JPH03196031A - Range-finder for camera - Google Patents

Range-finder for camera

Info

Publication number
JPH03196031A
JPH03196031A JP33510889A JP33510889A JPH03196031A JP H03196031 A JPH03196031 A JP H03196031A JP 33510889 A JP33510889 A JP 33510889A JP 33510889 A JP33510889 A JP 33510889A JP H03196031 A JPH03196031 A JP H03196031A
Authority
JP
Japan
Prior art keywords
light
light source
lens
distance
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33510889A
Other languages
Japanese (ja)
Inventor
Kazuhiro Tamaki
玉木 和博
Toru Nakayama
徹 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP33510889A priority Critical patent/JPH03196031A/en
Publication of JPH03196031A publication Critical patent/JPH03196031A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To perform consecutive range-finding from infinity to the shortest distance in the case of macro photographing by making a reflected light beam from an object which is projected by a 1st light source incident on a photodetector in the case of normal photographing and making a reflected light beam from the object which is projected by a 2nd light source incident on the photodetector in the case of macro photographing respectively. CONSTITUTION:By taking the intersection of the light beam projected by the 2nd light source 14 with the optical axis 17 of a light receiving lens 16 as a boundary between the normal photographing and the macro photographing, the reflected light beams from the object which are projected from the 1st light source 11 and the 2nd light source 14 are made incident on the light receiving device 15 in the case of the normal photographing and in the case of the macro photographing respectively. As a result, in the case that the photodetector 15 does not receive the reflected light beam from the object when the 1st light source 11 emits the light, it is because the reflected light beam from the object is faint or because it is out of the light receiving surface of the light receiving device 15. When the 2nd light source 14 is allowed to emit the light continuously and the reflected light from the object is made incident on the photodetector 15 after turning off the 1st light source 11, range-finding is performed to the object in a macro photographing area. At such a time, the action of range-finding in the infinity is started in the case that the light is not made incident on the photodetector 15. Thus, the consecutive range-finding is performed from the infinity to the shortest distance where the macro photographing can be possible.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、写真撮影用のカメラに備えて被写体までの
距離を測定する測距装置に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a distance measuring device for measuring the distance to a subject for a photographic camera.

「従来の技術」 被写体に投光した光の反射光を受光し、投光角または受
光角を利用して被写体までの距離を測定する測距装置を
備えたカメラが広く知られている。
"Prior Art" Cameras are widely known that are equipped with a distance measuring device that receives reflected light from light projected onto a subject and measures the distance to the subject using a light projection angle or a light reception angle.

この種のカメラでは測距信号にしたがって撮影レンズを
合焦位置に移動させる、いわゆるオートフォーカス機構
を備えている。
This type of camera is equipped with a so-called autofocus mechanism that moves the photographing lens to a focusing position in accordance with a distance measurement signal.

また、このようなカメラの多くがマクロ撮影機能を備え
ているため、無限遠から近距離(例えば、oo〜1m)
の被写体を対象としたノーマルな撮影と、近距離よりも
さらに近い(例えば、1m〜0゜5m)の被写体を対象
としたマクロ撮影との測距について切換えるようになっ
ている。
In addition, many of these cameras have a macro photography function, so you can shoot from infinity to short distances (e.g. oo~1m).
The distance measurement can be switched between normal photography, which targets a subject, and macro photography, which targets a subject that is even closer than the short distance (for example, 1 m to 0.5 m).

具体的には、マクロ撮影の測距に際しては、光源の前側
に楔形プリズムを侵入させて投光路を変えるように構成
したもの、投光レンズ或いは受光レンズを光軸に対して
直交する方向に移動させる構成としたもの、受光器の受
光面をノーマル撮影の測距とマクロ撮影の測距との領域
に分割してり光領域を切換える構成のものなどがある。
Specifically, for distance measurement in macro photography, a wedge-shaped prism is inserted in front of the light source to change the light emission path, and the light emission or reception lens is moved in a direction perpendicular to the optical axis. There are some configurations in which the light receiving surface of the light receiver is divided into areas for distance measurement for normal photography and distance measurement for macro photography, and the light area is switched.

その他に、切換を要しないカメラとして、受光器の受光
面の幅を長くして、ノーマルまたはマクLの撮影にかか
わらず一連に測距できる構成のもqがある。
In addition, as a camera that does not require switching, there is also a camera q that has a configuration in which the width of the light-receiving surface of the light receiver is made longer so that distance measurement can be performed continuously regardless of whether normal or Mac L photography is being performed.

「発明が解決しようとする課題」 上記したところの、楔形プリズムを用いたカメラは、こ
のプリズムを進退させるための機械的績・成が必要とな
る他、フルオートカメラである@台には連続的に測距す
ることができず、その上、橢械的な機構を動作するため
の動力が必要となる。
``Problem to be solved by the invention'' The above-mentioned camera using a wedge-shaped prism requires mechanical performance to move the prism forward and backward. It is not possible to measure the distance visually, and on top of that, power is required to operate the mechanical mechanism.

また、楔形プリズムを手動操作によって進退させる構成
としても、切換操作装置の他に警告装置などを備えなけ
ればならない。
Furthermore, even if the wedge-shaped prism is moved forward and backward by manual operation, a warning device or the like must be provided in addition to the switching operation device.

上記したところの、投光レンズ或いは受光レンズを移動
させるカメラはこれらレンズを移動させるための機械的
構成を備えるため、上記同様の問題がある。
The above-mentioned camera that moves the light projecting lens or the light receiving lens has a mechanical structure for moving these lenses, and therefore has the same problem as above.

ノーマル撮影の測距とマクロ撮影の測距とに分割した受
光面の受光器を備えたカメラは、受光器の出力電流が微
弱となり、測距信号に応じた撮影レンズの移動制御が難
しく、そのため、制御回路の増幅段の構成が複雑となる
Cameras equipped with a light receiver with a light-receiving surface that is divided into distance measurement for normal photography and distance measurement for macro photography have weak output current from the light receiver, making it difficult to control the movement of the photographic lens in response to the distance measurement signal. , the configuration of the amplification stage of the control circuit becomes complicated.

受光器の受光面の幅を長くしてノーマル撮影とマクロ撮
影との測距を可能としたカメラは、受光器が高価な部品
となる他、ノイズの影響を受は易いために、測距信号の
処理回路を安定動作させることが難しい。
Cameras that enable distance measurement for normal photography and macro photography by increasing the width of the light-receiving surface of the photoreceptor have a photodetector that is an expensive component and is easily affected by noise, so the distance measurement signal is It is difficult to operate the processing circuit stably.

本発明は上記した実情にかんがみ、無限遠からマクロ撮
影の最短距離まで連続測距が可能で、しかも1機械的な
動作機構を要せずに安定動作するカメラ用測距装置を開
発することを目的とする。
In view of the above-mentioned circumstances, it is an object of the present invention to develop a camera distance measuring device that is capable of continuous distance measurement from infinity to the shortest distance for macro photography, and that operates stably without requiring any mechanical operating mechanism. shall be.

「課題を解決するための手段」 上記した目的を達成するため1本発明では、被写体に投
光しその反射光を受光して三角8I!I量を行なう構成
のカメラ用測距装置において、投光レンズの光軸方向に
投光させる第1光源と、この第1光源の近くに配置し、
投光レンズの光軸に対して一定の角度をもってこの投光
レンズより投光させる第2光源と、上記投光レンズの光
軸に対して所定距離はなして平行させ、上記第2光源の
投光と交わるようにした光軸を有する受光レンズと、こ
の受光レンズを通して受光する受光器とを備え、第2光
源の投光と受光レンズの光軸との交点をノーマル撮影と
マクロ撮影の境として、ノーマル撮影では第1光源の投
光による被写体反射光を、マクロ撮影では第2光源の投
光による被写体反射光を各々受光器に入射させて測距す
る構成としたことを特徴とするカメラ用測距装置を提案
する。
"Means for Solving the Problems" In order to achieve the above-mentioned objects, the present invention emits light onto a subject and receives the reflected light to obtain a triangular 8I! In a camera distance measuring device configured to perform an I amount, a first light source emits light in the optical axis direction of a light projecting lens, and disposed near the first light source,
a second light source emitted from the light emitting lens at a certain angle with respect to the optical axis of the light emitting lens; and a second light source emitting light from the light emitting lens parallel to the optical axis of the light emitting lens at a predetermined distance. A light receiving lens having an optical axis intersecting with the light receiving lens, and a light receiver receiving light through the light receiving lens, and the intersection between the light emitted from the second light source and the optical axis of the light receiving lens is used as the boundary between normal photography and macro photography. The camera measuring device is characterized in that in normal photography, the light reflected from the subject by the light emitted by the first light source is incident on the light receiver, and in the case of macro photography, the light reflected by the subject by the light emitted by the second light source is incident on the light receiver to measure the distance. We propose a range device.

「作  用」 ノーマル撮影では、第1光源の発光が投光レンズの光軸
方向に投光され、その被写体反射光が受光レンズの光軸
に対して所定角度をもって受光器に入射する。
"Function" In normal photography, the light emitted from the first light source is projected in the optical axis direction of the light projecting lens, and the reflected light from the object enters the light receiver at a predetermined angle with respect to the optical axis of the light receiving lens.

マクロ撮影では、第2光源の発光が投光レンズの光軸に
対して一定の角度をもって投光され、その被写体反射光
が受光レンズの光軸に対して所定角度をもって受光器に
入射する。
In macro photography, the light emitted from the second light source is projected at a predetermined angle with respect to the optical axis of the light projecting lens, and the reflected light from the object enters the light receiver at a predetermined angle with respect to the optical axis of the light receiving lens.

この結果、第1光源の発光時に受光器が被写体反射光を
受光しない場合は、被写体反射光が受光器に届かないほ
ど弱いか、受光器の受光面を外れているかのいずれかで
ある。
As a result, if the light receiver does not receive the reflected light from the subject when the first light source emits light, either the reflected light from the subject is so weak that it does not reach the light receiver, or it is off the light receiving surface of the light receiver.

したがって、第1光源11を消灯させた後、続けて第2
光源を発光させてその被写体反射光が受光器に入射すれ
ば、マクロ撮影領域にある被写体を測距し、このとき、
受光器に入射光がなければ無限遠の測距などの動作に移
る。
Therefore, after turning off the first light source 11, the second light source 11 is turned off.
When the light source emits light and the reflected light from the subject enters the receiver, the distance to the subject in the macro photography area is measured, and at this time,
If there is no incident light on the receiver, it moves on to operations such as infinite distance measurement.

「実施例」 次に、本発明の一実施例について図面に沿って説明する
``Example'' Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明に係る測距装置を示す簡略的な構成図で
あり、11はLED等の発光素子を使用した第1光源で
、これは投光レンズ12の光軸13方向に投光するよう
に配置しである。14は同様の発光素子からなる第2光
源で、この第2光源14の発光は投光レンズ12を通し
て投光させるが、当該レンズ12の光軸13に対してO
の角度をもつように配置しである。
FIG. 1 is a simple configuration diagram showing a distance measuring device according to the present invention, and 11 is a first light source using a light emitting element such as an LED, which emits light in the direction of the optical axis 13 of a light projecting lens 12. It is arranged as follows. Reference numeral 14 denotes a second light source made of a similar light emitting element, and the light emitted from this second light source 14 is projected through a projection lens 12.
It is arranged so that it has an angle of .

なお、第1光源11及び第2光源14は隣接して設け、
これらの発光を投光レンズ12によって集光しカメラ前
方にビーム光として投光する構成となっている。
Note that the first light source 11 and the second light source 14 are provided adjacently,
The light emitted from these lights is condensed by a light projection lens 12 and projected as a beam of light in front of the camera.

15はCCD、PSDなどの光電変換素子からなる受光
器で、受光レンズ16によって集光された被写体反射光
を受光するように配置しである。
Reference numeral 15 denotes a light receiver composed of a photoelectric conversion element such as a CCD or PSD, and is arranged to receive the reflected light from the object focused by the light receiving lens 16.

上記受光レンズ16は、その先軸17が投光レンズ12
の光軸13に対して距離間隔したけはなして平行するよ
うに配置としである。
The light receiving lens 16 has its front axis 17 connected to the light projecting lens 16.
The optical axis 13 is arranged so as to be parallel to the optical axis 13 at a distance apart from each other.

また、受光レンズ16の光軸17に対して第2光源14
の投光が交わる点Pが、ノーマル撮影での最至近距離り
。どなるように、距離間隔L、第1光源11と第2光g
14の距離間隔Qが適当に定めである。
Further, the second light source 14 is connected to the optical axis 17 of the light receiving lens 16.
The point P where the projected lights intersect is the closest distance in normal shooting. How is the distance interval L, the first light source 11 and the second light g
A distance interval Q of 14 is appropriately determined.

一方、18は測距演算回路で、19はドライバ回路であ
る。これら回路18.19はスイッチ20の開成によっ
て動作するマイクロプロセッサ21より、測距開始信号
S1と切換信号S2を実行指令として入力する。
On the other hand, 18 is a distance measurement calculation circuit, and 19 is a driver circuit. These circuits 18 and 19 receive a ranging start signal S1 and a switching signal S2 as execution commands from the microprocessor 21 which is activated when the switch 20 is opened.

また、測距演算回路18は測距開始信号S工を人力して
受光器15の受光出力S3を入力する動作状態に移ると
共に、ドライバ回路19に対して開動信号S、を送る。
Further, the distance measurement calculation circuit 18 enters an operating state in which it inputs the distance measurement start signal S and receives the light reception output S3 of the light receiver 15, and also sends an opening signal S to the driver circuit 19.

ドライバ回路19は駆動信号S4を入力し、切換信号S
2にしたがって光源を発光させる。なお、切換信号S2
は第1光源11の発光モードから第2光源14の発光モ
ードに切換える信号である。
The driver circuit 19 inputs the drive signal S4 and receives the switching signal S
2. Make the light source emit light according to 2. Note that the switching signal S2
is a signal for switching from the light emission mode of the first light source 11 to the light emission mode of the second light source 14.

マイクロプロセッサ21が測距演算回路18より測距信
号S0を入力すると、このマイクロプロセッサ21が出
力する焦点検出信号Ssによってモータ駆動回路22を
動作させる。
When the microprocessor 21 receives the distance measurement signal S0 from the distance measurement calculation circuit 18, the motor drive circuit 22 is operated by the focus detection signal Ss output from the microprocessor 21.

モータ駆動回路22は焦点検出信号S5に応動してモー
タ23を駆動させ、撮影レンズ24を合焦位置に移動さ
せる。
The motor drive circuit 22 drives the motor 23 in response to the focus detection signal S5, and moves the photographic lens 24 to the in-focus position.

次に上記した測距装置の動作について説明する。Next, the operation of the distance measuring device described above will be explained.

a、 ノーマル撮影の測距 ドライバ回路19が鄭動信号S、、を入力して第1光源
11を発光させる。
a. The distance measurement driver circuit 19 for normal photography receives the moving signal S, and causes the first light source 11 to emit light.

第1光源11の発光が投光レンズ12によって集光され
光軸13方向に投光される。
The light emitted from the first light source 11 is focused by the projection lens 12 and projected in the direction of the optical axis 13 .

このとき、被写体が最至近距離D+1以上はなれた位置
に存在すれば、その反射光が受光レンズ16によって集
光され受光器15に入射する。例えば、最至近距離り。
At this time, if the object is located at a distance greater than or equal to the closest distance D+1, the reflected light is collected by the light receiving lens 16 and enters the light receiver 15. For example, closest distance.

に被写体があるときには受光器15の受光面位置15a
に被写体像が結像する。
When there is a subject at the light receiving surface position 15a of the light receiver 15
The image of the subject is formed.

これより、測距演算回路18が受光器15の受光出力S
、を入力して演算し測距信号S0をマイクロプロセッサ
21に伝える。
From this, the distance measurement calculation circuit 18 receives the light receiving output S of the light receiver 15.
, is input and calculated, and the ranging signal S0 is transmitted to the microprocessor 21.

以後は、既に説明した通り、このマイクロプロセッサ2
1が出力する焦点検出信号S、にしたがって撮影レンズ
24が合焦位置まで移動される。
From then on, as already explained, this microprocessor 2
The photographic lens 24 is moved to the in-focus position in accordance with the focus detection signal S output by the lens 1.

上記したノーマル撮影の測距において、被写体反射光が
受光器15に入射しない場合、つまり、被写体反射光が
弱く受光器15に届かないか、被写体反射光が大きな角
度で受光レンズ16に入射し受光器15の受光面から外
れるときには、このときの受光出力S、の状態からマイ
クロプロセッサ21が切換信号S2を出力する。
In the distance measurement for normal photography described above, if the reflected light from the subject does not enter the light receiver 15, that is, the reflected light from the subject is weak and does not reach the light receiver 15, or the reflected light from the subject enters the light receiving lens 16 at a large angle and is received. When the light-receiving surface of the device 15 is removed, the microprocessor 21 outputs a switching signal S2 based on the state of the light-receiving output S at this time.

b、 マクロ撮影の測距 ドライバ回路19は切換信号S、を入力して、第1光源
11を消灯し、第2光源14を発光させる。
b. The distance measurement driver circuit 19 for macro photography inputs the switching signal S, turns off the first light source 11, and turns on the second light source 14.

第2光源14の発光は投光レンズ12によって集光され
P点に向かって投光される。
The light emitted from the second light source 14 is focused by the projection lens 12 and projected toward point P.

このとき、被写体が最至近距離り。と撮影限界比itD
工の間に存在すれば、その反射光が受光レンズ16によ
って集光されて受光器15に入射する。
At this time, the subject is at the closest distance. and shooting limit ratio itD
If the light exists between the beams and the beam, the reflected light is focused by the light receiving lens 16 and enters the light receiver 15.

例えば、最至近距離D0の近くに被写体が存在するとき
は受光器15の受光面位置15bの近くに。
For example, when the subject exists near the closest distance D0, the object is located near the light receiving surface position 15b of the light receiver 15.

撮影限界距1t/& Dxに被写体が存在すれば、受光
面位置15aに各々被写体像が結像する。
If a subject exists within the photographing limit distance 1t/& Dx, the respective subject images are formed at the light-receiving surface position 15a.

これより、このときの受光出力S□を入力した測距演算
回路18がマクロ撮影での測距信号S。
From this, the distance measurement calculation circuit 18 that inputs the light reception output S□ at this time is the distance measurement signal S for macro photography.

を演算してマイクロプロセッサ21に伝える。以後はノ
ーマル撮影の測距と同様に撮影レンズ24が合焦位置に
移動される。
is calculated and transmitted to the microprocessor 21. Thereafter, the photographing lens 24 is moved to the in-focus position in the same way as distance measurement for normal photography.

C5無限遠の測距 ノーマル撮影での測距とマクロ撮影の測距において、被
写体反射光が受光器15に入力しないときは、そのとき
の受光出力S3の状態から測距演算回路18が無限遠の
測距信号S、、をマイクロプロセッサ21に伝える。こ
の結果、マイクロプロセッサ21が撮影レンズ24を無
限遠に合焦させるように移動させる。
C5 Infinity distance measurement During distance measurement in normal photography and macro photography, when the reflected light from the subject is not input to the light receiver 15, the distance measurement calculation circuit 18 adjusts the distance to infinity based on the state of the light reception output S3 at that time. The distance measurement signal S, , is transmitted to the microprocessor 21. As a result, the microprocessor 21 moves the photographic lens 24 to focus on infinity.

なお、被写体が撮影限界距離D工よりなお近い位置に存
在する場合には、被写体反射光が受光器15の受光面を
外れるため、受光器15には入射しない。したがってこ
の場合には、撮影限界となるが、しかし、上記したよう
に撮影レンズ24が無限遠に合焦されるため不合理とな
るので、第1光源11に統いて第2光源14を発光させ
ても受光D15が反射光を受光しない場合は、このとき
の受光出力S3の状態より、撮影レンズ24を予め定め
た位置に移動させて合焦に関係せずに撮影できるように
構成することが好ましい。
Note that if the subject exists at a position closer than the photographing limit distance D, the reflected light from the subject deviates from the light-receiving surface of the light receiver 15 and therefore does not enter the light receiver 15. Therefore, in this case, the photographing limit is reached, but since the photographing lens 24 is focused at infinity as described above, it is unreasonable, so the second light source 14 is connected to the first light source 11 to emit light. However, if the light receiver D15 does not receive the reflected light, it is possible to move the photographing lens 24 to a predetermined position based on the state of the light reception output S3 at this time, so that the photographing can be performed without regard to focusing. preferable.

本実施例に示した第1光源11と第2光源14は、これ
らを別々に配置してもよいが、第2図に一例をもって示
した如く、曲面レンズ30を備えた一つのパッケージ3
1内に一対の光源として構成することができる。
The first light source 11 and the second light source 14 shown in this embodiment may be arranged separately, but as shown by way of example in FIG.
It can be configured as a pair of light sources within one.

また、本実施例の測距装置を備えるカメラについては、
ファインダ内のターゲットフレーム40を第3(i!及
び第4図に示すように構成すると便利である。
Furthermore, regarding the camera equipped with the distance measuring device of this embodiment,
It is convenient to configure the target frame 40 in the finder as shown in FIGS.

なお、第3図はノーマル撮影の測距においてスポット投
光される範囲を示し、第4図はマクロ撮影の測距におい
てスポット投光される範囲を示している。
Note that FIG. 3 shows a range where spot light is projected during distance measurement in normal photography, and FIG. 4 shows a range where spot light is projected during distance measurement in macro photography.

図示するようにターゲットフレーム40はファインダ中
心線41に対して一方向に片寄らせである。
As shown, the target frame 40 is offset in one direction with respect to the finder center line 41.

このように構成すると、ノーマル撮影では最至近距離D
0に存在する被写体のスポット投光位置が第3図の点線
N1のようになり、また、マクロ撮影では最至近距離D
0に存在する被写体のスポット投光位置が第4図の点線
M1のようになる。
With this configuration, in normal shooting, the closest distance D
The spot light projection position of the subject existing at 0 becomes as shown by the dotted line N1 in Fig.
The spot light projection position of the object existing at 0 becomes as shown by the dotted line M1 in FIG.

なお、第3図に示した二点鎖uN2は、例えば、5mの
位置に存在する被写体のスポット投光位置を示し、第4
図に示した二点鎖線M2は撮影限界距離D1に存在する
被写体のスポット投光位置を各々表わしている。
Note that the double-dot chain uN2 shown in FIG.
The two-dot chain lines M2 shown in the figure each represent the spot light projection position of the subject existing at the photographing limit distance D1.

「発明の効果」 上記した通り、本発明に係る測距装置によれば、無限遠
からマクロ撮影が可能な最短距離までの範囲を連続して
測距することができ、その上、機械的構成を要せずに、
簡単な光学系と電気回路によって構成できるため、測距
精度が高く、量産と、生産コストの低廉化に適した測距
装置となる。
"Effects of the Invention" As described above, the distance measuring device according to the present invention can continuously measure a range from infinity to the shortest distance that allows macro photography, and furthermore, the mechanical configuration is without needing
Since it can be configured with a simple optical system and electric circuit, it has high ranging accuracy and is suitable for mass production and low production costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示した測距装置の簡略的な
構成図、第2図は上記測距装置に備えた第1光源と第2
光源とを一つのパッケージ内に設けた光源部の一例を示
す断面図、第3図及び第4図はカメラファインダ内に設
けたターゲットフレームと被写体のスポット投光位置と
の関係を示した説明図である。 11・・・第1光源 12・・投光レンズ 13・・・投光レンズの光軸 14・・・第2光源 15・・・受光器 16・・・受光レンズ 17・・・受光レンズの光軸 18・・・測距演算回路 19・・・ドライバ回路 21・・・マイクロプロセッサ 22・・・モータ駆動回路 23・・・モータ 24・・・撮影レンズ
FIG. 1 is a simplified configuration diagram of a distance measuring device showing an embodiment of the present invention, and FIG. 2 shows a first light source and a second light source provided in the distance measuring device.
3 and 4 are explanatory diagrams showing the relationship between the target frame provided in the camera finder and the spot light projection position of the subject. It is. 11...First light source 12...Light emitting lens 13...Optical axis of the light emitting lens 14...Second light source 15...Light receiver 16...Light receiving lens 17...Light from the light receiving lens Axis 18...Distance calculation circuit 19...Driver circuit 21...Microprocessor 22...Motor drive circuit 23...Motor 24...Photographing lens

Claims (1)

【特許請求の範囲】[Claims] 被写体に投光しその反射光を受光して三角測量を行なう
構成のカメラ用測距装置において、投光レンズの光軸方
向に投光させる第1光源と、この第1光源の近くに配置
し、投光レンズの光軸に対して一定の角度をもってこの
投光レンズより投光させる第2光源と、上記投光レンズ
の光軸に対して所定距離はなして平行させ、上記第2光
源の投光と交わるようにした光軸を有する受光レンズと
、この受光レンズを通して受光する受光器とを備え、第
2光源の投光と受光レンズの光軸との交点をノーマル撮
影とマクロ撮影の境として、ノーマル撮影では第1光源
の投光による被写体反射光を、マクロ撮影では第2光源
の投光による被写体反射光を各々受光器に入射させて測
距する構成としたことを特徴とするカメラ用測距装置。
In a camera distance measuring device configured to perform triangulation by projecting light onto a subject and receiving the reflected light, there is provided a first light source that projects light in the optical axis direction of a projecting lens, and a distance measuring device disposed near the first light source. , a second light source that is projected from the light projecting lens at a certain angle with respect to the optical axis of the light projecting lens; It is equipped with a light-receiving lens having an optical axis that intersects with the light, and a light-receiving device that receives light through the light-receiving lens. , for a camera, characterized in that in normal photography, the light reflected from the subject by the light emitted by the first light source is incident on the light receiver, and in macro photography, the light reflected by the subject by the light emitted by the second light source is incident on the light receiver to measure the distance. Ranging device.
JP33510889A 1989-12-26 1989-12-26 Range-finder for camera Pending JPH03196031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33510889A JPH03196031A (en) 1989-12-26 1989-12-26 Range-finder for camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33510889A JPH03196031A (en) 1989-12-26 1989-12-26 Range-finder for camera

Publications (1)

Publication Number Publication Date
JPH03196031A true JPH03196031A (en) 1991-08-27

Family

ID=18284862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33510889A Pending JPH03196031A (en) 1989-12-26 1989-12-26 Range-finder for camera

Country Status (1)

Country Link
JP (1) JPH03196031A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761549A (en) * 1996-02-05 1998-06-02 Nikon Corporation Distance measuring device for camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761549A (en) * 1996-02-05 1998-06-02 Nikon Corporation Distance measuring device for camera

Similar Documents

Publication Publication Date Title
US4900911A (en) Focus detecting system utilizing correction data on aberrations of the photographic lens
JPH02214804A (en) Active af camera with remote controller
JPH0380290B2 (en)
US4660954A (en) Automatic focusing device equipped with close-up range focal control
JP5003121B2 (en) Focus adjustment device, focus adjustment method, and camera
EP0437966A2 (en) Automatic focusing device
JPH04295837A (en) Active range-finding device provided with remote control function
JPH0313565B2 (en)
JPH03196031A (en) Range-finder for camera
JPH06317741A (en) Range finder
JP2574189B2 (en) Camera ranging device
JPH06186473A (en) Automatic focusing camera
JPH1096851A (en) Range finder for camera
JPH0478967B2 (en)
JPS59121011A (en) Focusing position detector
JPH041623B2 (en)
JP3174128B2 (en) camera
JP3074504B2 (en) Distance measuring device and camera using the same
JP3379834B2 (en) Camera ranging device
JPS58158618A (en) Automatic focus adjusting device
JP2692987B2 (en) Distance measuring device
JPH1183474A (en) Distance measuring device
JP2001013404A (en) Semiconductor photo-detector, range finder, and camera
JPH0378602B2 (en)
JPS6145205A (en) Automatic focusing device