JP2692987B2 - Distance measuring device - Google Patents

Distance measuring device

Info

Publication number
JP2692987B2
JP2692987B2 JP27949289A JP27949289A JP2692987B2 JP 2692987 B2 JP2692987 B2 JP 2692987B2 JP 27949289 A JP27949289 A JP 27949289A JP 27949289 A JP27949289 A JP 27949289A JP 2692987 B2 JP2692987 B2 JP 2692987B2
Authority
JP
Japan
Prior art keywords
light
distance
lens
subject
distance measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27949289A
Other languages
Japanese (ja)
Other versions
JPH03140929A (en
Inventor
剛史 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27949289A priority Critical patent/JP2692987B2/en
Publication of JPH03140929A publication Critical patent/JPH03140929A/en
Application granted granted Critical
Publication of JP2692987B2 publication Critical patent/JP2692987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光源からの光束を被写体側へ投光し、被写
体からの反射光束を受光することにより被写体までの測
距を行なう謂ゆる能動型の測距装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is a so-called active system that measures the distance to a subject by projecting a light flux from a light source to the subject side and receiving a reflected light flux from the subject. Type distance measuring device.

[従来の技術] 従来より光源からの光束を被写体側へ投光し、被写体
からの反射光束を受光することにより被写体までの測距
を行なう謂ゆる能動型の測距装置は種々公知となってい
る。又、更に最近は広視野測距あるいは多点測距と称し
て被写体側の広い領域に投光し広い測距視野の情報を測
距結果に役立てる技術が多く提案されている。
[Prior Art] Conventionally, various so-called active distance measuring devices have been known which perform distance measurement to a subject by projecting a light flux from a light source to the subject side and receiving a reflected light flux from the subject. There is. Further, recently, many techniques called wide-field distance measurement or multi-point distance measurement have been proposed in which light is projected onto a wide area on the object side and information of the wide distance-measurement field is utilized for the distance measurement result.

第2図はこうした従来例の一般的な光学的斜視図を示
す。4は投光レンズ、5は受光レンズ、6a〜6cは例えば
iRED(赤外発光ダイオード)等の光源、7a〜7cは前述の
光源に夫々対応した例えばPSD(Position Sensitive De
vice)等の受光素子、8a〜8cは夫々被写体をあらわして
いる。この例では投・受光素子共に3対あり、所定の画
角だけ離れた3点を夫々周知の三角測距している。そし
て例えば画角中央に主たる被写体8bがない場合でも他の
点である被写体8aを測距することで、謂ゆる中抜けを防
止した適切な測距を行なうことができるものである。
FIG. 2 shows a general optical perspective view of such a conventional example. 4 is a light projecting lens, 5 is a light receiving lens, and 6a to 6c are, for example,
Light sources such as iRED (infrared light emitting diode), 7a to 7c are, for example, PSDs (Position Sensitive Decoders) corresponding to the above light sources.
vice) and the like, and 8a to 8c respectively represent the subject. In this example, there are three pairs of light emitting and light receiving elements, and three points that are separated by a predetermined angle of view are each subjected to known triangulation. Then, for example, even when the main subject 8b is not located at the center of the angle of view, the distance to the subject 8a, which is another point, can be measured, so that appropriate distance measurement can be performed while preventing so-called loose hollow.

[発明が解決しようとする問題点] しかしこうした測距系は通常フアインダー窓と異なる
位置にその測距のための開口が設けられている為、特に
近接撮影時には測距視野とフアインダーとの視差が大き
くなる。特に近接撮影時に撮影レンズに対してフアイン
ダーの視差補正を行なうと測距系は通常、固定の為にそ
の測距視野とフアインダーとの視差は更に著しくなる。
第3図、第4図はこうした状況を説明する為の図で、第
3図中1は撮影レンズ、4は投光レンズ、5は受光レン
ズ、2はフアインダー、2′は近接撮影時のフアインダ
ー対物レンズ位置を表わし、第4図中の10はフアインダ
ー視野枠、11はフアインダー内の測距枠、12は測距系と
フアインダーとの視差がない場合の測距視野、12′は近
接撮影時の測距視野を表わしている。
[Problems to be Solved by the Invention] However, since such a distance measuring system usually has an aperture for distance measuring at a position different from the finder window, parallax between the distance measuring field of view and the finder is particularly great in close-up photography. growing. In particular, when the parallax of the finder is corrected for the taking lens at the time of close-up photographing, the parallax between the distance measurement field of view and the finder becomes more remarkable because the distance measuring system is usually fixed.
3 and 4 are diagrams for explaining such a situation. In FIG. 3, 1 is a taking lens, 4 is a light projecting lens, 5 is a light receiving lens, 2 is a finder, and 2'is a finder for close-up photography. Shows the objective lens position. In Fig. 4, 10 is the finder field frame, 11 is the distance measuring frame within the finder, 12 is the distance measuring field when there is no parallax between the distance measuring system and the finder, and 12 'is for close-up photography. Represents the distance measuring field of view.

ここで近接撮影時の撮影レンズとフアインダーとの視
差補正の為にフアインダー対物レンズを例えば第3図
2′の如く動かしてやると、近接物体に対する撮影レン
ズとフアインダーとの視差は解消するが、投光レンズは
固定の為近接物体の左上を照射することになり、第4図
の12′に示す如く測距のポイントは測距枠内から左上に
大きくずれることになる。
If the finder objective lens is moved as shown in FIG. 2'for parallax correction between the photographic lens and the finder at the time of close-up photography, the parallax between the photographic lens and the finder with respect to the near object is eliminated, but the light projection is performed. Since the lens is fixed, it illuminates the upper left corner of the near object, and the distance measuring point is greatly displaced from the inside of the distance measuring frame to the upper left corner as shown at 12 'in FIG.

本発明は上述従来例の欠点である近接撮影時の測距視
野とフアインダー視野との視差を、多点測距と称せられ
る測距装置の特徴を十分に生かして効率良く解消するこ
とを目的とする。
An object of the present invention is to efficiently solve the parallax between the distance measuring field and the finder field during close-up photography, which is a drawback of the conventional example described above, by fully utilizing the feature of the distance measuring device called multi-point distance measuring. To do.

[課題を解決するための手段(及び作用)] そこで、本発明は外部フアインダーと撮影レンズの外
部に配置された投光系により、複数に分割された光源か
らの光束を被写体側の複数の方向へ光束を投光し、被写
体からの反射光束を前記投光系と所定基線長隔てて配置
された受光系により受光することによって該被写体まで
の測距を行なう測距装置において、所定の距離以内のあ
る被写体に対する測距を、前記外部フアインダーへ視野
補正を行なうとともに前記ある被写体へ選択された光束
を投光して、この投光光束へ反射光を受光することによ
り行なうことを特徴とする測距装置にある。
[Means (and Action) for Solving the Problem] Therefore, according to the present invention, a light flux from a light source divided into a plurality of directions is provided in a plurality of directions on the subject side by an external finder and a light projecting system arranged outside the photographing lens. Within a predetermined distance in a distance measuring device that measures the distance to the subject by projecting a light beam to the subject and receiving a reflected light beam from the subject by a light receiving system arranged at a predetermined base line distance from the light projecting system. Distance measurement for a certain subject is performed by performing visual field correction to the external finder, projecting a selected light beam to the certain subject, and receiving reflected light to the projected light beam. It is in the distance device.

[実施例] 第1図は本発明の一実施例を示す斜視図であり、1は
撮影レンズ、4は主レンズ部4aと近接撮影のための副レ
ンズ部4bとを具える投光レンズ、5は受光レンズ、6a〜
6cは基線長方向に並設したiRED等の光源で水平方向に投
光する。7a〜7cは前記光源6a〜6cに夫々対応した例え
ば、PSD等の受光素子で同様に水平方向に並設される。7
dは、近接撮影時に使用する受光素子で受光素子7a〜7c
の上方に設けられている。また2はフアインダー、3は
近接撮影時の被写体であり、フアインダー2を近接撮影
時に例えば、撮影レンズの光軸方向に近づけることで撮
影レンズの光軸に対して視差補正を行なえるようになっ
ている。
[Embodiment] FIG. 1 is a perspective view showing an embodiment of the present invention, in which 1 is a taking lens, 4 is a light projecting lens having a main lens portion 4a and a sub lens portion 4b for close-up photography, 5 is a light-receiving lens, 6a-
6c is a light source such as iRED arranged in parallel in the length direction of the base line to project light in the horizontal direction. Reference numerals 7a to 7c are light receiving elements, such as PSDs, respectively corresponding to the light sources 6a to 6c, and are also arranged in parallel in the horizontal direction. 7
d is a light-receiving element used for close-up photography.
It is provided above. Further, 2 is a finder, and 3 is a subject at the time of close-up photography. For example, by bringing the finder 2 closer to the optical axis direction of the taking lens at the time of close-up photography, parallax correction can be performed with respect to the optical axis of the taking lens. There is.

投光レンズ4の主レンズ部4aは通常状態(近接撮影状
態前)のフアインダー2に対して視差調整がなされてお
り、光源6a〜6cからの光束がこの主レンズ部4aを経て被
写体方向へ投光され、前述の多点測距が行なわれる。尚
通常測距の場合には受光素子7dにもとずく測距演算はオ
フしている。一方被写体が近接距離になる場合、つま
り、近距離物体に対する測距を行なう場合は、フアイン
ダー2は前述した通り第3図の如く撮影レンズ1に対し
て視差補正を行なう一方で、受光素子7dにもとずく測距
演算が開始される。又、光源6b,6cの発光は禁止され
る。そして投光は光源6aからの光束を副レンズ部4bを通
して近接被写体に向けて行なわれる。そして近距離の被
写体3からの反射光は受光レンズ5を通り近接撮影時用
の受光素子7dへと導かれ、被写体3は公知の三角測距ア
ルゴリズムに従って測距される。尚近接撮影時のモード
切り換えは、主レンズ部4aを通して行なわれた測距演算
の結果主たる被写体までの距離がある程度所定距離以内
と判断された場合に自動的に切り換わってもよいし、又
例えばマクロモードスイッチ等の外部入力手段によって
強制的に切り換えても構わない。
The main lens portion 4a of the light projecting lens 4 is adjusted for parallax with respect to the finder 2 in the normal state (before the close-up photographing state), and the light beams from the light sources 6a to 6c project toward the subject through the main lens portion 4a. Light is emitted and the above-described multi-point distance measurement is performed. In the case of normal distance measurement, distance measurement calculation based on the light receiving element 7d is off. On the other hand, when the subject is at a close distance, that is, when distance measurement is performed on a short-distance object, the finder 2 performs parallax correction on the taking lens 1 as shown in FIG. The distance measurement calculation is started. Further, the light sources 6b and 6c are prohibited from emitting light. Then, the light projection is performed by directing the light flux from the light source 6a toward the near subject through the sub lens portion 4b. Then, the reflected light from the subject 3 at a short distance is guided to the light receiving element 7d for close-up photography through the light receiving lens 5, and the subject 3 is measured according to a known triangulation algorithm. The mode switching at the time of close-up shooting may be automatically switched when the distance to the main subject is determined to be within a predetermined distance to some extent as a result of the distance measurement calculation performed through the main lens unit 4a. It may be forcedly switched by an external input means such as a macro mode switch.

投光レンズ4の具体的な構成について、第5図に示
す。第5図(a)は投光レンズの側面図、第5図(b)
は主レンズ部と副レンズ部の各レンズの光軸のずれ状態
を示す図、第5図(c)は投光レンズの形状を示す正面
図である。図中、La,Lbは夫々レンズ部4a,4bの光軸、O
a,Obは同じく夫々レンズ部4a,4bの光軸位置をあらわ
す。近接撮影時には視差を補正する為に副レンズ部4bの
光軸Obは本実施例のように投光点が、撮影レンズ上方に
ある場合、主レンズ部の光軸Oaよりも下方に設定して、
より近距離で撮影光軸と光線交叉するようにしている。
実際、光軸Obの位置は第5図(B)に示す如く面レンズ
部光軸Oaの斜め下に設けられている。図中レンズ部4
a′,4b′は夫々光軸位置がOa,Obであるレンズを表わ
し、4a,4bは二点鎖線で囲まれた範囲で、実際の開口を
表わしている。第5図(C)はそのレンズ部形状だけを
抜き出した実際のものである。主レンズ部と副レンズ部
の光軸は上下方向だけでなく左右方向にもずれている
が、これは、副レンズ部を使う光源が第1図に図示の中
央の光源6bではなく、端に位置する光源6aを使用してい
ることが主たる理由である。しかしこのように近接撮影
時に使用する光源の配列方向と略同じ方向に近接撮影時
用の副レンズ部を主レンズ部と一体的に設けたことで、
又近接撮影時の発光素子を、より近い副レンズ部がある
位置とすることで副レンズ部のコバをとることが出来、
主レンズ部を大きくとってもさらに副レンズ部を設ける
ことも可能となる。そして主レンズ部は通常距離の被写
体への投光を行なう為のものだから開口は大きい方が投
光パワーを大きくし投光光束の到達距離が遠くなり望ま
しい。
The specific configuration of the light projecting lens 4 is shown in FIG. FIG. 5 (a) is a side view of the projection lens, and FIG. 5 (b).
Is a diagram showing a state where the optical axes of the respective lenses of the main lens portion and the sub lens portion are displaced, and FIG. 5 (c) is a front view showing the shape of the light projecting lens. In the figure, La and Lb are the optical axes of the lens parts 4a and 4b, respectively.
Similarly, a and Ob respectively represent the optical axis positions of the lens portions 4a and 4b. In order to correct parallax during close-up photography, the optical axis Ob of the sub-lens portion 4b is set below the optical axis Oa of the main lens portion when the light projection point is above the photographing lens as in this embodiment. ,
The light beam crosses the photographing optical axis at a closer distance.
In fact, the position of the optical axis Ob is provided obliquely below the surface lens portion optical axis Oa as shown in FIG. 5 (B). Lens part 4 in the figure
Reference numerals a ′ and 4b ′ represent lenses whose optical axis positions are Oa and Ob, respectively, and reference numerals 4a and 4b represent actual apertures within a range surrounded by a chain double-dashed line. FIG. 5C is an actual one in which only the shape of the lens portion is extracted. The optical axes of the main lens part and the sub lens part are shifted not only in the vertical direction but also in the horizontal direction. This is because the light source using the sub lens part is not at the center light source 6b shown in FIG. The main reason is to use the light source 6a located. However, by providing the sub-lens part for close-up shooting integrally with the main lens part in the same direction as the arrangement direction of the light sources used for close-up shooting in this way,
Also, by setting the light emitting element for close-up photography to the position where the sub lens part is closer, the edge of the sub lens part can be removed,
Even if the main lens portion is large, it is possible to further provide a sub lens portion. Since the main lens section is for projecting light onto a subject at a normal distance, a larger aperture is desirable because the projection power is increased and the projection light flux reaches a longer distance.

尚、本実施例に於て投光は夫々の光源を時系列に発光
し、近接撮影時に第1図に図示の光源6aの発光中は他の
光源は消灯することで余計な迷光を避けるように構成し
ている。なお、副レンズ部は主レンズ部に比べ適当な量
繰り出していることが望ましい。また主レンズ部と副レ
ンズ部は一体に成形されていることが小型化を図るうえ
で望ましい。
In the present embodiment, each light source emits light in time series, and other light sources are turned off during light emission of the light source 6a shown in FIG. 1 during close-up photography to avoid extra stray light. Is configured. It is desirable that the sub-lens portion is extended by an appropriate amount as compared with the main lens portion. In addition, it is desirable that the main lens portion and the sub lens portion are integrally formed in order to reduce the size.

[他の実施例] 第1図において示した投光系以外にも例えば第1図中
投光レンズの主レンズ部4aに対し反対の方向、つまり受
光レンズ5から離れる方向に副レンズ部を設け近接撮影
時には図中の光源6cを使用するようにしても構わない。
Other Embodiments In addition to the light projecting system shown in FIG. 1, for example, a sub lens part is provided in the direction opposite to the main lens part 4a of the light projecting lens in FIG. The light source 6c in the figure may be used during close-up photography.

また、第6図に示すように副レンズ部を複数設けて、
より細かく、あるいはより近距離物体に対して測距でき
るようにしてもよい。図中4cは更なる副レンズ部、3′
は近接被写体3よりも更に近接の被写体、7eは該被写体
3′を測距時に使用する受光素子を示し、その他の符号
は前述のものに同意である。この場合はフアインダーの
視差補正は近接撮影時と更なる近接撮影時用に2段階あ
ることが望ましい。
Further, as shown in FIG. 6, by providing a plurality of sub-lens parts,
It may be possible to measure the distance to a finer object or a closer object. In the figure, 4c is a further sub lens part, 3 '.
Indicates a subject which is closer to the subject 3 and 7e indicates a light receiving element used for distance measurement of the subject 3 ', and other reference numerals are the same as those described above. In this case, it is desirable that the parallax of the viewfinder be corrected in two stages for close-up shooting and further close-up shooting.

なおこのフアインダーの視差補正の方法は前述第3図
の如く対物レンズの移動だけに限らず例えば視野枠の機
械的あるいは電気的な移動であっても構わない。
The method of correcting the parallax of the finder is not limited to the movement of the objective lens as shown in FIG. 3, but may be a mechanical or electrical movement of the field frame.

[発明の効果] 以上説明したように本発明によれば、他店測距用の光
源を選択的に有効に活用することにより、エネルギー損
失の少ない又、近接撮影時にも極力視差の少ない測距を
行なうことができる。
[Effects of the Invention] As described above, according to the present invention, by selectively and effectively utilizing a light source for distance measurement at another store, distance measurement is performed with less energy loss and parallax even at close range shooting as much as possible. Can be done.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例を示す斜視図、 第2図は、従来からの多点測距を説明する図、 第3図は、フアインダー視差補正を説明する図、 第4図は、フアインダー視差補正時の測距視差を説明す
る図、 第5図は、本発明による投光レンズを示す図、 第6図は、本発明の他の実施例を示す斜視図。 1……撮影レンズ 2……フアインダー 4……投光レンズ 4a……投光レンズ主レンズ部 4b,4c……投光レンズ副レンズ部 5……受光レンズ 6a〜6c……光源 7a〜7e……受光素子
FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a view for explaining conventional multi-point distance measurement, FIG. 3 is a view for explaining finder parallax correction, and FIG. FIG. 5 is a diagram for explaining distance measuring parallax at the time of finder parallax correction, FIG. 5 is a diagram showing a light projecting lens according to the present invention, and FIG. 6 is a perspective view showing another embodiment of the present invention. 1 …… Shooting lens 2 …… Finder 4 …… Emitting lens 4a …… Ejecting lens main lens section 4b, 4c …… Emitting lens sub-lens section 5 …… Receiving lens 6a to 6c …… Light source 7a to 7e… …Light receiving element

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】撮影レンズの外部に配置された投光系によ
り、複数に分割された光源からの光束を被写体側の複数
の方向へ投光し、該被写体からの反射光束を前記投光系
と所定基線長隔てて配置された受光系により受光するこ
とによって該被写体までの測距を行なう測距装置におい
て、前記投光系の投光レンズを夫々焦点距離が略等しい
が光軸の相異なる少なくとも第1と第2のレンズ部で構
成し通常の測距を行なう場合には、前記複数の光源から
の光を前記第1のレンズ部を介して投光することにより
測距を行い、主被写体までの距離が所定距離以内と判断
した場合、前記複数の光源のうち選択された所定の光源
からの光束であって前記第2のレンズ部を通過した投光
光束にもとづいて測距を行うことを特徴とした測距装
置。
1. A light projecting system arranged outside a photographing lens projects light beams from a plurality of divided light sources in a plurality of directions on the object side, and reflects light beams reflected from the object to the light projecting system. And a distance measuring device for measuring the distance to the object by receiving light by a light receiving system arranged at a predetermined base line distance, the light projecting lenses of the light projecting system have different focal lengths but different optical axes. When the normal distance measurement is performed by using at least the first and second lens units, the distance measurement is performed by projecting light from the plurality of light sources through the first lens unit. When it is determined that the distance to the subject is within the predetermined distance, the distance measurement is performed based on the light flux from the predetermined light source selected from the plurality of light sources and the light projection light flux that has passed through the second lens unit. Distance measuring device characterized by that.
【請求項2】撮影レンズの外部に配置された投光系によ
り、複数の分割された光源からの光束を被写体側の複数
の方向へ投光し、被写体からの反射光束を前記投光系と
所定の基線長を隔てて配置され、前記各光源に対応した
複数の受光素子で受光することによって被写体までの測
距を行う測距装置に於て、前記投光系の投光レンズを夫
々焦点距離が略等しいが光軸の異なる少なくとも第1と
第2のレンズ部で構成し、所定の物体距離以上の被写体
に対しては前記複数の光源からの光を前記第1のレンズ
部を介して投光し、又前記複数の受光素子の出力にもと
づいて測距を行い、所定の物体距離以内の被写体に対し
ては、前記複数の光源のうち少なくとも1つの光源から
の光を第2のレンズ部を介して投光し、前記複数の受光
素子とは異なる位置に設けた受光素子の出力にもとづい
て測距を行うことを特徴とする測距装置。
2. A light projecting system arranged outside the photographing lens projects light beams from a plurality of divided light sources in a plurality of directions on the object side, and reflects light beams from the object to the light projecting system. In a distance measuring device which is arranged with a predetermined base line length, and which receives light by a plurality of light receiving elements corresponding to each of the light sources to measure a distance to a subject, the light projecting lenses of the light projecting system are respectively focused. It is composed of at least first and second lens portions having substantially equal distances but different optical axes, and for a subject having a predetermined object distance or more, light from the plurality of light sources is passed through the first lens portion. The light is emitted, and distance measurement is performed based on the outputs of the plurality of light receiving elements. For a subject within a predetermined object distance, light from at least one light source of the plurality of light sources is used as a second lens. Light is emitted through the light receiving section and is at a position different from that of the plurality of light receiving elements. Distance measuring apparatus which is characterized in that the distance measurement based on the output of the light receiving element provided on.
JP27949289A 1989-10-26 1989-10-26 Distance measuring device Expired - Fee Related JP2692987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27949289A JP2692987B2 (en) 1989-10-26 1989-10-26 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27949289A JP2692987B2 (en) 1989-10-26 1989-10-26 Distance measuring device

Publications (2)

Publication Number Publication Date
JPH03140929A JPH03140929A (en) 1991-06-14
JP2692987B2 true JP2692987B2 (en) 1997-12-17

Family

ID=17611803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27949289A Expired - Fee Related JP2692987B2 (en) 1989-10-26 1989-10-26 Distance measuring device

Country Status (1)

Country Link
JP (1) JP2692987B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5041845B2 (en) * 2007-03-28 2012-10-03 富士フイルム株式会社 Auxiliary light device for automatic focus adjustment

Also Published As

Publication number Publication date
JPH03140929A (en) 1991-06-14

Similar Documents

Publication Publication Date Title
JPS6220522B2 (en)
US4595271A (en) In-focus state detection device
JP2692987B2 (en) Distance measuring device
JP3091243B2 (en) Multi-point distance measuring device
US5617174A (en) Active range finding device
JP2670461B2 (en) Distance measuring device
JPH11281885A (en) Focus position detecting device
US5760883A (en) Multiple points distance measuring apparatus
EP0525674B1 (en) Distance measurement device
JPH0738048B2 (en) Camera rangefinder
JPH11281877A (en) Focus position detecting device
JPS61295523A (en) Focus detector
JPH03188314A (en) Range finder in camera
JP2576716Y2 (en) Emitter for auto focus
JPS5994712A (en) Focusing detecting method
JP3244348B2 (en) Distance measuring device
JPH095618A (en) Auto-focusing device
JP3171351B2 (en) Distance measuring device
JPH01289907A (en) Range finding device
JPH01120520A (en) Single-lens reflex camera equipped with focus detecting device
JPS6278514A (en) Optical system with focus detector
JPS6145205A (en) Automatic focusing device
JPH03196031A (en) Range-finder for camera
JPH03188313A (en) Range finder
JPH04156411A (en) Focus detecting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees