206196A/en
Priority to AU89651/91A priority patent/AU645156C/en
Priority to DE69104971T priority patent/DE69104971T2/en
Priority to EP91121619A priority patent/EP0491360B1/en
Publication of JPH04219148A publication Critical patent/JPH04219148A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To efficiently remove nitrogen oxide, CO, and hydrocarbon at the same time in a comparatively wide temperature range from the exhaust gas exhausted from the internal combustion engines of motorcars and the like by using the exhaust gas purification catalyst of zeolite having an SiO2/Al2O3 molar ratio of specified value or more and containing Co, rare earth metals, Ni and/or Zn. CONSTITUTION:The zeolite having an SiO2/Al2O3 molar ratio of at least 15 contains Co, rare earth metals, such as La, and Ni and/or Zn, preferably, in a Co amount of 10-150mol%, in a rare earth meal amount of 10-100mol%, in a Ni and/or Zn in an amount of 5-200mol%, and in the total amounts of 100-250mol% of the alumina in the zeolite, thus permitting nitrogen oxide, CO, and hydrocarbon to be removed efficiently at the same time in a comparatively wide temperature range from the exhaust gas exhausted from the internal combustion engines of motorcars and the like by using this catalyst.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、自動車エンジン等の内
燃機関から排出される排ガス中の窒素酸化物、一酸化炭
素及び炭化水素を除去する排ガス浄化用触媒に関し、特
に、酸素過剰の排ガスの窒素酸化物を浄化する触媒及び
その使用方法に関するものである。
[Field of Industrial Application] The present invention relates to an exhaust gas purifying catalyst for removing nitrogen oxides, carbon monoxide, and hydrocarbons from exhaust gas emitted from internal combustion engines such as automobile engines, and in particular, to The present invention relates to a catalyst for purifying nitrogen oxides and a method for using the same.

【0002】0002

【従来の技術】内燃機関から排出される排ガス中の有害
物質である窒素酸化物、一酸化炭素及び炭化水素は、例
えばPt,Rh,Pd等を担体上に担持させた三元触媒
により除去されている。しかしながら、ディーゼルエン
ジン排ガスについては、排ガス中に酸素が多く含まれて
いるために、窒素酸化物を除去するのに有効な触媒がな
く、触媒による排ガス浄化は行われていない。
[Prior Art] The harmful substances nitrogen oxides, carbon monoxide, and hydrocarbons in the exhaust gas emitted from internal combustion engines are removed by a three-way catalyst in which, for example, Pt, Rh, Pd, etc. are supported on a carrier. ing. However, since diesel engine exhaust gas contains a large amount of oxygen, there is no effective catalyst for removing nitrogen oxides, and exhaust gas purification by catalysts has not been carried out.

【0003】また、近年のガソリンエンジンにおいては
、低燃費化及び排出炭酸ガスの低減の目的で希薄燃焼さ
せることが必要となってきている。しかし、希薄燃焼ガ
ソリンエンジンの排ガスは酸素過剰雰囲気であるため、
上記のような従来の三元触媒は使用できず、有害成分特
に窒素酸化物を除去する方法は実用化されていない。
[0003] Furthermore, in recent years, it has become necessary for gasoline engines to perform lean combustion for the purpose of improving fuel efficiency and reducing carbon dioxide emissions. However, since the exhaust gas of a lean-burn gasoline engine is an oxygen-rich atmosphere,
Conventional three-way catalysts such as those described above cannot be used, and methods for removing harmful components, particularly nitrogen oxides, have not been put to practical use.

【0004】このような酸素過剰の排ガス中の特に窒素
酸化物を除去する方法として、アンモニア等の還元剤を
添加する方法、窒素酸化物をアルカリに吸収除去する方
法等が知られているが、移動発生源である自動車に用い
るには有効な方法ではなく、適用が限定される。
[0004] As a method for removing nitrogen oxides from such oxygen-excess exhaust gas, there are known methods such as adding a reducing agent such as ammonia, and removing nitrogen oxides by absorption with alkali. It is not an effective method for use in automobiles, which are mobile sources, and its application is limited.

【0005】近年、遷移金属をイオン交換したゼオライ
ト触媒は、アンモニア等の特別な還元剤を添加しなくて
も酸素過剰な排ガス中の窒素酸化物を除去できることが
報告されている。例えば特開昭63−283727号公
報や特開平1−130735号公報には、未燃焼の一酸
化炭素及び炭化水素等の還元剤が微量に含まれている酸
素過剰な排ガス中でも窒素酸化物を選択的に還元させる
ことが出来るゼオライト系触媒が提案されている。
[0005] In recent years, it has been reported that a zeolite catalyst in which transition metals are ion-exchanged can remove nitrogen oxides from oxygen-excess exhaust gas without adding a special reducing agent such as ammonia. For example, in JP-A-63-283727 and JP-A-1-130735, nitrogen oxides are selected even in oxygen-excess exhaust gas that contains trace amounts of reducing agents such as unburned carbon monoxide and hydrocarbons. A zeolite-based catalyst has been proposed that can reduce the

【0006】しかしながらこれらの従来提案に係わる触
媒は、長時間の高温下での使用による活性の劣化が著し
く、耐久性、触媒性能等の点で改善する必要があった。
However, these conventionally proposed catalysts suffer from significant deterioration in activity due to long-term use at high temperatures, and there is a need for improvement in terms of durability, catalytic performance, etc.

【0007】そこで、これらの問題点を解決する触媒と
して、SiO2/Al2O3モル比が少なくとも15以
上のゼオライトであり、かつコバルトおよび希土類金属
を含有することを特徴とする排ガス浄化触媒が提案され
ている(特願平2−149203号)。
[0007] Therefore, as a catalyst to solve these problems, an exhaust gas purification catalyst has been proposed, which is characterized by being a zeolite having a SiO2/Al2O3 molar ratio of at least 15 and containing cobalt and rare earth metals. (Patent Application No. 149203/1999).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特願平
2−149203号で提案された排ガス浄化触媒は、耐
久性は改善されたが、窒素酸化物を浄化できる温度域は
比較的高温で狭いため、内燃機関、特に自動車の排気ガ
ス浄化用の触媒としては、更に広い温度域でのより高い
窒素酸化物浄化能が要求される。
[Problems to be Solved by the Invention] However, although the exhaust gas purification catalyst proposed in Japanese Patent Application No. 2-149203 has improved durability, the temperature range in which nitrogen oxides can be purified is relatively high and narrow. Catalysts for purifying exhaust gas from internal combustion engines, particularly automobiles, are required to have higher nitrogen oxide purifying ability over a wider temperature range.

【0009】本発明の目的は、以上のような従来技術の
問題点を解消するために、自動車等の内燃機関から排出
される排ガスから、窒素酸化物、一酸化炭素及び炭化水
素を同時に除去し、更に熱劣化を起こしにくく耐久性に
優れ、触媒性能の高い触媒を提供するところにある。
An object of the present invention is to simultaneously remove nitrogen oxides, carbon monoxide, and hydrocarbons from exhaust gas emitted from internal combustion engines of automobiles, etc., in order to solve the problems of the prior art as described above. Furthermore, the present invention aims to provide a catalyst that is resistant to thermal deterioration, has excellent durability, and has high catalytic performance.

【0010】また本発明の別の目的は、このような触媒
を用いた排ガスの浄化方法を提供することにある。
Another object of the present invention is to provide a method for purifying exhaust gas using such a catalyst.

【0011】[0011]

【課題を解決するための手段】本発明者等は、上記問題
点について鋭意検討した結果、先に提案されたSiO2
/Al2O3モル比が少なくとも15以上のゼオライト
であり、かつコバルトおよび希土類金属を含有する排ガ
ス浄化触媒に更にニッケル及び/又は亜鉛を含有させる
ことにより窒素酸化物浄化能が向上することを見出し、
本発明を完成するに至った。
[Means for Solving the Problems] As a result of intensive study on the above-mentioned problems, the present inventors have developed the previously proposed SiO2
/Al2O3 molar ratio of at least 15 or more and an exhaust gas purification catalyst containing cobalt and rare earth metals has been found to improve nitrogen oxide purification ability by further containing nickel and/or zinc,
The present invention has now been completed.

【0012】すなわち本発明は、窒素酸化物、一酸化炭
素及び炭化水素を含む酸素過剰の排ガスから、窒素酸化
物、一酸化炭素及び炭化水素を除去するゼオライト触媒
であって、SiO2/Al2O3モル比が少なくとも1
5以上のゼオライトであり、かつコバルト及び希土類金
属並びにニッケル及び/又は亜鉛を含有することを特徴
とする排ガス浄化触媒、及び該排ガス浄化触媒に、窒素
酸化物、一酸化炭素及び炭化水素を含む燃焼排ガスを接
触させることを特徴とする排ガス中の窒素酸化物、一酸
化炭素及び炭化水素を除去する方法を提供するものであ
る。
That is, the present invention provides a zeolite catalyst for removing nitrogen oxides, carbon monoxide, and hydrocarbons from oxygen-excess exhaust gas containing nitrogen oxides, carbon monoxide, and hydrocarbons, the catalyst having a SiO2/Al2O3 molar ratio. is at least 1
An exhaust gas purification catalyst characterized by being a zeolite of 5 or more and containing cobalt and rare earth metals and nickel and/or zinc, and a combustion containing nitrogen oxides, carbon monoxide and hydrocarbons in the exhaust gas purification catalyst. The present invention provides a method for removing nitrogen oxides, carbon monoxide, and hydrocarbons from exhaust gas, which comprises bringing the exhaust gases into contact with each other.

【0013】以下、本発明を詳細に説明する。The present invention will be explained in detail below.

【0014】本発明にかかる排ガス浄化触媒は、コバル
ト及び希土類金属並びにニッケル及び/又は亜鉛を含有
させたSiO2/Al2O3モル比が少なくとも15で
あるゼオライトである。
The exhaust gas purification catalyst according to the present invention is a zeolite containing cobalt and rare earth metals, and nickel and/or zinc and having a SiO2/Al2O3 molar ratio of at least 15.

【0015】上記ゼオライトは一般的にはxM2/nO
・Al2O3・ySiO2・zH2O(ただしnは陽イ
オンの原子価、xは0.8〜2の範囲の数、yは2以上
の数、zは0以上の数である)の組成を有するものであ
るが、本発明において用いられるゼオライトはこのうち
、SiO2/Al2O3モル比が15以上のものである
。SiO2/Al2O3モル比はその上限は特に限定さ
れるものではないが、SiO2/Al2O3モル比が1
5未満であるとゼオライト自体の耐熱性、耐久性が低い
ため、触媒の十分な耐熱性、耐久性が得られない。一般
的にはSiO2/Al2O3モル比が15〜1000程
度のものが用いられる。
[0015] The above zeolite generally has xM2/nO
・Al2O3・ySiO2・zH2O (where n is the valence of the cation, x is a number in the range of 0.8 to 2, y is a number of 2 or more, and z is a number of 0 or more). Among these, the zeolite used in the present invention has a SiO2/Al2O3 molar ratio of 15 or more. The upper limit of the SiO2/Al2O3 molar ratio is not particularly limited, but the SiO2/Al2O3 molar ratio is 1.
If it is less than 5, the heat resistance and durability of the zeolite itself will be low, making it impossible to obtain sufficient heat resistance and durability of the catalyst. Generally, those having a SiO2/Al2O3 molar ratio of about 15 to 1000 are used.

【0016】本発明の触媒を構成するゼオライトは天然
品、合成品の何れであってもよく、これらゼオライトの
製造方法は特に限定されるものではないが、代表的には
フェリエライト、Y、ZSM−5、ZSM−11、ZS
M−12、ZSM−20等のゼオライトが使用できる。 また、これらのゼオライトは、そのままあるいはアンモ
ニウム塩、鉱酸等で処理してNH4型あるいはH型にイ
オン交換してから本発明の触媒として使用することもで
きる。
The zeolite constituting the catalyst of the present invention may be either a natural product or a synthetic product, and the method for producing these zeolites is not particularly limited, but typically ferrierite, Y, ZSM -5, ZSM-11, ZS
Zeolites such as M-12 and ZSM-20 can be used. Further, these zeolites can be used as the catalyst of the present invention either as they are or after being ion-exchanged into NH4 type or H type by treatment with ammonium salts, mineral acids, etc.

【0017】本発明で用いるゼオライトは、コバルト及
び希土類金属並びにニッケル及び/又は亜鉛を含有する
。ニッケルと亜鉛は同時に含有していてもよいが,どち
らか一方を含有していればよい。ゼオライトにコバルト
及び希土類金属並びにニッケル及び/又は亜鉛を含有さ
せる方法としては、特に限定されず、一般には、水溶性
の塩を用いてイオン交換や含浸担持法、蒸発乾固法等に
より含有させることができる。含有させる際、各々の元
素は順次含有させてもかまわないし、一度に含有させて
もかまわない。
The zeolite used in the present invention contains cobalt and rare earth metals as well as nickel and/or zinc. Nickel and zinc may be contained at the same time, but only one of them may be contained. The method of incorporating cobalt, rare earth metals, and nickel and/or zinc into zeolite is not particularly limited, but generally includes ion exchange using a water-soluble salt, impregnation support method, evaporation drying method, etc. I can do it. When containing each element, each element may be contained sequentially or all at once.

【0018】コバルト及び希土類金属並びにニッケル及
び/又は亜鉛を含有させる際の水溶液中のコバルト及び
希土類金属並びにニッケル及び/又は亜鉛イオンの濃度
は、目的とする触媒のイオン交換率によって任意に設定
することができる。希土類金属イオンとしては、La,
Ce,Pr,Nd,Y等が使用できる。また、コバルト
及び希土類金属並びにニッケル及び/又は亜鉛イオンは
可溶性の塩の形で使用でき、可溶性の塩としては、硝酸
塩、酢酸塩、シュウ酸塩、塩酸塩等が好適に使用できる
[0018] When containing cobalt and rare earth metals and nickel and/or zinc, the concentrations of cobalt and rare earth metals and nickel and/or zinc ions in the aqueous solution can be arbitrarily set depending on the desired ion exchange rate of the catalyst. I can do it. Rare earth metal ions include La,
Ce, Pr, Nd, Y, etc. can be used. Further, cobalt and rare earth metals and nickel and/or zinc ions can be used in the form of soluble salts, and nitrates, acetates, oxalates, hydrochlorides, etc. can be preferably used as the soluble salts.

【0019】コバルト及び希土類金属並びにニッケル及
び/又は亜鉛の含有量としては、それぞれゼオライト中
のアルミナモル数に対してモル比で、コバルトは0.1
〜1.5倍、希土類金属は0.1〜1倍、ニッケルある
いは亜鉛は0.05〜2倍が好ましく、コバルト及び希
土類金属並びにニッケル及び/又は亜鉛の量を合計して
1.0〜2.5倍が好ましい。
[0019] The content of cobalt, rare earth metals, and nickel and/or zinc is a molar ratio relative to the number of moles of alumina in the zeolite, and the content of cobalt is 0.1.
~1.5 times, preferably 0.1 to 1 times for rare earth metals, and 0.05 to 2 times for nickel or zinc, and the total amount of cobalt and rare earth metals and nickel and/or zinc is 1.0 to 2 times. .5 times is preferable.

【0020】コバルト及び希土類金属並びにニッケル及
び/又は亜鉛を含有させた試料は、一般に、固液分離、
洗浄、乾燥して使用される。また、必要に応じて焼成し
てから用いることもできる。
Samples containing cobalt and rare earth metals and nickel and/or zinc are generally subjected to solid-liquid separation,
Used after washing and drying. Moreover, it can also be used after baking if necessary.

【0021】本発明の排ガス浄化触媒は、粘土鉱物等の
バインダーと混合し成形して使用することもできる。ま
た、予めゼオライトを成形し、その成形体にコバルト及
び希土類金属並びにニッケル及び/又は亜鉛を含有させ
ることもできる。ゼオライトを成形する際に用いられる
バインダーとしては、特に制限はないが、カオリン、ア
タパルガイト、モンモリロナイト、ベントナイト、アロ
フェン、セピオライト等の粘土鉱物やシリカ、アルミナ
等が使用できる。あるいは、バインダーを用いずに成形
体を直接合成したバインダレスゼオライト成形体であっ
ても良い。また、コージェライト製あるいは金属製のハ
ニカム状基材にゼオライトをウォッシュコートして用い
ることもできる。
The exhaust gas purification catalyst of the present invention can also be used by mixing it with a binder such as clay minerals and molding the mixture. Alternatively, zeolite may be formed in advance and the formed body may contain cobalt, rare earth metals, and nickel and/or zinc. The binder used when molding zeolite is not particularly limited, but clay minerals such as kaolin, attapulgite, montmorillonite, bentonite, allophane, sepiolite, silica, alumina, etc. can be used. Alternatively, it may be a binderless zeolite molded product that is directly synthesized without using a binder. Moreover, zeolite can be wash-coated onto a cordierite or metal honeycomb base material.

【0022】酸素過剰排ガスの窒素酸化物、一酸化炭素
、炭化水素の除去は、本発明の排ガス浄化触媒と該排ガ
スを接触させることにより行うことができる。本発明が
対象とする酸素過剰の排ガスとは、排ガス中に含まれる
一酸化炭素、炭化水素及び水素を完全に酸化するのに必
要な酸素量よりも過剰な酸素が含まれている排ガスをい
い、このような排ガスとしては例えば、自動車等の内燃
機関から排出される排ガス、特に空燃費が大きい状態(
所謂リーン領域)での排ガス等が具体的に例示される。
[0022] Removal of nitrogen oxides, carbon monoxide, and hydrocarbons from oxygen-excess exhaust gas can be carried out by bringing the exhaust gas into contact with the exhaust gas purification catalyst of the present invention. The oxygen-excessive exhaust gas that is the object of the present invention refers to exhaust gas that contains oxygen in excess of the amount of oxygen required to completely oxidize carbon monoxide, hydrocarbons, and hydrogen contained in the exhaust gas. Examples of such exhaust gas include exhaust gas emitted from internal combustion engines such as automobiles, especially when air and fuel consumption is high (
A specific example is exhaust gas in a so-called lean region.

【0023】なお上記排ガス触媒は、一酸化炭素、炭化
水素及び水素を含み酸素過剰でない排ガスの場合に適用
されても、何等その性能が変化することはない。
[0023] Even if the above exhaust gas catalyst is applied to exhaust gas containing carbon monoxide, hydrocarbons and hydrogen and not in excess of oxygen, its performance will not change in any way.

【0024】[0024]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はこれら実施例に限定されるものではな
い。
[Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.

【0025】比較例1  <比較触媒1の調製>特開昭
59−54620号公報実施例5の方法に従ってZSM
−5類似ゼオライトを合成した。無水ベースにおける酸
化物のモル比で表わして、次の化学組成を有していた。
Comparative Example 1 <Preparation of Comparative Catalyst 1> ZSM was prepared according to the method of Example 5 of JP-A-59-54620.
-5 similar zeolite was synthesized. It had the following chemical composition, expressed as molar ratios of oxides on an anhydrous basis.

【0026】 1.1Na2O・Al2O3・40SiO2これを塩化
アンモニウム水溶液でイオン交換して調製したアンモニ
ウム型ZSM−5;200gを、濃度1.09mol/
lの塩化ランタンの水溶液1800mlに投入し、80
℃で16時間攪拌した。固液分離後、充分水洗し、続け
て0.23mol/lの酢酸コバルト(II)4水和物
の水溶液1800mlに投入し、80℃で16時間攪拌
した。スラリ−を固液分離後、ゼオライトケ−キを再度
調製した上記組成の水溶液に投入して同様な操作を行っ
た。固液分離後、充分水洗し、110℃で10時間乾燥
し、比較触媒1を得た。この触媒のランタンおよびコバ
ルト含有量を化学分析で調べたところ、ゼオライトのA
l2O3モル数に対して、ランタンは0.33倍、コバ
ルトは2価として1.13倍含まれていた。
1.1Na2O・Al2O3・40SiO2 Ammonium type ZSM-5 prepared by ion exchange with ammonium chloride aqueous solution;
1 of an aqueous solution of lanthanum chloride, and
Stirred at ℃ for 16 hours. After solid-liquid separation, the mixture was thoroughly washed with water, then poured into 1800 ml of an aqueous solution of 0.23 mol/l cobalt (II) acetate tetrahydrate, and stirred at 80° C. for 16 hours. After solid-liquid separation of the slurry, the zeolite cake was added to the prepared aqueous solution having the above composition and the same operation was performed. After solid-liquid separation, it was thoroughly washed with water and dried at 110°C for 10 hours to obtain Comparative Catalyst 1. When the lanthanum and cobalt contents of this catalyst were investigated by chemical analysis, it was found that the zeolite A
The amount of lanthanum was 0.33 times the number of moles of 12O3, and the amount of cobalt was 1.13 times as divalent.

【0027】実施例1<触媒1の調製>比較例1で調製
した比較触媒1;15gを、濃度0.05mol/lの
硝酸ニッケル水溶液43mlに投入し、撹拌しながら減
圧乾燥し、更に110℃で16時間乾燥し、触媒1を得
た。この触媒のランタン、コバルト及びニッケルの含有
量を化学分析で調べたところ、ゼオライトのAl2O3
モル数に対して、ランタンは0.33倍、コバルトは2
価として1.13倍、ニッケルは0.4倍含まれていた
Example 1 <Preparation of Catalyst 1> 15 g of Comparative Catalyst 1 prepared in Comparative Example 1 was added to 43 ml of an aqueous nickel nitrate solution with a concentration of 0.05 mol/l, dried under reduced pressure while stirring, and further heated at 110°C. After drying for 16 hours, Catalyst 1 was obtained. When the content of lanthanum, cobalt and nickel in this catalyst was investigated by chemical analysis, it was found that Al2O3 of zeolite
Lanthanum is 0.33 times the number of moles, cobalt is 2 times
It contained 1.13 times the value and 0.4 times the nickel content.

【0028】実施例2  <触媒2の調製>比較例1で
得たアンモニウム型ZSM−5;20gを、濃度1.0
9mol/lの塩化ランタンの水溶液180mlに投入
し、80℃で16時間攪拌した。固液分離後、充分水洗
し、続けて0.23mol/lの硝酸コバルト(II)
4水和物の水溶液180mlに投入し、80℃で16時
間攪拌した。スラリ−を固液分離後、ゼオライトケ−キ
を再度調製した上記組成の水溶液に投入して同様な操作
を行った。固液分離後、充分水洗し、110℃で10時
間乾燥した後、実施例1と同様の操作で触媒2を調製し
た。この触媒のランタン、コバルト及びニッケルの含有
量を化学分析で調べたところ、ゼオライトのAl2O3
モル数に対して、ランタンは0.32倍、コバルトは2
価として0.42倍、ニッケルは0.4倍含まれていた
Example 2 <Preparation of Catalyst 2> 20 g of ammonium type ZSM-5 obtained in Comparative Example 1 was prepared at a concentration of 1.0.
The mixture was poured into 180 ml of a 9 mol/l aqueous solution of lanthanum chloride, and stirred at 80° C. for 16 hours. After solid-liquid separation, it was thoroughly washed with water, and then 0.23 mol/l of cobalt(II) nitrate was added.
The mixture was poured into 180 ml of an aqueous solution of tetrahydrate, and stirred at 80° C. for 16 hours. After solid-liquid separation of the slurry, the zeolite cake was added to the prepared aqueous solution having the above composition and the same operation was performed. After solid-liquid separation, the mixture was thoroughly washed with water and dried at 110° C. for 10 hours, and then a catalyst 2 was prepared in the same manner as in Example 1. When the content of lanthanum, cobalt and nickel in this catalyst was investigated by chemical analysis, it was found that Al2O3 of zeolite
Lanthanum is 0.32 times the number of moles, cobalt is 2 times
It contained 0.42 times the value and 0.4 times the nickel content.

【0029】実施例3  <触媒3の調製>硝酸ニッケ
ルを塩化ニッケルに変えたこと以外は実施例2と同様な
操作で触媒3を調製した。この触媒のランタン、コバル
ト及びニッケルの含有量を化学分析で調べたところ、ゼ
オライトのAl2O3モル数に対して、ランタンは0.
32倍、コバルトは2価として0.42倍、ニッケルは
0.4倍含まれていた。
Example 3 <Preparation of Catalyst 3> Catalyst 3 was prepared in the same manner as in Example 2 except that nickel nitrate was replaced with nickel chloride. When the content of lanthanum, cobalt and nickel in this catalyst was investigated by chemical analysis, it was found that the content of lanthanum was 0.5% compared to the number of moles of Al2O3 in the zeolite.
32 times as much, cobalt as divalent 0.42 times, and nickel as 0.4 times.

【0030】実施例4  <触媒4の調製>硝酸ニッケ
ルを酢酸ニッケルに変えたこと以外は実施例2と同様な
操作で触媒4を調製した。この触媒のランタン、コバル
ト及びニッケルの含有量を化学分析で調べたところ、ゼ
オライトのAl2O3モル数に対して、ランタンは0.
32倍、コバルトは2価として0.42倍、ニッケルは
0.4倍含まれていた。
Example 4 <Preparation of Catalyst 4> Catalyst 4 was prepared in the same manner as in Example 2 except that nickel nitrate was replaced with nickel acetate. When the content of lanthanum, cobalt and nickel in this catalyst was investigated by chemical analysis, it was found that the content of lanthanum was 0.5% compared to the number of moles of Al2O3 in the zeolite.
32 times as much, cobalt as divalent 0.42 times, and nickel as 0.4 times.

【0031】比較例2  <比較触媒2の調製>比較例
1で得たアンモニウム型ZSM−5;200gを、濃度
1.09mol/lの塩化セリウムの水溶液1800m
lに投入し、80℃で16時間攪拌した。固液分離後、
充分水洗し、続けて0.23mol/lの酢酸コバルト
(II)4水和物の水溶液1800mlに投入し、80
℃で16時間攪拌した。スラリ−を固液分離後、ゼオラ
イトケ−キを再度調製した上記組成の水溶液に投入して
同様な操作を行った。固液分離後、充分水洗し、110
℃で10時間乾燥し、比較触媒2を得た。この触媒のセ
リウムおよびコバルト含有量を化学分析で調べたところ
、ゼオライトのAl2O3モル数に対して、セリウムは
0.13倍、コバルトは2価として1.12倍含まれて
いた。
Comparative Example 2 <Preparation of Comparative Catalyst 2> 200 g of ammonium type ZSM-5 obtained in Comparative Example 1 was added to 1800 ml of an aqueous solution of cerium chloride with a concentration of 1.09 mol/l.
1 and stirred at 80°C for 16 hours. After solid-liquid separation,
After thoroughly washing with water, it was poured into 1800 ml of an aqueous solution of 0.23 mol/l cobalt (II) acetate tetrahydrate, and
Stirred at ℃ for 16 hours. After solid-liquid separation of the slurry, the zeolite cake was added to the prepared aqueous solution having the above composition and the same operation was performed. After solid-liquid separation, wash thoroughly with water,
It was dried at ℃ for 10 hours to obtain Comparative Catalyst 2. When the cerium and cobalt contents of this catalyst were investigated by chemical analysis, it was found that cerium was contained 0.13 times and cobalt was contained 1.12 times as divalent relative to the number of moles of Al2O3 in the zeolite.

【0032】実施例5  <触媒5の調製>比較例2で
調製した比較触媒2;15gを、濃度0.05mol/
lの硝酸ニッケル水溶液43mlに投入し、撹拌しなが
ら減圧乾燥し、更に110℃で16時間乾燥し、触媒5
を得た。この触媒のセリウム、コバルト及びニッケル含
有量を化学分析で調べたところ、ゼオライトのAl2O
3モル数に対して、セリウムは0.13倍、コバルトは
2価として1.12倍、ニッケルは0.4倍含まれてい
た。
Example 5 <Preparation of catalyst 5> Comparative catalyst 2; 15 g prepared in Comparative Example 2 was mixed into a concentration of 0.05 mol/
1 of nickel nitrate aqueous solution, dried under reduced pressure while stirring, and further dried at 110°C for 16 hours.
I got it. When the cerium, cobalt and nickel contents of this catalyst were investigated by chemical analysis, it was found that the zeolite Al2O
With respect to 3 moles, cerium was contained 0.13 times, cobalt was contained 1.12 times as divalent, and nickel was contained 0.4 times.

【0033】比較例3  <比較触媒3の調製>希土類
金属をイットリウムとした以外は比較例2と同様な操作
で比較触媒3を調製した。この触媒のイットリウムおよ
びコバルト含有量を化学分析で調べたところ、ゼオライ
トのAl2O3モル数に対して、イットリウムは0.2
8倍、コバルトは2価として0.98倍含まれていた。
Comparative Example 3 <Preparation of Comparative Catalyst 3> Comparative Catalyst 3 was prepared in the same manner as Comparative Example 2 except that yttrium was used as the rare earth metal. When the yttrium and cobalt contents of this catalyst were investigated by chemical analysis, it was found that yttrium is 0.2% of the number of moles of Al2O3 in zeolite.
It contained 8 times more cobalt, and 0.98 times more cobalt as divalent.

【0034】実施例6  <触媒6の調製>比較例3で
調製した比較触媒3;15gを、濃度0.05mol/
lの硝酸ニッケル水溶液43mlに投入し、撹拌しなが
ら減圧乾燥し、更に110℃で16時間乾燥し、触媒6
を得た。この触媒のイットリウム、コバルト及びニッケ
ル含有量を化学分析で調べたところ、ゼオライトのAl
2O3モル数に対して、イットリウムは0.28倍、コ
バルトは2価として0.98倍、ニッケルは0.4倍含
まれていた。
Example 6 <Preparation of catalyst 6> Comparative catalyst 3; 15 g prepared in Comparative Example 3 was mixed into a concentration of 0.05 mol/
1 of nickel nitrate aqueous solution, dried under reduced pressure while stirring, and further dried at 110°C for 16 hours.
I got it. When the yttrium, cobalt and nickel contents of this catalyst were investigated by chemical analysis, it was found that the zeolite Al
With respect to the number of moles of 2O3, yttrium was contained 0.28 times, cobalt was contained 0.98 times as divalent, and nickel was contained 0.4 times.

【0035】比較例4  <比較触媒4の調製>希土類
金属をプラセオジウムとした以外は比較例2と同様な操
作で比較触媒4を調製した。この触媒のプラセオジウム
およびコバルト含有量を化学分析で調べたところ、ゼオ
ライトのAl2O3モル数に対して、プラセオジウムは
0.14倍、コバルトは2価として1.04倍含まれて
いた。
Comparative Example 4 <Preparation of Comparative Catalyst 4> Comparative Catalyst 4 was prepared in the same manner as Comparative Example 2 except that praseodymium was used as the rare earth metal. When the praseodymium and cobalt contents of this catalyst were investigated by chemical analysis, it was found that praseodymium was contained 0.14 times and cobalt was contained 1.04 times as divalent relative to the number of moles of Al2O3 in the zeolite.

【0036】実施例7  <触媒7の調製>比較例4で
調製した比較触媒4;15gを、濃度0.05mol/
lの硝酸ニッケル水溶液43mlに投入し、撹拌しなが
ら減圧乾燥し、更に110℃で16時間乾燥し、触媒7
を得た。この触媒のプラセオジウム、コバルト及びニッ
ケル含有量を化学分析で調べたところ、ゼオライトのA
l2O3モル数に対して、プラセオジウムは0.14倍
、コバルトは2価として1.04倍、ニッケルは0.4
倍含まれていた。
Example 7 <Preparation of Catalyst 7> 15 g of Comparative Catalyst 4 prepared in Comparative Example 4 was mixed at a concentration of 0.05 mol/
1 of nickel nitrate aqueous solution, dried under reduced pressure while stirring, and further dried at 110°C for 16 hours.
I got it. When the praseodymium, cobalt and nickel contents of this catalyst were investigated by chemical analysis, it was found that the zeolite A
With respect to the number of moles of l2O3, praseodymium is 0.14 times, cobalt is 1.04 times as divalent, and nickel is 0.4 times.
twice included.

【0037】比較例5  <比較触媒5の調製>比較例
1で得たアンモニウム型ZSM−5;20gを、濃度0
.23mol/lの酢酸ニッケル4水和物の水溶液18
0mlに投入し、80℃で16時間攪拌した。スラリ−
を固液分離後、ゼオライトケ−キを再度調製した上記組
成の水溶液に投入して同様な操作を行った。固液分離後
、充分水洗し、110℃で10時間乾燥し、比較触媒5
を得た。この触媒のニッケル含有量を化学分析で調べた
ところ、ゼオライトのAl2O3モル数に対して、ニッ
ケルは2価として1.40倍含まれていた。
Comparative Example 5 <Preparation of Comparative Catalyst 5> 20 g of ammonium type ZSM-5 obtained in Comparative Example 1 was
.. 23 mol/l aqueous solution of nickel acetate tetrahydrate 18
0ml and stirred at 80°C for 16 hours. Slurry
After solid-liquid separation, the zeolite cake was again put into the prepared aqueous solution having the above composition and the same operation was performed. After solid-liquid separation, it was thoroughly washed with water and dried at 110°C for 10 hours.
I got it. When the nickel content of this catalyst was investigated by chemical analysis, it was found that the nickel content was 1.40 times as divalent compared to the number of moles of Al2O3 in the zeolite.

【0038】実施例8  <触媒8の調製>硝酸ニッケ
ルを硝酸亜鉛に変えた以外は実施例1と同様の操作で触
媒8を調製した。この触媒のランタン、コバルト及び亜
鉛の含有量を化学分析で調べたところ、ゼオライトのA
l2O3モル数に対して、ランタンは0.33倍、コバ
ルトは2価として1.13倍、亜鉛は0.4倍含まれて
いた。
Example 8 <Preparation of Catalyst 8> Catalyst 8 was prepared in the same manner as in Example 1 except that nickel nitrate was replaced with zinc nitrate. When the content of lanthanum, cobalt and zinc in this catalyst was investigated by chemical analysis, it was found that the zeolite A
With respect to the number of moles of 12O3, lanthanum was contained 0.33 times, cobalt was contained 1.13 times as divalent, and zinc was contained 0.4 times.

【0039】実施例9  <触媒9の調製>硝酸ニッケ
ルを硝酸亜鉛に変えた以外は実施例2と同様の操作で触
媒9を調製した。この触媒のランタン、コバルト及び亜
鉛の含有量を化学分析で調べたところ、ゼオライトのA
l2O3モル数に対して、ランタンは0.32倍、コバ
ルトは2価として0.42倍、亜鉛は0.4倍含まれて
いた。
Example 9 <Preparation of Catalyst 9> Catalyst 9 was prepared in the same manner as in Example 2 except that nickel nitrate was replaced with zinc nitrate. When the content of lanthanum, cobalt and zinc in this catalyst was investigated by chemical analysis, it was found that the zeolite A
With respect to the number of moles of 12O3, lanthanum was contained 0.32 times, cobalt was contained 0.42 times as divalent, and zinc was contained 0.4 times.

【0040】実施例10  <触媒10の調製>硝酸ニ
ッケルを硝酸亜鉛に変えた以外は実施例5と同様の操作
で触媒10を調製した。この触媒のセリウム、コバルト
及び亜鉛含有量を化学分析で調べたところ、ゼオライト
のAl2O3モル数に対して、セリウムは0.13倍、
コバルトは2価として1.12倍、亜鉛は0.4倍含ま
れていた。
Example 10 <Preparation of Catalyst 10> Catalyst 10 was prepared in the same manner as in Example 5 except that nickel nitrate was replaced with zinc nitrate. When the cerium, cobalt, and zinc contents of this catalyst were investigated by chemical analysis, the cerium content was 0.13 times the Al2O3 mole number of the zeolite.
Cobalt was contained 1.12 times as divalent, and zinc was contained 0.4 times.

【0041】実施例11  <触媒の活性評価>触媒1
〜10および比較触媒1〜5を各々プレス成形後破砕し
て12〜20メッシュに整粒し、その1gを常圧固定床
反応管に充填した。下記に示す組成のガス(以下、反応
ガスという)を1000ml/min.で流通しながら
、500℃まで昇温し、0.5時間保持し前処理とした
。 その後、300℃から500℃の間、50℃毎に温度を
一定に保ち、各温度における触媒活性を測定した。各温
度で定常に達した後のNO浄化率を表1に示す。NO浄
化率とは、次式により求めた値である。
Example 11 <Evaluation of catalyst activity> Catalyst 1
-10 and Comparative Catalysts 1 to 5 were each press-molded and crushed to size 12 to 20 mesh, and 1 g of the particles was filled into an atmospheric fixed bed reaction tube. A gas having the composition shown below (hereinafter referred to as reaction gas) was supplied at a rate of 1000 ml/min. The temperature was raised to 500° C. and maintained for 0.5 hours while circulating at a temperature of 500° C. for pretreatment. Thereafter, the temperature was kept constant at every 50°C between 300°C and 500°C, and the catalytic activity at each temperature was measured. Table 1 shows the NO purification rate after reaching steady state at each temperature. The NO purification rate is a value determined by the following formula.

【0042】[0042]

【数1】 なお、何れの触媒でも、一酸化炭素は450℃以上で、
炭化水素は400℃以上でほとんど検出されなかった。
[Equation 1] In addition, with any catalyst, carbon monoxide is heated at 450°C or higher,
Almost no hydrocarbons were detected at temperatures above 400°C.

【0043】[0043]

【0044】[0044]

【表1】 実施例12  <触媒の耐久性評価>各触媒について、
上記に示す反応ガスを流しながら800℃で5時間の耐
久処理を施した後、実施例11と同様にして触媒活性を
測定した。各温度で定常に達した後のNO浄化率を表2
に示す。
[Table 1] Example 12 <Durability evaluation of catalyst> For each catalyst,
After carrying out a durability treatment at 800° C. for 5 hours while flowing the reaction gas shown above, the catalytic activity was measured in the same manner as in Example 11. Table 2 shows the NO purification rate after reaching steady state at each temperature.
Shown below.

【0045】[0045]

【表2】[Table 2]

【0046】[0046]

【発明の効果】表1、表2より、本発明の触媒は、比較
触媒よりも、酸素過剰排ガスの排ガス浄化能、特に窒素
酸化物の浄化能が高いことは明らかである。従って、本
発明の触媒を排ガスと接触させることにより、酸素過剰
の排ガスであっても、高い浄化率で窒素酸化物、一酸化
炭素及び炭化水素を浄化することができる。
Effects of the Invention From Tables 1 and 2, it is clear that the catalyst of the present invention has a higher ability to purify oxygen-excess exhaust gas, particularly nitrogen oxides, than the comparative catalyst. Therefore, by bringing the catalyst of the present invention into contact with exhaust gas, nitrogen oxides, carbon monoxide, and hydrocarbons can be purified at a high purification rate even if the exhaust gas contains excess oxygen.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】SiO2/Al2O3モル比が少なくとも
15であるゼオライトにコバルト及び希土類金属並びに
ニッケル及び/又は亜鉛を含むことを特徴とする、窒素
酸化物、一酸化炭素及び炭化水素を含む酸素過剰の排ガ
スから、窒素酸化物、一酸化炭素及び炭化水素を除去す
る排ガス浄化触媒。
1. An oxygen-enriched zeolite containing nitrogen oxides, carbon monoxide and hydrocarbons, characterized in that it contains cobalt and rare earth metals and nickel and/or zinc in a zeolite with a SiO2/Al2O3 molar ratio of at least 15. Exhaust gas purification catalyst that removes nitrogen oxides, carbon monoxide, and hydrocarbons from exhaust gas.
JP2411260A 1990-12-18 1990-12-18 Exhaust gas purification catalyst Pending JPH04219148A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2411260A JPH04219148A (en) 1990-12-18 1990-12-18 Exhaust gas purification catalyst
CA002057510A CA2057510C (en) 1990-12-18 1991-12-12 Catalyst for purifying exhaust gas
US07/805,611 US5206196A (en) 1990-12-18 1991-12-12 Catalyst for purifying exhaust gas
AU89651/91A AU645156C (en) 1990-12-18 1991-12-12 Catalyst for purifying exhaust gas
DE69104971T DE69104971T2 (en) 1990-12-18 1991-12-17 Catalytic converter for cleaning exhaust gases.
EP91121619A EP0491360B1 (en) 1990-12-18 1991-12-17 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2411260A JPH04219148A (en) 1990-12-18 1990-12-18 Exhaust gas purification catalyst

Publications (1)

Publication Number Publication Date
JPH04219148A true JPH04219148A (en) 1992-08-10

Family

ID=18520287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2411260A Pending JPH04219148A (en) 1990-12-18 1990-12-18 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JPH04219148A (en)

Similar Documents

Publication Publication Date Title
US5208198A (en) Catalyst for purifying exhaust gas
US5433933A (en) Method of purifying oxygen-excess exhaust gas
US5206196A (en) Catalyst for purifying exhaust gas
US5807528A (en) Catalyst for purifying exhaust gas
CA2046951A1 (en) Catalyst for purifying exhaust gas and method of using same
JPH04219147A (en) Exhaust gas purification catalyst
JPH04219143A (en) Exhaust gas purification catalyst
JP3044622B2 (en) Exhaust gas purification method
JPH04219146A (en) Exhaust gas purification catalyst
JP3298133B2 (en) Method for producing zeolite containing cobalt and palladium and method for purifying exhaust gas
JPH04219148A (en) Exhaust gas purification catalyst
JPH04219149A (en) Exhaust gas purification catalyst
JP3114982B2 (en) Exhaust gas purification catalyst and method of using the same
JP3362401B2 (en) Exhaust gas purification catalyst
JP2901295B2 (en) Exhaust gas purification catalyst and method of using the same
JPH04219145A (en) Exhaust gas purification catalyst
JP2939484B2 (en) Exhaust gas purification method
JPH04219142A (en) Exhaust gas purification catalyst
JPH04219144A (en) Exhaust gas purification catalyst
JPH04210244A (en) Catalyst for cleaning exhaust gas
JPH04222635A (en) Catalyst for purifying exhaust gas
JP2969843B2 (en) How to use exhaust gas purification catalyst
JPH05168940A (en) Exhaust gas purifying catalyst
JPH06126187A (en) Removing method for nitrogen oxide
JPH04219150A (en) Exhaust gas purification catalyst