JPH03202157A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPH03202157A
JPH03202157A JP1340530A JP34053089A JPH03202157A JP H03202157 A JPH03202157 A JP H03202157A JP 1340530 A JP1340530 A JP 1340530A JP 34053089 A JP34053089 A JP 34053089A JP H03202157 A JPH03202157 A JP H03202157A
Authority
JP
Japan
Prior art keywords
catalyst
earth metal
zeolite
exhaust gas
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1340530A
Other languages
Japanese (ja)
Other versions
JP2562702B2 (en
Inventor
Shiro Kondo
近藤 四郎
Koji Yokota
幸治 横田
Shinichi Matsumoto
伸一 松本
Kazunobu Ishibashi
一伸 石橋
Senji Kasahara
泉司 笠原
Masao Nakano
中野 雅雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Tosoh Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Tosoh Corp
Priority to JP1340530A priority Critical patent/JP2562702B2/en
Priority to AU61378/90A priority patent/AU627924C/en
Priority to CA002024154A priority patent/CA2024154C/en
Priority to DE69023437T priority patent/DE69023437T2/en
Priority to EP93105778A priority patent/EP0555889B1/en
Priority to EP90116653A priority patent/EP0415410B1/en
Priority to DE69025632T priority patent/DE69025632T2/en
Priority to US07/575,621 priority patent/US5270024A/en
Publication of JPH03202157A publication Critical patent/JPH03202157A/en
Application granted granted Critical
Publication of JP2562702B2 publication Critical patent/JP2562702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To obtain a NOx removing catalyst having excellent purifying capacity and durability generating no lowering of catalytic activity by supporting copper, alkaline earth metal and rare earth metal on zeolite. CONSTITUTION:As a catalyst removing NOx in exhaust gas, copper, alkaline earth metal such as Mg or Ca and rare earth metal such as La or Ce are supported on zeolite. Whereupon, NO is adsorbed on Cu, and NO and NO2 are adsorbed on alkaline earth metal and rare earth metal, and NO, etc., are immediately subjected to the catalytic reaction with the org. compound in exhaust gas to be reduced to harmless N2. This catalyst has excellent purifying capacity in an oxygen excessive atmosphere held to a wide range temp. region of 800 deg.C or lower and generates no lowering of activity even when it is used for a long time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等の内燃機関、硝酸製造工場等より排
出される排気ガス中の窒素酸化物(No。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is directed to the treatment of nitrogen oxides (No.

)を効率よく除去する触媒に関する。).Related to a catalyst that efficiently removes

(従来技術の説明) 近年、自動車等の内燃機関、硝酸製造工場等により排出
される排気ガス中には、有害成分である窒素酸化物(N
o、 )が含まれており、大気汚染の原因となっている
。そのため、この排気ガス中のNOxの除去が種々の方
法で検討されている。
(Description of Prior Art) In recent years, nitrogen oxides (N
o, ) and cause air pollution. Therefore, various methods are being considered to remove NOx from the exhaust gas.

また、自動車の低燃費化から希薄燃焼が考えられている
。この場合排気ガスはリーン側の酸素過剰雰囲気となり
、従来用いられてきた貴金属をAn20s等の担体に担
持した三元触媒では排気ガス中の有害成分のうちHC,
Coを酸化除去できても、NO8は排気中に還元物質が
不足するため浄化できない欠点があった。この問題を解
決する触媒としてゼオライトにイオン交換した銅(CU
)触媒(特開昭63−283727)がある。
Lean burn is also being considered in order to improve the fuel efficiency of automobiles. In this case, the exhaust gas becomes an oxygen-rich atmosphere on the lean side, and in the conventional three-way catalyst in which precious metals are supported on a carrier such as An20s, among the harmful components in the exhaust gas, HC,
Even if Co can be removed by oxidation, NO8 cannot be purified due to the lack of reducing substances in the exhaust gas. Copper (CU) ion-exchanged with zeolite is used as a catalyst to solve this problem.
) catalyst (Japanese Unexamined Patent Publication No. 63-283727).

このCuを担持したゼオライト触媒による酸素過剰雰囲
気におけるNo、除去の基本原理はCuがNO,を吸着
し、この吸着したNOxと排気ガス中に含まれる還元性
の未燃焼炭化水素とを接触反応させてN2まで還元する
ことにある。該触媒は200℃以上においてNOx浄化
能を示すが、以下のような問題点があった。
The basic principle of removing NO in an oxygen-rich atmosphere using this Cu-supported zeolite catalyst is that Cu adsorbs NO, and the adsorbed NOx reacts with reducing unburned hydrocarbons contained in the exhaust gas. The goal is to reduce the amount to N2. Although this catalyst exhibits NOx purification ability at temperatures above 200°C, it has the following problems.

(従来技術の問題点) Cu担持ゼオライト触媒はCuがNOxに対し優れた吸
着能を有しているため初期の触媒活性においては極めて
優れた特性を有するが、耐久性、特に高温での耐久性に
問題があった。そこで、長期間使用しても優れた触媒活
性を有する触媒の開発が望まれていた。該触媒が耐久性
に劣る原因は約600°C以上の高温において銅がゼオ
ライト中を移動、凝集し、触媒としての作用を失うこと
、さらにゼオライト構造の安定性がCuを担持すること
により低下し、長時間使用後にその構造が破壊すること
によるものである。また、前記触媒は200℃以下にお
いてNO8を還元できないため200℃以下ではNOx
を浄化できないと言う問題があった。この原因は、20
0°C以下の酸素過剰下ではNO,が一部NO2として
存在し、Cu担持ゼオライト触媒がN O2をN2にま
で還元できないためである。
(Problems with conventional technology) Cu-supported zeolite catalysts have extremely excellent properties in terms of initial catalytic activity because Cu has excellent adsorption ability for NOx, but they lack durability, especially durability at high temperatures. There was a problem. Therefore, it has been desired to develop a catalyst that has excellent catalytic activity even after long-term use. The reason for the poor durability of this catalyst is that at high temperatures of about 600°C or higher, copper moves in the zeolite and aggregates, losing its catalytic effect, and the stability of the zeolite structure decreases due to supporting Cu. This is due to the structure breaking down after long-term use. In addition, since the catalyst cannot reduce NO8 at temperatures below 200°C, NOx
There was a problem that it could not be purified. The reason for this is 20
This is because under an excess of oxygen at 0° C. or lower, some NO exists as NO2, and the Cu-supported zeolite catalyst cannot reduce NO2 to N2.

(発明の目的) 本発明は前記従来技術の問題点を解決するためになされ
たもので、酸素過剰雰囲気において80O℃以下の広範
囲の温度域において、従来の触媒以上に優れた浄化能を
有し、かつ長時間使用してもその触媒活性が低下しない
優れた耐久性を有するNoヶ除去用の新規な触媒を提供
することである。
(Objective of the Invention) The present invention has been made to solve the problems of the prior art, and has a purification ability superior to that of conventional catalysts in a wide temperature range of 80°C or less in an oxygen-rich atmosphere. It is an object of the present invention to provide a novel catalyst for removing No. 2, which has excellent durability and does not lose its catalytic activity even when used for a long time.

(第1発明の説明) 本第1発明は排気ガス中の窒素酸化物を酸素過剰雰囲気
中で、炭化水素の存在下で除去するための触媒であって
、ゼオライトにCuとアルカリ土類金属の1種以上と希
土類金属の1種以上とを担持したことを特徴とする排気
ガス浄化触媒に関するものである。
(Description of the first invention) The first invention is a catalyst for removing nitrogen oxides in exhaust gas in an oxygen-rich atmosphere and in the presence of hydrocarbons, which comprises Cu and alkaline earth metals in zeolite. The present invention relates to an exhaust gas purification catalyst characterized in that it supports one or more kinds of rare earth metals and one or more kinds of rare earth metals.

本発明にかかる触媒はCuとアルカリ土類金属と希土類
金属を複合して担持したので酸素過剰雰囲気において、
従来公知のCuを担持したゼオライト触媒以上に優れた
NOア除去能を有する。CUはNoを選択的に吸着する
能力があり、他のものに比し、No吸着能に優れている
。また、アルカリ土類金属もそれ自体No及びNO2を
吸着し、触媒活性能を有している。本発明はさらに希土
類金属を添加するものであり、この希土類金属もそれ自
体No、No2を吸着するとともにNo浄化活性を有し
ており、Cu、アルカリ土類金属、希土類金属が相互に
相まって優れた性能を発揮するのである。
Since the catalyst according to the present invention supports a composite of Cu, alkaline earth metal, and rare earth metal, in an oxygen-rich atmosphere,
It has a superior NOA removal ability compared to the conventionally known zeolite catalyst supporting Cu. CU has the ability to selectively adsorb No, and is superior to other materials in its No adsorption ability. Furthermore, alkaline earth metals themselves also adsorb No and NO2 and have catalytic activity. In the present invention, a rare earth metal is further added, and this rare earth metal itself adsorbs No and No2 and has No purification activity. It demonstrates performance.

本発明にかかる触媒が優れた効果を発揮する際の反応は
明らかでないが、排気ガスが該触媒と接触すると、No
がCu上に、またNO及びNO2がアルカリ土類金属及
び希土類金属上に吸着され、このNoなどが直ちに排気
ガス中の有機化合物と接触反応し、無害のN2に還元さ
れるのである。
Although the reaction in which the catalyst according to the present invention exerts its excellent effects is not clear, when exhaust gas comes into contact with the catalyst, No.
is adsorbed on Cu, and NO and NO2 are adsorbed on alkaline earth metals and rare earth metals, and this No etc. immediately reacts with organic compounds in the exhaust gas and is reduced to harmless N2.

この還元反応の際の反応式は次のようであると推定され
る。
The reaction formula for this reduction reaction is estimated to be as follows.

u HC+ v N O2−9 w H20+ y C○2+8N2 またCuイオンは600〜800℃という温度において
金属Cuに還元され易くゼオライト上を移動凝集し、耐
久性が低下するのが欠点であった。
u HC+ v N O2-9 w H20+ y C○2+8N2 Moreover, Cu ions are easily reduced to metal Cu at a temperature of 600 to 800°C, move on the zeolite, aggregate, and have a disadvantage that durability is reduced.

本発明はこのCuの移動凝集をアルカリ土類金属及び希
土類金属がCuイオン間に介在することにより防止する
効果を持ち、触媒活性の低下を防ぎ耐久性を向上させる
のである。
The present invention has the effect of preventing this movement and aggregation of Cu by interposing alkaline earth metals and rare earth metals between Cu ions, thereby preventing a decrease in catalytic activity and improving durability.

またNO8は酸素過剰下の200°C以下ではNO2と
して存在し200℃より高温になるとN。
In addition, NO8 exists as NO2 at temperatures below 200°C under excessive oxygen conditions, and becomes N at temperatures higher than 200°C.

として存在する。本触媒は、200°C以下では、NO
2をHCによって還元する触媒としての能力を有してい
ないが、N O2を吸着保持する能力があり、触媒の温
度が200℃以上に上昇し、NO2がNOに変わった時
点でHCによりNOをN2に還元でき、200℃以下の
低温でもNO2浄化能を有している。従来のCu含有ゼ
オライト触媒が200℃以下において、N O2を吸着
する能力、NO2をN2へ還元する触媒能をまったく有
しておらずNO2を浄化できないのに対し本発明に係る
触媒は、アルカリ土類金属および希土類金属がN O2
吸着能を有しているので800℃以下の広範囲の温度に
おいてNO,の浄化が可能である。
It exists as. This catalyst produces NO at temperatures below 200°C.
Although it does not have the ability as a catalyst to reduce NO2 with HC, it has the ability to adsorb and hold NO2, and when the temperature of the catalyst rises to 200°C or higher and NO2 changes to NO, NO is reduced by HC. It can be reduced to N2 and has NO2 purification ability even at low temperatures below 200°C. Conventional Cu-containing zeolite catalysts have no ability to adsorb NO2 or catalytic ability to reduce NO2 to N2 at temperatures below 200°C, and cannot purify NO2. metals and rare earth metals are N O2
Since it has adsorption ability, it is possible to purify NO at a wide range of temperatures below 800°C.

また、ゼオライト中のイオン交換点である強酸点は炭化
水素の分解によって生成したグラファイトが多数結合し
たコーク生成の要因となり、コーりによる細孔閉塞、さ
らにはゼオライトの構造破壊にもつながる。アルカリ土
類金属および希土類金属は炭化水素の付着点となる余分
の強酸点を消失させ、コークの生成を防止し、触媒の劣
化を防ぐことができる。
In addition, strong acid sites, which are ion exchange points in zeolite, are a factor in the formation of coke, which is a combination of many graphites produced by decomposition of hydrocarbons, leading to pore clogging due to coke and even structural destruction of the zeolite. Alkaline earth metals and rare earth metals can eliminate excess strong acid sites that serve as attachment points for hydrocarbons, prevent coke formation, and prevent catalyst deterioration.

(第1発明のその他の発明) 以下本第1発明を具体化した発明を説明する。(Other inventions of the first invention) An invention that embodies the first invention will be described below.

本発明において、ゼオライトは、SiO2およびAzz
 O,の四面体網状構造から構成され、個々の四面体構
造はその隅を介して酸素の架橋により互いに結合してお
り、通路および空洞が貫通した網状構造を作っている。
In the present invention, the zeolite is SiO2 and Azz
It is composed of a tetrahedral network structure of O, and the individual tetrahedral structures are connected to each other through oxygen bridges through their corners, creating a network structure penetrated by passages and cavities.

格子の負の電荷を有するイオン交換点(強酸点)には交
換可能な陽イオン(I−(’−、Na+等)が導入され
ている。SiO2/A120aのモル比は10〜200
が望ましい。
Exchangeable cations (I-('-, Na+, etc.) are introduced into the negatively charged ion exchange points (strong acid sites) of the lattice.The molar ratio of SiO2/A120a is 10 to 200.
is desirable.

lOより少ないと600℃以上の高温において熱安定性
が悪くなる。また、200より多くなるとAl1203
量が減ってイオン交換点が減少するためイオン交換量の
減少すなわち、触媒活性が低下するようになる。熱劣化
はアルミニウム周辺の構造変化が主因と推定されるので
、特に高温での耐久性を確保したい場合にはS i 0
2 /Al1203のモル比をA j220s tの少
ない20以上としたゼオライトを用いる。このうちS 
iO2/ A I! 203のモル比が20〜200で
あるZ’5M−5、Yあるいはモルデナイト構造のもの
が特に望ましい。また、ゼオライトとしてはCuやアル
カリ土類金属とのイオン交換が容易なNH,+やH+が
強酸点に付着したものが望ましいが、Na型でも使用し
得る。また、ゼオライト表面の細孔は10Å以下と小さ
いことが望ましい。細孔を多環芳香族炭化水素の入り込
めない大きさとすることによリコークが生成しにくく、
細孔閉塞による構造破壊や触媒活性低下も防止できる。
If it is less than 1O, thermal stability will deteriorate at high temperatures of 600°C or higher. Also, when the number exceeds 200, Al1203
Since the amount decreases and the ion exchange point decreases, the amount of ion exchange decreases, that is, the catalytic activity decreases. It is assumed that the main cause of thermal deterioration is structural changes around aluminum, so if you want to ensure durability especially at high temperatures, S i 0
A zeolite with a molar ratio of 2/Al1203 of 20 or more with a low A j220s t is used. Of these, S
iO2/ AI! Z'5M-5, Y or mordenite structures in which the molar ratio of 203 is 20 to 200 are particularly desirable. Further, as the zeolite, it is desirable to have NH, + or H+ attached to strong acid sites, which facilitates ion exchange with Cu or alkaline earth metals, but Na-type zeolites can also be used. Further, it is desirable that the pores on the zeolite surface be as small as 10 Å or less. By making the pores large enough to prevent polycyclic aromatic hydrocarbons from entering, it is difficult to generate liquid coke.
Structural destruction and catalyst activity reduction due to pore clogging can also be prevented.

Cuの担持量はゼオライト中のA1原子に対し5〜80
%が望ましい。5%より少ないと十分な触媒効果が得ら
れない。担持量が多いほど触媒性能は向上するが、80
%以上担持するとCuが移動凝集し易くなって劣化する
ようになり、アルカリ土類金属及び希土類金属も担持し
にくくなる。
The amount of Cu supported is 5 to 80 per A1 atom in the zeolite.
% is desirable. If it is less than 5%, a sufficient catalytic effect cannot be obtained. The catalyst performance improves as the amount of support increases, but 80
% or more, Cu tends to move and aggregate, resulting in deterioration, and it also becomes difficult to support alkaline earth metals and rare earth metals.

8− 希土類金属は■種以上を担持して用いる。希土類金属と
してはLaXCe、、Nd1YXPr、、、Smが望ま
しい。担持量はゼオライトに対し重量比で0.1〜10
%とする。0.1重量%から効果を示すが、十分な効果
を得るには0.3重量%以上がよい。しかし、10%を
越えると反応に必要な酸点が減少し、Noと炭化水素と
の反応が進行しにくくなる。
8- Rare earth metals are used by supporting more than ■ species. Desirable rare earth metals include LaXCe, Nd1YXPr, and Sm. The supported amount is 0.1 to 10 in weight ratio to zeolite.
%. The effect is shown from 0.1% by weight, but 0.3% by weight or more is preferable to obtain a sufficient effect. However, if it exceeds 10%, the number of acid sites necessary for the reaction will decrease, making it difficult for the reaction between No and the hydrocarbon to proceed.

希土類金属担持量を増加させると、一般に最適なNOx
を浄化できる温度が高温ヘシフトするので、触媒使用条
件により、担持量を増加させることが必要である。
Increasing the amount of rare earth metal supported generally reduces the optimum NOx
Since the temperature at which the catalyst can be purified shifts to higher temperatures, it is necessary to increase the supported amount depending on the catalyst usage conditions.

アルカリ土類金属は1種以上を担持して用いる。One or more types of alkaline earth metals are supported and used.

その中でもMg、Ca、Sr、Baが好ましい。Among them, Mg, Ca, Sr, and Ba are preferable.

前記アルカリ土類金属は活性低下の原因となる炭素の析
出にかかわる不要な酸点を消滅させ、ゼオライトからの
脱アルミニウムを防ぐ作用をなす。
The alkaline earth metal functions to eliminate unnecessary acid sites involved in carbon precipitation, which causes a decrease in activity, and to prevent dealumination from zeolite.

アルカリ土類金属の担持量はゼオライトに対し重量比で
0.05〜2%が望ましい。十分な効果を得るためには
0.1重量%以上が良い。しかし2重量%以上より多く
なっても触媒活性の向上はない。
The amount of alkaline earth metal supported is preferably 0.05 to 2% by weight relative to the zeolite. In order to obtain a sufficient effect, the content is preferably 0.1% by weight or more. However, even if the amount exceeds 2% by weight, there is no improvement in catalyst activity.

Cu、アルカリ土類金属、希土類金属の担持はイオン交
換法または含浸法によって行なう。イオン交換法、含浸
法共にCu、アルカリ土類金属及び希土類金属の酢酸塩
や硝酸塩などを用いて行なう。両方法ともに担持順序は
問わない。同時に行なってもよい。イオン交換法、含浸
法共に通常行なわれている方法でよい。例えば、イオン
交換法の場合は、ゼオライトの格子の負の電荷を有する
イオン交換点に導入されているNa+やH+等がCu、
希土類金属、アルカリ土類金属のイオンと交換して行な
われる。イオン交換法による担持は以下の工程によって
行なう。Cu、希土類金属アルカリ土類金属の酢酸塩や
硝酸塩などの水溶液中にゼオライトを24〜48時間浸
漬するイオン交換工程と、100〜120℃で約IO時
間加熱する乾燥工程、500〜700℃の温度に数時間
保持する焼成工程からなる。また、含浸法は前記塩の水
溶液中に1〜2時間浸漬後、大気中で乾燥して担持する
ものである。イオン交換法はCu、希0 土類金属、アルカリ土類金属のイオンがゼオライト中の
カチオンとイオン交換するものでCu、希土類金属およ
びアルカリ土類金属の付着力が強い。
Cu, alkaline earth metals, and rare earth metals are supported by an ion exchange method or an impregnation method. Both the ion exchange method and the impregnation method are carried out using acetates, nitrates, etc. of Cu, alkaline earth metals, and rare earth metals. In both methods, the order of loading does not matter. You may do both at the same time. Both the ion exchange method and the impregnation method may be commonly used. For example, in the case of the ion exchange method, Na+, H+, etc. introduced into the negatively charged ion exchange points of the zeolite lattice are Cu,
This is done by exchanging rare earth metal or alkaline earth metal ions. Supporting by ion exchange method is carried out by the following steps. An ion exchange process in which zeolite is immersed in an aqueous solution of Cu, rare earth metal, acetate or nitrate of alkaline earth metal for 24 to 48 hours, and a drying process in which the zeolite is heated at 100 to 120°C for approximately IO hours, at a temperature of 500 to 700°C. It consists of a firing process in which the material is held for several hours. Further, in the impregnation method, the salt is immersed in an aqueous solution of the salt for 1 to 2 hours and then dried in the air to be supported. In the ion exchange method, ions of Cu, rare earth metals, and alkaline earth metals are ion-exchanged with cations in zeolite, and the adhesion of Cu, rare earth metals, and alkaline earth metals is strong.

イオン交換する場合はアンモニア等を加えてやや塩基性
とした溶液中で行なった方が交換が容易となる。また、
溶液のpHは9〜12の範囲がよい。
When performing ion exchange, it is easier to perform the exchange in a solution made slightly basic by adding ammonia or the like. Also,
The pH of the solution is preferably in the range of 9-12.

本発明に係るCuとアルカリ土類金属と希土類金属を担
持した触媒は粉状体、ペレット状体、ハニカム状体など
その形体・構造は問わない。
The catalyst supporting Cu, alkaline earth metal, and rare earth metal according to the present invention may have any shape or structure such as powder, pellet, or honeycomb.

また、粉末状の触媒にアルミナゾルやシリカゾル等のバ
インダーを添加して、所定の形状に成型したり、水を加
えてスラリー状としてハニカム等の形状のアルミナ等の
耐火性基体上に塗布して用いてもよい。
In addition, a binder such as alumina sol or silica sol may be added to a powdered catalyst and molded into a predetermined shape, or water may be added to form a slurry and applied onto a refractory substrate such as alumina in the shape of a honeycomb. You can.

本発明に係る触媒は排気ガス中のNO8を未燃焼の炭化
水素あるいは部分的に燃焼して生成した含酸素化合物と
反応させて浄化するものである。
The catalyst according to the present invention purifies NO8 in exhaust gas by reacting it with unburned hydrocarbons or oxygen-containing compounds produced by partial combustion.

この炭化水素等は、排気ガス中に残留するものでよいが
、炭化水素などが反応を行なわせるのに必要な量よりも
不足している場合には、排気中に外部より炭化水素を添
加するのがよい。
This hydrocarbon etc. can remain in the exhaust gas, but if the amount of hydrocarbon etc. is insufficient than the amount required for the reaction to occur, hydrocarbons may be added to the exhaust gas from outside. It is better.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例■ 本発明に係る触媒を調製し、該触媒について酸素過剰の
リーン状態のモデルガスを用いたNoに対する浄化活性
評価を行なった。また、比較触媒についても同様の活性
評価を行なった。
Example 2 A catalyst according to the present invention was prepared, and the catalyst was evaluated for purification activity against No using a model gas in a lean state with excess oxygen. Similar activity evaluations were also conducted for comparative catalysts.

ゼオライトであるH型ZSM  5 (Si02/A1
203=40)粉末を、Cu十Ba+Y (No。
Zeolite H-type ZSM 5 (Si02/A1
203=40) powder, Cu+Ba+Y (No.

1) 、Cu+Mg+Y (No、2) 、Cu+Ca
+Y(No、3) 、Cu十Ba十La (La濃度を
4水準とする。No、4〜7)の酢酸塩の混合水溶液に
15分間含没後110℃で10時間乾燥した。その後、
500℃、3時間空気中焼成し実施例触媒(NO1〜7
)を得た。比較触媒は前記ゼオライトをCuの酢酸塩水
溶液(0,1moj2/V)に浸し、−晩1 2− イオン交換させCuを担持した触媒を比較触媒No。
1), Cu+Mg+Y (No, 2), Cu+Ca
It was immersed for 15 minutes in a mixed aqueous solution of acetates of +Y (No. 3), Cu + Ba + La (La concentration is set to 4 levels. No. 4 to 7), and then dried at 110° C. for 10 hours. after that,
The example catalyst (NO1 to 7) was fired at 500°C for 3 hours in air.
) was obtained. Comparative catalyst No. 1 was prepared by soaking the zeolite in an aqueous solution of Cu acetate (0.1 moj2/V) and subjecting it to ion exchange overnight to support Cu.

C1とし、また、Cuをイオン交換後水洗し、110℃
にて10時間乾燥後Baを前述と同様に含浸法で担持し
て得た触媒を比較触媒No、C2とした。
C1, and after ion-exchanging Cu, it was washed with water and heated to 110°C.
After drying for 10 hours, a catalyst obtained by supporting Ba by the impregnation method as described above was designated as comparative catalyst No. C2.

これら触媒の担持量を第1表に示す。Table 1 shows the supported amounts of these catalysts.

ベレット状とした本実施例触媒No、 1〜7および比
較触媒No、ClXC2を用い、第2表に示す自動車の
排気ガスを模したモデルガス中で800℃、3− 4 5時間保持した。その後、第2表に示したモデルガス中
で400°CにおけるNoつ浄化率を測定し、その結果
を第3表に示した。本実施例触媒No、 1〜7は比較
触媒に比し、著しく耐久性に優れていることが分かる。
The present example catalysts No. 1 to 7 and comparative catalyst No. ClXC2 in the form of pellets were held at 800° C. for 3 to 45 hours in a model gas simulating automobile exhaust gas shown in Table 2. Thereafter, the No. 1 purification rate at 400°C was measured in the model gas shown in Table 2, and the results are shown in Table 3. It can be seen that catalysts Nos. 1 to 7 of this example have significantly better durability than the comparative catalysts.

実施例2 市街地走行を考慮した本発明に係る触媒の耐久性を評価
した。
Example 2 The durability of the catalyst according to the present invention was evaluated considering city driving.

第1表に示した触媒No、 4とNo、C1,C2の粉
末500gとシリカゾル(10wt%SS102)70
0と純水100gを混合攪拌し、アンモニア水にてpH
をlO〜11に調整し、コーティング用スラリーを得、
該スラリーを0.71のコージエ)イト質ハニカム担体
に120 g/12コートした。
500 g of powder of catalyst No. 4 and No. C1, C2 shown in Table 1 and 70 g of silica sol (10 wt% SS102)
Mix and stir 0 and 100g of pure water, and adjust the pH with ammonia water.
was adjusted to lO ~ 11 to obtain a coating slurry,
The slurry was coated at 120 g/12 on a 0.71 carbon fiber honeycomb carrier.

触媒No、 4をコートした担体を本実施触媒No、 
8、No。
The carrier coated with catalyst No. 4 was used as catalyst No.
8.No.

CIをコートした担体を比較触媒No、C3、No、C
2をコートした担体を比較触媒No、C4とした。
Comparison of CI-coated carriers with catalyst No., C3, No., C
The carrier coated with No. 2 was designated as comparative catalyst No. C4.

これら触媒について、実エンジンを用いて、その初期活
性並びに耐久性の評価を行なった。
The initial activity and durability of these catalysts were evaluated using an actual engine.

耐久試験条件 本実施例触媒No、 8、比較触媒No、C3、C4を
1600ccのリーンバーンエンジンを搭載した車重l
トンの車のエンジン排気系に装着し、入りガス温度最大
800℃程度になる市街地走行を模したパターンで10
00kmおよび30000km走行した。
Durability test conditions Example catalyst No. 8, comparative catalyst No. C3, C4, vehicle weight l equipped with a 1600cc lean burn engine
It is attached to the engine exhaust system of a 10-ton car with a pattern that simulates city driving where the maximum gas temperature is around 800℃.
I ran 00km and 30000km.

NO,浄化率測定 前記エンジンの平均空燃比22、入りガス温度400℃
でNo、浄化率を測定した。得られた結果を第4表に示
す。
NO, purification rate measurement Average air-fuel ratio of the engine: 22, entering gas temperature: 400°C
No, the purification rate was measured. The results obtained are shown in Table 4.

Claims (1)

【特許請求の範囲】[Claims]  排気ガス中の窒素酸化物を酸素過剰雰囲気中で、炭化
水素の存在下で除去するための触媒であって、ゼオライ
トに銅とアルカリ土類金属の1種以上と、希土類金属の
1種以上とを担持したことを特徴とする排気ガス浄化用
触媒。
A catalyst for removing nitrogen oxides from exhaust gas in an oxygen-rich atmosphere in the presence of hydrocarbons, which comprises zeolite, copper, one or more alkaline earth metals, and one or more rare earth metals. An exhaust gas purifying catalyst characterized by supporting.
JP1340530A 1989-08-31 1989-12-27 Exhaust gas purification catalyst Expired - Fee Related JP2562702B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1340530A JP2562702B2 (en) 1989-12-27 1989-12-27 Exhaust gas purification catalyst
CA002024154A CA2024154C (en) 1989-08-31 1990-08-28 Catalyst for reducing nitrogen oxides from exhaust gas
AU61378/90A AU627924C (en) 1989-08-31 1990-08-28 Catalyst for reducing nitrogen oxides from exhaust gas
EP93105778A EP0555889B1 (en) 1989-08-31 1990-08-30 Process for reducing nitrogen oxides from exhaust gas
DE69023437T DE69023437T2 (en) 1989-08-31 1990-08-30 Process for the catalytic reduction of nitrogen oxides from exhaust gases.
EP90116653A EP0415410B1 (en) 1989-08-31 1990-08-30 Process for catalytically reducing nitrogen oxides from exhaust gas
DE69025632T DE69025632T2 (en) 1989-08-31 1990-08-30 Process for reducing nitrogen oxides from exhaust gases
US07/575,621 US5270024A (en) 1989-08-31 1990-08-31 Process for reducing nitrogen oxides from exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1340530A JP2562702B2 (en) 1989-12-27 1989-12-27 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH03202157A true JPH03202157A (en) 1991-09-03
JP2562702B2 JP2562702B2 (en) 1996-12-11

Family

ID=18337868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1340530A Expired - Fee Related JP2562702B2 (en) 1989-08-31 1989-12-27 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP2562702B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141218A (en) * 1990-09-28 1992-05-14 Mazda Motor Corp Exhaust gas purifying apparatus of engine
US5413976A (en) * 1992-09-30 1995-05-09 Mazda Motor Corporation Exhaust gas purification catalyst
US5571763A (en) * 1992-06-02 1996-11-05 Mazda Motor Corporation Exhaust gas purification system and catalyst therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242489A (en) * 1976-05-20 1977-04-02 Toa Nenryo Kogyo Kk Nox-reduction catalyst and method of producing thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242489A (en) * 1976-05-20 1977-04-02 Toa Nenryo Kogyo Kk Nox-reduction catalyst and method of producing thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141218A (en) * 1990-09-28 1992-05-14 Mazda Motor Corp Exhaust gas purifying apparatus of engine
US5571763A (en) * 1992-06-02 1996-11-05 Mazda Motor Corporation Exhaust gas purification system and catalyst therefor
US5413976A (en) * 1992-09-30 1995-05-09 Mazda Motor Corporation Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP2562702B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
US5270024A (en) Process for reducing nitrogen oxides from exhaust gas
US5433933A (en) Method of purifying oxygen-excess exhaust gas
KR101571660B1 (en) Oxidation catalyst for commercial vehicles comprising a diesel motor
JPH05220403A (en) Exhaust gas purifying catalyst
JP3407901B2 (en) Exhaust gas purifying catalyst, method for producing the catalyst, and method for purifying exhaust gas
JPH03202157A (en) Catalyst for purifying exhaust gas
JPH07144134A (en) Catalyst for purifying exhaust gas
JP2621998B2 (en) Exhaust gas purification catalyst
JP2605956B2 (en) Exhaust gas purification catalyst
JP3498753B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3044622B2 (en) Exhaust gas purification method
JP2936416B2 (en) Exhaust gas purification method
JP3197711B2 (en) Exhaust gas purification catalyst
JP3026355B2 (en) Exhaust gas purification catalyst
JPH01247710A (en) Purifying device for automobile exhaust
JPH09239276A (en) Exhaust gas cleaning catalyst
JP2802335B2 (en) Method for producing exhaust purification catalyst
JP3114982B2 (en) Exhaust gas purification catalyst and method of using the same
JP2000093803A (en) Catalyst for purification of exhaust gas and purification of exhaust gas
JP2901295B2 (en) Exhaust gas purification catalyst and method of using the same
JPH05168943A (en) Exhaust gas purifying catalyst
JPH0352644A (en) Catalyst for purifying exhaust gas
JPH06384A (en) Catalyst for purification of nitrogen oxide and contact decomposition of nitrogen oxide
JPH04219143A (en) Exhaust gas purification catalyst
JPH04215848A (en) Catalyst for purifying exhaust gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees