JPH06186473A - Automatic focusing camera - Google Patents

Automatic focusing camera

Info

Publication number
JPH06186473A
JPH06186473A JP4334743A JP33474392A JPH06186473A JP H06186473 A JPH06186473 A JP H06186473A JP 4334743 A JP4334743 A JP 4334743A JP 33474392 A JP33474392 A JP 33474392A JP H06186473 A JPH06186473 A JP H06186473A
Authority
JP
Japan
Prior art keywords
sensor
optical system
focus detection
light receiving
photographing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4334743A
Other languages
Japanese (ja)
Inventor
Yosuke Kusaka
洋介 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4334743A priority Critical patent/JPH06186473A/en
Priority to US08/166,936 priority patent/US5539493A/en
Publication of JPH06186473A publication Critical patent/JPH06186473A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an automatic focusing camera which can execute high- speed continuous photographing while high focusing accuracy is maintained. CONSTITUTION:A first sensor 9 for receiving the light of an object image formed by a focus detection optical system 7 and a second sensor 10 whose sensitivity is higher than the sensor 9 are provided. Then, the sensor 10 is preferentially actuated by a control means(microcomputer) 14 during the continuous photographing action of a continuous photographing means 16. Based on the output of the sensor 10, the defocus amount of a photographing optical system 3 is calculated by a focus detection arithmetic means 12. An optical element is drivem in accordance the with defocus amount calulated by a driving means(motor) 15. Then, the optical system 3 is focused.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動焦点調節カメラに関
する。
FIELD OF THE INVENTION The present invention relates to an autofocus camera.

【0002】[0002]

【従来の技術】焦点検出光学系によって形成された被写
体像を電荷蓄積型センサーを用いて受光し、センサー出
力を演算処理して撮影光学系の予定焦点面に対する被写
体像面のデフォーカス量を検出し、このデフォーカス量
に応じてフォーカシングレンズを駆動することにより撮
影光学系の合焦を達成する自動焦点調節カメラが知られ
ている。
2. Description of the Related Art A subject image formed by a focus detection optical system is received by a charge storage type sensor, and the sensor output is arithmetically processed to detect a defocus amount of a subject image plane with respect to a planned focal plane of a photographing optical system. However, there is known an automatic focusing camera that achieves the focus of a photographing optical system by driving a focusing lens according to the defocus amount.

【0003】この種の自動焦点調節(以下、AFと呼
ぶ)カメラで連続撮影動作を行う場合、駒間における電
荷蓄積型センサーの電荷蓄積時間が長くなると高速連続
撮影ができないので、連続撮影時にはセンサー出力の増
幅ゲインを上げて蓄積時間を短縮する技術が特開平2−
64517号公報に開示されている。
When performing continuous shooting with this type of automatic focus (hereinafter referred to as AF) camera, high-speed continuous shooting cannot be performed if the charge storage time of the charge storage type sensor between frames becomes long, so the sensor is used during continuous shooting. A technique for increasing the output amplification gain to shorten the accumulation time is disclosed in Japanese Patent Laid-Open No. 2-
It is disclosed in Japanese Patent No. 64517.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、単にセ
ンサー出力の増幅ゲインを上げて蓄積時間を短縮させた
場合は、増幅前の電荷蓄積量自体が減少するので結果的
にセンサー出力のS/N比が低下してデフォーカス量の
検出精度が悪化し、このデフォーカス量に従って自動焦
点調節を行ないながら連続撮影するとピンボケになるこ
とがある。
However, if the amplification gain of the sensor output is simply increased to shorten the accumulation time, the amount of accumulated charge before amplification is reduced, and as a result, the S / N ratio of the sensor output is reduced. Deteriorates and the detection accuracy of the defocus amount deteriorates, and continuous shooting while performing automatic focus adjustment according to the defocus amount may cause out-of-focus.

【0005】本発明の目的は、高い焦点調節精度を維持
しつつ高速連続撮影を可能にした自動焦点調節カメラを
提供することにある。
It is an object of the present invention to provide an automatic focusing camera capable of high-speed continuous shooting while maintaining high focusing accuracy.

【0006】[0006]

【課題を解決するための手段】一実施例の構成を示す図
1に対応づけて本発明を説明すると、請求項1の発明
は、予定焦点面上に被写体像を形成するために光軸方向
に移動可能な光学要素を含む撮影光学系3と、焦点検出
光学系7と、この焦点検出光学系7により形成された被
写体像を受光するための第1のセンサー9と、この第1
のセンサー9よりも感度の高い第2のセンサー10と、
第1のセンサー9または第2のセンサー10の出力に基
づき予定焦点面に対する撮影光学系3の像面のデフォー
カス量を演算する焦点検出演算手段12と、この焦点検
出演算手段12により算出されたデフォーカス量に応じ
て光学要素を駆動して撮影光学系3を合焦させる駆動手
段15と、撮影動作を連続的に行う連続撮影手段16
と、この連続撮影手段16による連続撮影動作中は第2
のセンサー10を優先的に動作させる制御手段14とを
備え、これにより、上記目的を達成する。
The present invention will be described with reference to FIG. 1 showing the configuration of an embodiment. The invention of claim 1 is directed to the optical axis direction for forming a subject image on a planned focal plane. A photographic optical system 3 including an optical element that can move in the direction of focus, a focus detection optical system 7, a first sensor 9 for receiving a subject image formed by the focus detection optical system 7, and a first sensor 9
A second sensor 10 having a higher sensitivity than the sensor 9 of
Based on the output of the first sensor 9 or the second sensor 10, the focus detection calculation means 12 for calculating the defocus amount of the image plane of the photographing optical system 3 with respect to the planned focal plane, and the focus detection calculation means 12 A driving unit 15 that drives an optical element to focus the photographing optical system 3 according to the defocus amount, and a continuous photographing unit 16 that continuously performs a photographing operation.
And during the continuous shooting operation by the continuous shooting means 16, the second
And a control means 14 for preferentially operating the sensor 10 of FIG.

【0007】請求項2の自動焦点調節カメラでは、第1
のセンサー9および第2のセンサー10を電荷蓄積型と
し、同一輝度の被写体に対して同一時間電荷蓄積を行っ
た場合に、第2のセンサー10の蓄積電荷量が第1のセ
ンサー9の蓄積電荷量より多くなるように構成したもの
である。
In the automatic focusing camera according to claim 2, the first
When the sensor 9 and the second sensor 10 are of the charge accumulation type and charge accumulation is performed for the same brightness subject for the same time, the accumulated charge amount of the second sensor 10 is the accumulated charge of the first sensor 9. It is configured to be larger than the quantity.

【0008】請求項3の自動焦点調節カメラでは、第1
のセンサー9および第2のセンサー10を互いに画素面
積が異なるように構成したものである。
According to another aspect of the automatic focusing camera of the present invention,
The sensor 9 and the second sensor 10 are configured so that their pixel areas are different from each other.

【0009】請求項4の自動焦点調節カメラの焦点検出
光学系7は、第1のセンサー9上に被写体像を形成する
ための第1の焦点検出光学系と、第2のセンサー10上
に被写体像を形成するための、第1の焦点検出手段とは
光学特性が異なる第2の焦点検出光学系とを有する。
The focus detection optical system 7 of the automatic focus adjustment camera according to claim 4 has a first focus detection optical system for forming a subject image on the first sensor 9 and a subject on the second sensor 10. It has a second focus detection optical system having different optical characteristics from the first focus detection means for forming an image.

【0010】[0010]

【作用】連続撮影動作中は複数のセンサーの内の相対的
に高感度なセンサーを優先的に動作させ、焦点調節時間
を短縮する。
During the continuous shooting operation, the sensor having a relatively high sensitivity among the plurality of sensors is preferentially operated to shorten the focus adjustment time.

【0011】なお、本発明の構成を説明する上記課題を
解決するための手段および作用の項では、本発明を分り
やすくするために実施例の図を用いたが、これにより本
発明が実施例に限定されるものではない。
Incidentally, in the section of means and action for solving the above problems for explaining the constitution of the present invention, the drawings of the embodiments are used for the purpose of making the present invention easy to understand. It is not limited to.

【0012】[0012]

【実施例】図1は一実施例の構成を示すブロック図であ
る。ボディ1に対しレンズ2は交換可能に構成されてお
り、図はレンズ2がボディ1に装着された状態を示して
いる。レンズ2内には撮影光学系3があり、撮影光学系
3を通る被写体からの光束は、ハーフミラーから構成さ
れるメインミラー4によりサブミラー5とファインダー
6の方向に分割される。サブミラー5によりさらにボデ
ィ底方向に偏向された光束は、撮影光学系3の予定焦点
面近傍に配置された焦点検出光学系7に導かれる。
FIG. 1 is a block diagram showing the structure of an embodiment. The lens 2 is configured to be replaceable with respect to the body 1, and the figure shows a state in which the lens 2 is mounted on the body 1. A photographing optical system 3 is provided in the lens 2, and a light flux from a subject passing through the photographing optical system 3 is split by a main mirror 4 composed of a half mirror in the directions of a sub mirror 5 and a finder 6. The light beam further deflected in the body bottom direction by the sub mirror 5 is guided to a focus detection optical system 7 arranged near the planned focal plane of the photographing optical system 3.

【0013】図2は、焦点検出光学系7と電荷蓄積型セ
ンサー8の構成を示す。焦点検出光学系7は、開口部7
0を有する視野マスク71と、コンデンサーレンズ72
と、1対の絞り開口部73,74を有する絞りマスク7
5と、1対の再結像レンズ76,77とから構成され
る。また、電荷蓄積型センサー8は、2対の受光部8
0,81、82,83から構成される。撮影光学系3に
より光軸上の開口70近傍に形成された1次像は、受光
部80、82上と81、83上に1対の2次像として再
結像される。
FIG. 2 shows the structures of the focus detection optical system 7 and the charge storage type sensor 8. The focus detection optical system 7 has an opening 7
0 field mask 71 and condenser lens 72
And a diaphragm mask 7 having a pair of diaphragm openings 73, 74
5 and a pair of re-imaging lenses 76 and 77. Further, the charge storage type sensor 8 includes two pairs of light receiving units 8
It is composed of 0, 81, 82 and 83. The primary image formed by the photographing optical system 3 in the vicinity of the opening 70 on the optical axis is re-imaged as a pair of secondary images on the light receiving portions 80, 82 and 81, 83.

【0014】図3に示すように、受光部80,81はそ
れぞれ複数の画素から構成されており、画素のピッチは
P1、画素の高さW1である。一方、受光部82,83
もそれぞれ複数の画素から構成されており、画素のピッ
チはP2(>P1)、画素の高さはW2(>W1)であ
る。受光部82,83の画素面積P2×W2は受光部8
0,81の画素面積P1×W1より大きいので、同一の
出力レベルを得るための電荷蓄積時間は受光部82,8
3の方が短くなる。
As shown in FIG. 3, each of the light receiving portions 80 and 81 is composed of a plurality of pixels, and the pixel pitch is P1 and the pixel height is W1. On the other hand, the light receiving parts 82 and 83
Are each composed of a plurality of pixels, the pixel pitch is P2 (> P1), and the pixel height is W2 (> W1). The pixel area P2 × W2 of the light receiving portions 82 and 83 is equal to the light receiving portion 8
Since it is larger than the pixel area P1 × W1 of 0,81, the charge accumulation time for obtaining the same output level is
3 is shorter.

【0015】また、受光部80、82の近傍には受光部
上の光量をモニターするためのモニターセンサー84、
85が配置されており、モニターセンサー84、85の
出力は受光部80〜83の電荷蓄積開始と同時に蓄積さ
れ、蓄積された出力レベルが所定レベルになった時に受
光部80〜83の蓄積電荷量が所定のレベルとなり、電
荷蓄積を終了するように構成されている。
In addition, a monitor sensor 84 for monitoring the amount of light on the light receiving portions is provided near the light receiving portions 80 and 82.
85 is arranged, the outputs of the monitor sensors 84 and 85 are accumulated at the same time when the charge accumulation of the light receiving units 80 to 83 is started, and the accumulated charge amount of the light receiving units 80 to 83 when the accumulated output level reaches a predetermined level. Becomes a predetermined level, and the charge accumulation is terminated.

【0016】以上のような構成において、1対の絞り開
口部73,74はコンデンサーレンズ72により撮影光
学系3の射出瞳近傍の面30の光軸に対して対称な1対
の領域31,32に投影されており、この領域を通る光
束は、視野マスク71付近でまず一次像を形成する。視
野マスク71の開口部70に形成された一次像は、コン
デンサーレンズ72、1対の絞り開口部73,74を通
り、1対の再結像レンズ76,77により電荷蓄積型セ
ンサー8の受光部80、82上と受光部81、83上に
1対の二次像として形成される。
In the structure as described above, the pair of aperture openings 73 and 74 are symmetric with respect to the optical axis of the surface 30 near the exit pupil of the photographing optical system 3 by the condenser lens 72. The light beam that is projected onto the field, and forms a primary image near the field mask 71. The primary image formed in the opening 70 of the field mask 71 passes through the condenser lens 72 and the pair of aperture openings 73 and 74, and the pair of re-imaging lenses 76 and 77 allows the light receiving portion of the charge storage sensor 8 to be received. It is formed as a pair of secondary images on the light receiving portions 81 and 83 and on the light receiving portions 81 and 83.

【0017】1対の二次像の強度分布は受光部80、8
2および受光部81、83で光電変換され、電気的な被
写体像信号となる。この時、受光部80,81と受光部
82,83とは画素面積が異なるので、焦点検出演算処
理を行うのに適正な出力レベルとなるようにそれぞれ独
立に電荷蓄積時間を設定する。
The intensity distribution of the pair of secondary images is determined by the light receiving portions 80, 8
2 and the light receiving portions 81 and 83 perform photoelectric conversion to provide an electrical subject image signal. At this time, since the pixel areas of the light receiving units 80 and 81 are different from those of the light receiving units 82 and 83, the charge accumulation time is independently set so that the output level is appropriate for performing the focus detection calculation process.

【0018】なお、受光部80,81が図1における第
1センサー9を構成し、受光部82,83が第1センサ
ー10を構成する。これらは後述するマイコン14内の
制御部11により制御される。
The light receiving portions 80 and 81 form the first sensor 9 in FIG. 1, and the light receiving portions 82 and 83 form the first sensor 10. These are controlled by the control unit 11 in the microcomputer 14, which will be described later.

【0019】第1センサー9の1対の電気的な被写体像
信号または第2センサー10の1対の電気的な被写体像
信号はマイコン14に取り込まれ、焦点検出演算部12
はこの被写体像信号の相対的位置関係を求めることによ
り、撮影光学系3の像面と予定焦点面とのデフォーカス
量dを検出する。
The pair of electrical subject image signals of the first sensor 9 or the pair of electrical subject image signals of the second sensor 10 are fetched by the microcomputer 14, and the focus detection calculation unit 12 is operated.
Detects the defocus amount d between the image plane of the photographing optical system 3 and the planned focal plane by obtaining the relative positional relationship of the subject image signal.

【0020】マイコン14内の駆動制御部13は、デフ
ォーカス量dに応じてモーター15の回転方向と回転量
を制御する。モーター15は撮影光学系3と連結してお
り、撮影光学系3が光軸方向に移動し、デフォーカス量
dが0となるように駆動され、撮影光学系3は合焦状態
となる。
The drive control unit 13 in the microcomputer 14 controls the rotation direction and rotation amount of the motor 15 according to the defocus amount d. The motor 15 is connected to the photographic optical system 3, the photographic optical system 3 moves in the optical axis direction and is driven so that the defocus amount d becomes 0, and the photographic optical system 3 is brought into a focused state.

【0021】また、連続撮影装置16は撮影者が設定し
た撮影モード(1駒撮影モードあるいは連続撮影モー
ド)とレリーズボタン19の操作状態に応じてメインミ
ラー4、サブミラー5、シャッター17、巻上げ装置1
8の動作を制御し、1駒撮影または連続撮影動作を行
う。撮影者によって設定された撮影モードの情報および
撮影時の動作状態の情報は制御部11へ入力され、第1
センサー9および第2センサー10の制御が行われる。
すなわち、制御部11は連続撮影時の駒間には第2セン
サー10を動作させ、それ以外の場合は第1センサー9
を動作させる。
Further, the continuous photographing device 16 has a main mirror 4, a sub-mirror 5, a shutter 17, a winding device 1 according to the photographing mode (one frame photographing mode or continuous photographing mode) set by the photographer and the operation state of the release button 19.
The operation of 8 is controlled to perform one frame shooting or continuous shooting operation. The information on the shooting mode set by the photographer and the information on the operating state at the time of shooting are input to the control unit 11, and the first
The sensor 9 and the second sensor 10 are controlled.
That is, the control unit 11 operates the second sensor 10 between frames during continuous shooting, and otherwise operates the first sensor 9.
To operate.

【0022】図4は、制御部11、焦点検出演算部12
および駆動制御部13を構成するマイコン14の動作フ
ローチャートである。ステップS100においてカメラ
の電源が投入されるとステップS101へ進み、焦点検
出動作が可能であるか否かを調べ、可能であればステッ
プS102へ進む。ここで、焦点検出動作が可能という
のは、連続撮影装置16による撮影動作が行われておら
ず、メインミーラー4およびサブミラー5が光路中に配
置され、撮影光学系3を通った光束により被写体像が第
1センサー9および第2センサー10上に形成されてい
る状態である。
FIG. 4 shows the control unit 11 and the focus detection calculation unit 12.
3 is an operation flowchart of a microcomputer 14 that constitutes a drive controller 13. When the power of the camera is turned on in step S100, the process proceeds to step S101 to check whether the focus detection operation is possible, and if possible, the process proceeds to step S102. Here, the focus detection operation is possible because the continuous shooting device 16 is not performing the shooting operation, the main mirror 4 and the sub-mirror 5 are arranged in the optical path, and the light flux that has passed through the shooting optical system 3 causes the subject image to be captured. Is a state formed on the first sensor 9 and the second sensor 10.

【0023】ステップS102では、連続撮影装置16
からの情報に基づき、現在、連続撮影中の駒間であるか
否かを調べ、連続撮影中の駒間であればステップS10
5へ進み、そうでなければステップS103へ進む。連
続撮影中の駒間でない場合は、ステップS103で被写
体輝度が低輝度であるか否かを調べ、低輝度であればス
テップS105へ進み、そうでなければステップS10
4へ進む。
In step S102, the continuous photographing device 16
On the basis of the information from, it is checked whether or not there is a frame between continuous shootings, and if it is between frames during continuous shooting, step S10.
If not, go to step S103. If it is not between frames during continuous shooting, it is checked in step S103 whether the subject brightness is low brightness. If the brightness is low, the process proceeds to step S105, and if not, step S10.
Go to 4.

【0024】連続撮影中の駒間の場合または連続撮影中
であっても低輝度の場合は、ステップS105で駒間の
AF時間を短縮するために高感度の第2センサー10を
選択し、その電荷蓄積時間を制御する。すなわち、低輝
度で電荷蓄積時間が長くなり自動焦点調節の応答性が低
下する場合や、連続撮影中の駒間のように焦点検出時間
が制限されている場合には、高感度の第2センサー10
を選択してセンサーの電荷蓄積時間を短縮し、自動焦点
調節の応答性を向上させる。
If there is a low brightness even between frames during continuous shooting, or if the brightness is low even during continuous shooting, the high-sensitivity second sensor 10 is selected to shorten the AF time between frames in step S105. Controls charge storage time. That is, when the charge accumulation time is long at low brightness and the response of automatic focus adjustment is reduced, or when the focus detection time is limited such as between frames during continuous shooting, the second sensor with high sensitivity is used. 10
To reduce the charge storage time of the sensor and improve the autofocus responsiveness.

【0025】一方、連続撮影中の駒間の場合で且つ高輝
度の場合は、ステップS104で比較的低感度の第1セ
ンサー9を選択し、その電荷蓄積制御を行う。第1セン
サー9は、図3に示すように第2センサー10に比べて
画素ピッチが細かく画素の高さも小さいので、微細な被
写体に対する検出能力が高い。つまり、連続撮影中でな
く且つ高輝度の場合は応答性が要求されないので、微細
検出能力を重視して比較的低感度の第1センサー9を選
択する。
On the other hand, if there is a high brightness between frames during continuous shooting, the first sensor 9 having a relatively low sensitivity is selected in step S104, and its charge storage control is performed. As shown in FIG. 3, the first sensor 9 has a finer pixel pitch and a smaller pixel height than the second sensor 10, so that the first sensor 9 has high detection capability for a fine subject. That is, since the responsiveness is not required when the continuous shooting is not performed and the brightness is high, the first sensor 9 having a relatively low sensitivity is selected with an emphasis on the fine detection capability.

【0026】ここで、被写体輝度の判定は不図示の測光
センサーの出力に基づいて行ってもよいし、第1センサ
ー9および第2センサー10の電荷蓄積時間に基づいて
行ってもよい。
Here, the determination of the subject brightness may be made based on the output of a photometric sensor (not shown) or based on the charge accumulation time of the first sensor 9 and the second sensor 10.

【0027】ステップS106で第1センサー9または
第2センサー10から被写体像データを読み込み、続く
ステップS107で被写体像データを処理してデフォー
カス量dを演算する。さらにステップS108におい
て、デフォーカス量dに応じて撮影光学系3をどれだけ
駆動したら合焦状態になるかを表すレンズ駆動量Lを演
算する。そしてステップS109でモーター15を駆動
し、レンズ駆動量Lだけ撮影光学系3を移動させる。そ
の後、ステップ101へ戻って上述した動作を繰り返
す。
In step S106, the subject image data is read from the first sensor 9 or the second sensor 10, and in the subsequent step S107, the subject image data is processed to calculate the defocus amount d. Further, in step S108, the lens drive amount L indicating how much the photographing optical system 3 should be driven to achieve the in-focus state is calculated according to the defocus amount d. Then, in step S109, the motor 15 is driven to move the photographing optical system 3 by the lens driving amount L. Then, the process returns to step 101 and the above-described operation is repeated.

【0028】なお、上記実施例では連続撮影中の駒間に
第2センサー10を選択するようにしたが、連続撮影モ
ードが設定されている場合は常に第2センサー10を選
択するようにしてもよい。
Although the second sensor 10 is selected between frames during continuous shooting in the above embodiment, the second sensor 10 may always be selected when the continuous shooting mode is set. Good.

【0029】また、連続撮影中の駒間であっても高輝度
の場合は第2センサー10より感度の低い第1センサー
9を選択するようにしてもよい。
If the brightness is high even between frames during continuous shooting, the first sensor 9 having lower sensitivity than the second sensor 10 may be selected.

【0030】図5は、他の実施例の焦点検出光学系7と
電荷蓄積型センサー8の構成を示す。焦点検出光学系7
は、十字型の開口部170を有する視野マスク171
と、コンデンサーレンズ172と、2対の絞り開口部1
73,174、273,274を有する絞りマスク17
5と、2対の再結像レンズ176,177、276,2
77とから構成される。また、電荷蓄積型センサー8
は、2対の受光部180,181、182,183から
構成される。撮影光学系3により光軸上の開口170近
傍に形成された1次像は、受光部180,182上と1
81,183上にそれぞれ2対の2次像として再結像さ
れる。
FIG. 5 shows the structures of a focus detection optical system 7 and a charge storage type sensor 8 according to another embodiment. Focus detection optical system 7
Is a field mask 171 having a cross-shaped opening 170.
, Condenser lens 172, and two pairs of aperture openings 1
Aperture mask 17 having 73, 174, 273, 274
5 and two pairs of re-imaging lenses 176, 177, 276, 2
And 77. In addition, the charge storage type sensor 8
Is composed of two pairs of light receiving units 180, 181, 182, 183. The primary image formed in the vicinity of the opening 170 on the optical axis by the photographing optical system 3 is on the light receiving portions 180, 182 and 1
Re-imaging is performed on 81 and 183 as two pairs of secondary images.

【0031】図6は受光部180〜183の配置を示
す。受光部180〜183はそれぞれピッチP1、高さ
W1の複数の画素から構成される。受光部182,18
3の画素面積P1×W1は受光部180,181の画素
面積P1×W1と同じなので、同一輝度においては同一
の出力レベルを得るための蓄積時間は等しくなる。ま
た、受光部180、182の近傍には受光部上の光量を
モニターするためのモニターセンサー184、185が
配置される。モニターセンサー184、185の出力は
受光部180〜183の電荷蓄積開始と同時に蓄積さ
れ、蓄積された出力レベルが所定レベルになった時に受
光部180〜183の蓄積電荷量が所定のレベルとな
り、電荷蓄積を終了するように構成されている。
FIG. 6 shows the arrangement of the light receiving parts 180 to 183. Each of the light receiving units 180 to 183 is composed of a plurality of pixels having a pitch P1 and a height W1. Light receiving parts 182, 18
Since the pixel area P1 × W1 of 3 is the same as the pixel area P1 × W1 of the light receiving units 180 and 181, the accumulation times for obtaining the same output level are the same at the same luminance. In addition, monitor sensors 184 and 185 for monitoring the amount of light on the light receiving portions are arranged near the light receiving portions 180 and 182. The outputs of the monitor sensors 184 and 185 are accumulated at the same time when the charge accumulation of the light receiving units 180 to 183 starts, and when the accumulated output level reaches a predetermined level, the accumulated charge amount of the light receiving units 180 to 183 reaches a predetermined level, It is configured to terminate the accumulation.

【0032】図7は、絞りマスク175の2対の絞り開
口部173,174、273,274の構成を示す。絞
り開口部173,174の開口重心の間隔と開口面積
は、絞り開口部273,274の開口重心の間隔と開口
面積よりも大きくしてある。
FIG. 7 shows the structure of two pairs of aperture openings 173, 174, 273, 274 of the aperture mask 175. The distance between the center of gravity of the apertures of the aperture openings 173 and 174 and the opening area are larger than the distance between the center of gravity of the apertures of the aperture openings 273 and 274 and the area of the apertures.

【0033】以上のような構成において、1対の絞り開
口部173,174は、コンデンサーレンズ172によ
り図8に示すように撮影光学系3の射出瞳近傍の面30
の光軸に対して対称な1対の領域131,132に投影
されており、他の1対の絞り開口部273,274は、
コンデンサーレンズ172により撮影光学系3の射出瞳
近傍の面30の光軸に対して対称な1対の領域231,
232に投影されている。領域131,132の面積S
1は領域231,232の面積S2より大きく、また領
域131,132の重心間隔X1は領域131,132
の重心間隔X2より大きい。
In the structure as described above, the pair of aperture openings 173 and 174 are formed by the condenser lens 172, as shown in FIG. 8, on the surface 30 near the exit pupil of the photographing optical system 3.
Is projected onto a pair of regions 131 and 132 which are symmetric with respect to the optical axis, and the other pair of aperture openings 273 and 274 are
By the condenser lens 172, a pair of regions 231, which are symmetrical with respect to the optical axis of the surface 30 near the exit pupil of the photographing optical system 3,
232. Area S of the regions 131 and 132
1 is larger than the area S2 of the regions 231 and 232, and the center-of-gravity interval X1 of the regions 131 and 132 is the regions 131 and 132.
Is larger than the center of gravity interval X2.

【0034】これら領域を通る光束は、視野マスク17
1付近でまず一次像を形成する。視野マスク171の開
口部170に形成された一次像は、コンデンサーレンズ
172、2対の絞り開口部173,174、273,2
74を通り、2対の再結像レンズ176,177、27
6,277により電荷蓄積型センサー8の受光部18
0、182上と受光部181、183上に2対の二次像
として形成される。
The light flux passing through these areas is the field mask 17
First, a primary image is formed near 1. The primary image formed in the opening 170 of the visual field mask 171 is a condenser lens 172, two pairs of aperture openings 173, 174, 273, 2.
2 re-imaging lenses 176, 177, 27
6, 277, the light receiving portion 18 of the charge storage sensor 8.
Two pairs of secondary images are formed on the light receiving portions 181, 183 and on the light receiving portions 181, 183.

【0035】2対の二次像の強度分布は受光部180、
182および受光部181、183で光電変換され、電
気的な被写体像信号となる。この時、受光部180,1
81と受光部182,183は画素面積は等しいが、互
いに面積の異なる瞳領域を通る光束によって形成される
被写体像を受光するので、被写体が同一輝度の場合で、
焦点検出演算処理を行うのに適正な出力レベルとなるよ
うな電荷蓄積時間を設定した場合には、受光部180,
181の電荷蓄積時間が受光部182,183の電荷蓄
積時間より短くなる。すなわち、受光部180,181
が高感度な第2センサー10に相当し、受光部182,
183は比較的感度の低い第1センサー9に相当する。
The intensity distributions of the two pairs of secondary images are as follows:
Photoelectric conversion is performed by 182 and the light receiving units 181, 183, and an electrical subject image signal is obtained. At this time, the light receiving parts 180, 1
Although 81 and the light receiving units 182 and 183 have the same pixel area, they receive a subject image formed by light fluxes passing through pupil regions having different areas. Therefore, when the subject has the same brightness,
When the charge accumulation time is set so that the output level is appropriate for the focus detection calculation process, the light receiving unit 180,
The charge accumulation time of 181 is shorter than the charge accumulation time of the light receiving portions 182 and 183. That is, the light receiving units 180 and 181
Corresponds to the second sensor 10 having high sensitivity,
183 corresponds to the first sensor 9 having relatively low sensitivity.

【0036】この実施例の焦点検出光学系7と電荷蓄積
型センサー8の動作は、図2に示す焦点検出光学系と電
荷蓄積型センサーを用いた場合の動作と同様であって、
低輝度または連続撮影中のように応答性が要求される場
合は高感度の第2センサー10を選択し、高輝度や連続
撮影中でない場合は比較的低感度の第1センサー9を選
択する。この実施例において高輝度や連続撮影中でない
場合は比較的低感度の第1センサー9を選択する理由
は、図8に示すように、第1センサー9に対応する領域
231,232の重心間隔X2が第2センサー10に対
応する領域131,132の重心間隔X1より小さいの
で、デフォーカス量に対する像ズレ量が小さく、同一の
像ズレ量で比較すると第2センサー10よりも大きなデ
フォーカス量まで検出できるためである。すなわち、自
動焦点調節の応答性が要求される場合には応答性を重視
して第2センサー10を選択し、応答性が要求されない
場合にはデフォーカス検出能力を重視して第1センサー
9を選択することになる。
The operation of the focus detection optical system 7 and the charge storage type sensor 8 of this embodiment is similar to the operation using the focus detection optical system and the charge storage type sensor shown in FIG.
The second sensor 10 having high sensitivity is selected when the responsiveness is required such as low brightness or continuous shooting, and the first sensor 9 having relatively low sensitivity is selected when high brightness or continuous shooting is not performed. In this embodiment, the reason why the first sensor 9 having a relatively low sensitivity is selected when high brightness or continuous shooting is not being performed is that, as shown in FIG. 8, the center-of-gravity interval X2 of the regions 231 and 232 corresponding to the first sensor 9 is selected. Is smaller than the center-of-gravity interval X1 of the regions 131 and 132 corresponding to the second sensor 10, the image shift amount with respect to the defocus amount is small, and even if the same image shift amount is compared, a defocus amount larger than the second sensor 10 is detected. Because you can. That is, when the responsiveness of the automatic focus adjustment is required, the second sensor 10 is selected with emphasis on the responsiveness, and when the responsiveness is not required, the first sensor 9 is selected with emphasis on the defocus detection ability. Will be selected.

【0037】図9は、他の実施例の焦点検出光学系7と
電荷蓄積型センサー8の構成を示す。焦点検出光学系7
は、画面中央とその左右の3つの焦点検出領域に対応す
る3つの再結像光学系を有する。焦点検出光学系7は、
開口部370、470、570を有する視野マスク37
1と、コンデンサーレンズ372、472、473と、
3対の絞り開口部373,374、473,474、5
73,574を有する絞りマスク375と、3対の再結
像レンズ376,377、476,477、576,5
77とから構成される。また、電荷蓄積型センサー8
は、3対の受光部380,381、480,481、5
80,581から構成される。
FIG. 9 shows the structures of a focus detection optical system 7 and a charge storage type sensor 8 of another embodiment. Focus detection optical system 7
Has three re-imaging optical systems corresponding to the center of the screen and the three focus detection areas on the left and right thereof. The focus detection optical system 7
Field mask 37 having openings 370, 470, 570
1 and condenser lenses 372, 472, 473,
Three pairs of aperture openings 373, 374, 473, 474, 5
A diaphragm mask 375 having 73, 574 and three pairs of re-imaging lenses 376, 377, 476, 477, 576, 5
And 77. In addition, the charge storage type sensor 8
Are three pairs of light receiving parts 380, 381, 480, 481, 5
It is composed of 80,581.

【0038】撮影光学系3により光軸上の開口370近
傍に形成された1次像を一対の2次像として受光部38
0,381上に、開口470近傍に形成された1次像を
一対の2次像として受光部480,481上に、開口5
70近傍に形成された1次像を一対の2次像として受光
部580,581上に1対の2次像として再結像してい
る。
The primary image formed by the taking optical system 3 in the vicinity of the opening 370 on the optical axis is treated as a pair of secondary images by the light receiving section 38.
The primary image formed in the vicinity of the opening 470 on the light receiving portions 480 and 481 on the light receiving portions 480 and 481 and the opening 5
The primary image formed in the vicinity of 70 is re-imaged as a pair of secondary images on the light receiving portions 580 and 581 as a pair of secondary images.

【0039】図10は、図9に示す焦点検出光学系7を
開口部370、470、570の並び方向と直角な方向
から見た場合の側面図であって、中央の再結像光学系の
再結像倍率が左右の再結像光学系の再結像倍率も小さい
ことを示している。このようにわざわざ再結像光学系の
倍率を中央と左右で変更する理由は、再結像レンズ37
6,377、476,477、576,577を一体成
形した場合に、再結像レンズ376,377の光軸を結
ぶ線分の方向と受光部380,381の並び方向の調整
と、再結像レンズ476,477の光軸を結ぶ線分の方
向と受光部480,481の並び方向の調整と、再結像
レンズ576,577の光軸を結ぶ線分の方向と受光部
580,581の並び方向の調整とをそれぞれ独立に行
う時に、受光部380,381、480,481、58
0,581を別チップ382、482、582上に形成
する必要があり、別チップで形成した場合の相互の寸法
上の干渉を避けるために倍率を異ならせて、光軸上で異
なる位置に複数のチップを配置する必要があるからであ
る。
FIG. 10 is a side view of the focus detection optical system 7 shown in FIG. 9 as seen from a direction perpendicular to the direction in which the openings 370, 470, 570 are arranged. It is shown that the re-imaging magnifications of the left and right re-imaging optical systems are also small. The reason why the magnification of the re-imaging optical system is changed between the center and the left and right in this way is that the re-imaging lens 37 is used.
6, 377, 476, 477, 576, 577 are integrally molded, adjustment of the direction of the line segment connecting the optical axes of the reimaging lenses 376, 377 and the alignment direction of the light receiving portions 380, 381, and reimaging Adjustment of the direction of the line segment connecting the optical axes of the lenses 476 and 477 and the arrangement direction of the light receiving units 480 and 481, and the direction of the line segment connecting the optical axes of the re-imaging lenses 576 and 577 and the arrangement of the light receiving units 580 and 581. When the adjustment of the direction is performed independently, the light receiving units 380, 381, 480, 481, 58
0, 581 need to be formed on separate chips 382, 482, 582, and different magnifications are used to avoid mutual dimensional interference when they are formed on separate chips. This is because it is necessary to place the chips.

【0040】3対の受光部380,381、480,4
81、580,581は、図11に示すようにそれぞれ
複数の画素から構成されており、画素のピッチはP1、
画素の高さW1である。図12は、再結像レンズ37
6,377により受光部380,381を1次像面に投
影した図であって、投影された画素のピッチはP3、画
素の高さW3である。また、図13は、再結像レンズ4
76,477、576,577により受光部480,4
81、580,581を1次像面に投影した図であっ
て、投影された画素のピッチは再結像倍率が中央光学系
より大きいのでP4(<P3)、画素の高さはW4(<
W3)である。
Three pairs of light receiving parts 380, 381, 480, 4
81, 580, and 581 each include a plurality of pixels as shown in FIG. 11, and the pixel pitch is P1,
It is the height W1 of the pixel. FIG. 12 shows the re-imaging lens 37.
6 is a view in which the light receiving units 380 and 381 are projected onto the primary image plane by 6, 377, and the pitch of the projected pixels is P3 and the height of the pixel is W3. Further, FIG. 13 shows the re-imaging lens 4
76, 477, 576, 577 for receiving light units 480, 4
81, 580 and 581 are projected onto the primary image plane, and the pitch of the projected pixels is P4 (<P3) because the re-imaging magnification is larger than that of the central optical system, and the height of the pixel is W4 (<P3).
W3).

【0041】受光部380,381の画素面積P3×W
3は受光部480,481、580,581の画素面積
P4×W4より大きいので、同一の出力レベルを得るた
めの電荷蓄積時間は受光部380,381の方が受光部
480,481、580,581より短くなる。すなわ
ち、受光部380,381が高感度な第2センサー10
に相当し、受光部480,481、580,581が比
較的感度の低い第1センサー9に相当する。
Pixel area P3 × W of the light receiving portions 380 and 381
3 is larger than the pixel area P4 × W4 of the light receiving units 480, 481, 580, 581, the charge storage time for obtaining the same output level is the same for the light receiving units 380, 381 as the light receiving units 480, 481, 580, 581. It gets shorter. That is, the light receiving units 380 and 381 are highly sensitive to the second sensor 10.
The light receiving portions 480, 481, 580, 581 correspond to the first sensor 9 having a relatively low sensitivity.

【0042】また、受光部380、480、580の近
傍には受光部上の光量をモニターするためのモニターセ
ンサー384、484、584が配置されており、モニ
ターセンサー384、484、584の出力は受光部3
80,381、480,481、580,581の電荷
蓄積開始とそれぞれ同時に蓄積開始され、蓄積された出
力レベルが所定レベルになった時に受光部380,38
1、480,481、580,581の蓄積電荷量が所
定のレベルとなり、電荷蓄積を終了するように構成され
ている。
Also, monitor sensors 384, 484, 584 for monitoring the amount of light on the light receiving portions are arranged in the vicinity of the light receiving portions 380, 480, 580, and the outputs of the monitor sensors 384, 484, 584 are received. Part 3
At the same time when the charge accumulation of 80, 381, 480, 481, 580, 581 is started at the same time, and the accumulated output level reaches a predetermined level, the light receiving portions 380, 38
The charge storage amount of 1, 480, 481, 580, 581 reaches a predetermined level, and the charge storage is terminated.

【0043】以上のような構成において、3対の絞り開
口部373,374、473,474、573,574
は、コンデンサーレンズ372、472、572により
撮影光学系3の射出瞳近傍の面30の光軸に対して対称
な1対の領域331,332に投影されており、この領
域を通る光束は、視野マスク371付近でまず一次像を
形成する。視野マスク371の開口部370に形成され
た一次像は、コンデンサーレンズ372、1対の絞り開
口部373,374を通り、1対の再結像レンズ37
6,377により電荷蓄積型センサー8の受光部38
0,381上に1対の二次像として形成される。また、
視野マスク371の開口部470に形成された一次像
は、コンデンサーレンズ472、1対の絞り開口部47
3,474を通り、1対の再結像レンズ476,477
により電荷蓄積型センサー8の受光部480,481上
に1対の二次像として形成される。さらに、視野マスク
371の開口部570に形成された一次像は、コンデン
サーレンズ572、1対の絞り開口部573,574を
通り、1対の再結像レンズ576,577により電荷蓄
積型センサー8の受光部580,581上に1対の二次
像として形成される。3対の二次像の強度分布は受光部
380,381、480,481、580,581で光
電変換され、電気的な被写体像信号となる。
In the above structure, three pairs of aperture openings 373, 374, 473, 474, 573, 574 are used.
Is projected by the condenser lenses 372, 472, and 572 onto a pair of regions 331 and 332 that are symmetrical with respect to the optical axis of the surface 30 in the vicinity of the exit pupil of the photographing optical system 3, and the light flux passing through these regions has a field of view. First, a primary image is formed near the mask 371. The primary image formed in the opening 370 of the field mask 371 passes through the condenser lens 372, the pair of aperture openings 373 and 374, and the pair of re-imaging lenses 37.
6, 377, the light receiving portion 38 of the charge storage sensor 8
It is formed as a pair of secondary images on 0,381. Also,
The primary image formed in the opening 470 of the field mask 371 is the condenser lens 472 and the pair of aperture openings 47.
3, 474 and a pair of re-imaging lenses 476, 477
Thus, a pair of secondary images is formed on the light receiving portions 480 and 481 of the charge storage type sensor 8. Further, the primary image formed in the opening 570 of the visual field mask 371 passes through the condenser lens 572 and the pair of aperture openings 573 and 574, and the pair of re-imaging lenses 576 and 577 allows the charge storage sensor 8 to be detected. Formed as a pair of secondary images on the light receiving portions 580 and 581. The intensity distributions of the three pairs of secondary images are photoelectrically converted by the light receiving units 380, 381, 480, 481, 580, 581 and become electrical object image signals.

【0044】この実施例の動作は図2に示す焦点検出光
学系を用いた場合の動作と同様であって、低輝度または
連続撮影中のように応答性が要求される場合には高感度
の第2センサー10、すなわち画面中央の焦点検出領域
に対応する受光部380,381のみを選択して動作さ
せる。また、高輝度の場合や連続撮影中でない場合に
は、全センサーすなわち受光部380,381、48
0,481、580,581を全て動作させて、3つの
デフォーカス量を算出し、その中で適当なものを選択す
るようにしてもよいし、撮影者によりマニュアルで選択
された焦点検出領域に対応する受光部のみを選択的に動
作させるようにしてもよい。すなわち、自動焦点調節の
応答性が要求される場合には応答性を重視して第2セン
サー10を選択し、応答性が要求されない場合には撮影
者の選択により第1センサー9または第2センサー10
を選択したり、第1センサー9と第2センサー10を両
方を選択することになる。
The operation of this embodiment is similar to the operation when the focus detection optical system shown in FIG. 2 is used, and is highly sensitive when low brightness or responsiveness is required such as during continuous shooting. The second sensor 10, that is, only the light receiving units 380 and 381 corresponding to the focus detection area at the center of the screen are selected and operated. Further, when the brightness is high or when continuous shooting is not being performed, all the sensors, that is, the light receiving units 380, 381, 48.
0, 481, 580, 581 may all be operated to calculate three defocus amounts, and an appropriate one may be selected from them, or a focus detection area manually selected by the photographer may be selected. Alternatively, only the corresponding light receiving unit may be selectively operated. That is, when responsiveness of automatic focus adjustment is required, the second sensor 10 is selected with emphasis on responsiveness, and when responsiveness is not required, the first sensor 9 or the second sensor 10 is selected by the photographer. 10
Will be selected, or both the first sensor 9 and the second sensor 10 will be selected.

【0045】以上の実施例の構成において、撮影光学系
3が撮影光学系を、焦点検出光学系7が焦点検出光学系
を、第1センサー9が第1のセンサーを、第2センサー
10が第2のセンサーを、焦点検出演算部12が焦点検
出演算手段を、モーター15が駆動手段を、連続撮影装
置16が連続撮影手段を、マイコン14が制御手段をそ
れぞれ構成する。
In the structure of the above embodiment, the photographing optical system 3 is the photographing optical system, the focus detecting optical system 7 is the focus detecting optical system, the first sensor 9 is the first sensor, and the second sensor 10 is the second sensor. The second sensor, the focus detection calculation unit 12 constitutes the focus detection calculation means, the motor 15 constitutes the drive means, the continuous photographing device 16 constitutes the continuous photographing means, and the microcomputer 14 constitutes the control means.

【0046】[0046]

【発明の効果】以上説明したように本発明によれば、焦
点検出光学系により形成された被写体像を受光するため
に第1のセンサーと第1センサーよりも感度の高い第2
のセンサーとを設け、連続撮影動作中は第2のセンサー
を優先的に動作させ、この第2のセンサーの出力に基づ
いて撮影光学系のデフォーカス量を演算し、算出された
デフォーカス量に応じて撮影光学系を合焦駆動するよう
にしたので、連続撮影動作中の駒間の焦点調節時間を短
縮することができ、駒間が短い高速連続撮影にも検出精
度の高い自動焦点調節が可能となる。また、低輝度時に
も駒速を落とさずに検出精度の高い自動焦点調節と高速
連続撮影を行うことができる。
As described above, according to the present invention, the first sensor and the second sensor having higher sensitivity than the first sensor for receiving the object image formed by the focus detection optical system.
Sensor is provided, the second sensor is preferentially operated during continuous shooting operation, the defocus amount of the shooting optical system is calculated based on the output of the second sensor, and the calculated defocus amount is set to the calculated defocus amount. In response to this, the shooting optical system is driven to focus, so the focus adjustment time between frames during continuous shooting operation can be shortened, and automatic focus adjustment with high detection accuracy is possible even for high-speed continuous shooting with short frames. It will be possible. Further, even when the brightness is low, it is possible to perform automatic focus adjustment with high detection accuracy and high-speed continuous shooting without reducing the frame speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例の構成を示すブロック図。FIG. 1 is a block diagram showing the configuration of an embodiment.

【図2】一実施例の焦点検出光学系および電荷蓄積型セ
ンサーの構成を示す斜視図。
FIG. 2 is a perspective view showing configurations of a focus detection optical system and a charge storage type sensor according to an embodiment.

【図3】図2に示すセンサーの構成を示す図。3 is a diagram showing a configuration of a sensor shown in FIG.

【図4】マイクロコンピューターの動作を示すフローチ
ャート。
FIG. 4 is a flowchart showing the operation of the microcomputer.

【図5】焦点検出光学系および電荷蓄積型センサーの他
の構成例を示す図。
FIG. 5 is a diagram showing another configuration example of a focus detection optical system and a charge storage type sensor.

【図6】図5に示すセンサーの構成を示す図。6 is a diagram showing a configuration of the sensor shown in FIG.

【図7】図5に示す焦点検出光学系の絞りマスクの構成
を示す図。
7 is a diagram showing a configuration of a diaphragm mask of the focus detection optical system shown in FIG.

【図8】図5に示す焦点検出光学系に対応する瞳領域を
示す図。
8 is a diagram showing a pupil region corresponding to the focus detection optical system shown in FIG.

【図9】焦点検出光学系および電荷蓄積型センサーの他
の構成例を示す斜視図。
FIG. 9 is a perspective view showing another configuration example of the focus detection optical system and the charge storage sensor.

【図10】図9に示す焦点検出光学系の側面図。10 is a side view of the focus detection optical system shown in FIG.

【図11】図9に示すセンサーの構成を示す図。11 is a diagram showing a configuration of the sensor shown in FIG.

【図12】図9に示す画面左右のセンサーを1次像面に
投影した場合の説明図。
FIG. 12 is an explanatory diagram when the left and right sensors shown in FIG. 9 are projected on the primary image plane.

【図13】図9に示す画面中央のセンサーを1次像面に
投影した場合を示す説明図。
FIG. 13 is an explanatory diagram showing a case where the sensor at the center of the screen shown in FIG. 9 is projected on the primary image plane.

【符号の説明】[Explanation of symbols]

1 ボディー 2 レンズ 3 撮影光学系 7 焦点検出光学系 8 センサー 9 第1センサー 10 第2センサー 11 制御部 12 焦点検出演算部 13 駆動制御部 14 マイクロコンピューター 15 モーター 16 連続撮影装置 30 瞳面 31,32,131,132,231,232,33
1,332 領域 70,73,74,170,173,174,273,
274,370,470,570,373,374,4
73,474,573,574 開口部 71,171,371 視野マスク 72,172,372,472,572 コンデンサー
レンズ 75,175,375 絞りマスク 76,77,176,177,276,277,37
6,377,476,477,576,577 再結像
レンズ 80〜83,180〜183,380,381,48
0,481,580,581 受光部 84,85,184,185,384,484,584
モニターセンサー
1 Body 2 Lens 3 Photographing Optical System 7 Focus Detection Optical System 8 Sensor 9 1st Sensor 10 2nd Sensor 11 Control Section 12 Focus Detection Calculation Section 13 Drive Control Section 14 Microcomputer 15 Motor 16 Continuous Imaging Device 30 Pupil Plane 31, 32 , 131, 132, 231, 232, 33
1,332 areas 70, 73, 74, 170, 173, 174, 273
274, 370, 470, 570, 373, 374, 4
73, 474, 573, 574 Aperture 71, 171, 371 Field-of-view mask 72, 172, 372, 472, 572 Condenser lens 75, 175, 375 Aperture mask 76, 77, 176, 177, 276, 277, 37
6,377,476,477,576,577 Re-imaging lens 80-83, 180-183, 380, 381, 48
0,481,580,581 Light receiving part 84,85,184,185,384,484,584
Monitor sensor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 予定焦点面上に被写体像を形成するため
に光軸方向に移動可能な光学要素を含む撮影光学系と、 焦点検出光学系と、 この焦点検出光学系により形成された被写体像を受光す
るための第1のセンサーと、 この第1のセンサーよりも感度の高い第2のセンサー
と、 前記第1のセンサーまたは前記第2のセンサーの出力に
基づき前記予定焦点面に対する前記撮影光学系の像面の
デフォーカス量を演算する焦点検出演算手段と、 この焦点検出演算手段により算出されたデフォーカス量
に応じて前記光学要素を駆動して前記撮影光学系を合焦
させる駆動手段と、 撮影動作を連続的に行う連続撮影手段と、 この連続撮影手段による連続撮影動作中は前記第2のセ
ンサーを優先的に動作させる制御手段とを備えることを
特徴とする自動焦点調節カメラ。
1. A photographing optical system including an optical element movable in an optical axis direction to form a subject image on a planned focal plane, a focus detection optical system, and a subject image formed by the focus detection optical system. A first sensor for receiving light, a second sensor having a higher sensitivity than the first sensor, and the photographing optical for the planned focal plane based on the output of the first sensor or the second sensor. Focus detection calculation means for calculating the defocus amount of the image plane of the system, and drive means for driving the optical element in accordance with the defocus amount calculated by the focus detection calculation means to focus the photographing optical system. An automatic focusing system comprising: a continuous photographing means for continuously performing a photographing operation; and a control means for preferentially operating the second sensor during the continuous photographing operation by the continuous photographing means. Adjusting the camera.
【請求項2】 請求項1に記載の自動焦点調節カメラに
おいて、 前記第1のセンサーおよび第2のセンサーは電荷蓄積型
であり、同一輝度の被写体に対して同一時間電荷蓄積を
行った場合に、前記第2のセンサーの蓄積電荷量は前記
第1のセンサーの蓄積電荷量より多くなるように構成し
たことを特徴とする自動焦点調節カメラ。
2. The autofocusing camera according to claim 1, wherein the first sensor and the second sensor are charge storage type, and charge is stored for the same time for a subject having the same brightness. An automatic focusing camera characterized in that the amount of accumulated charges of the second sensor is larger than the amount of accumulated charges of the first sensor.
【請求項3】 請求項1または請求項2に記載の自動焦
点調節カメラにおいて、 前記第1のセンサーおよび前記第2のセンサーは互いに
画素面積が異なるように構成したことを特徴とする自動
焦点調節カメラ。
3. The automatic focusing camera according to claim 1, wherein the first sensor and the second sensor have different pixel areas from each other. camera.
【請求項4】 請求項1または請求項2に記載の自動焦
点調節カメラにおいて、 前記焦点検出光学系は、前記第1のセンサー上に被写体
像を形成するための第1の焦点検出光学系と、第2のセ
ンサー上に被写体像を形成するための、前記第1の焦点
検出手段とは光学特性が異なる第2の焦点検出光学系と
を有することを特徴とする自動焦点調節カメラ。
4. The automatic focusing camera according to claim 1, wherein the focus detection optical system includes a first focus detection optical system for forming a subject image on the first sensor. An automatic focus adjustment camera, comprising: a second focus detection optical system having a different optical characteristic from the first focus detection means for forming a subject image on the second sensor.
JP4334743A 1992-12-15 1992-12-15 Automatic focusing camera Pending JPH06186473A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4334743A JPH06186473A (en) 1992-12-15 1992-12-15 Automatic focusing camera
US08/166,936 US5539493A (en) 1992-12-15 1993-12-15 Autofocus camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4334743A JPH06186473A (en) 1992-12-15 1992-12-15 Automatic focusing camera

Publications (1)

Publication Number Publication Date
JPH06186473A true JPH06186473A (en) 1994-07-08

Family

ID=18280731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4334743A Pending JPH06186473A (en) 1992-12-15 1992-12-15 Automatic focusing camera

Country Status (1)

Country Link
JP (1) JPH06186473A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406606B1 (en) * 1995-12-20 2004-03-18 삼성테크윈 주식회사 Zoom camera making focal distance varied in continuous photographing and control method thereof
JP2012063681A (en) * 2010-09-17 2012-03-29 Nikon Corp Focus detecting device and camera
WO2013058275A1 (en) * 2011-10-17 2013-04-25 キヤノン株式会社 Image capture device and control method thereof
JP2014215382A (en) * 2013-04-24 2014-11-17 キヤノン株式会社 Optical equipment
JP2015135523A (en) * 2010-01-15 2015-07-27 キヤノン株式会社 Focus detection device
JP2017227686A (en) * 2016-06-20 2017-12-28 リコーイメージング株式会社 Focus detector
JP2019197140A (en) * 2018-05-09 2019-11-14 キヤノン株式会社 Imaging device, control method for the same, and program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406606B1 (en) * 1995-12-20 2004-03-18 삼성테크윈 주식회사 Zoom camera making focal distance varied in continuous photographing and control method thereof
JP2015135523A (en) * 2010-01-15 2015-07-27 キヤノン株式会社 Focus detection device
JP2012063681A (en) * 2010-09-17 2012-03-29 Nikon Corp Focus detecting device and camera
WO2013058275A1 (en) * 2011-10-17 2013-04-25 キヤノン株式会社 Image capture device and control method thereof
JPWO2013058275A1 (en) * 2011-10-17 2015-04-02 キヤノン株式会社 Imaging apparatus and control method thereof
US9100568B2 (en) 2011-10-17 2015-08-04 Canon Kabushiki Kaisha Image pickup apparatus and control method thereof for controlling timing during continuous shooting
JP2014215382A (en) * 2013-04-24 2014-11-17 キヤノン株式会社 Optical equipment
JP2017227686A (en) * 2016-06-20 2017-12-28 リコーイメージング株式会社 Focus detector
JP2019197140A (en) * 2018-05-09 2019-11-14 キヤノン株式会社 Imaging device, control method for the same, and program

Similar Documents

Publication Publication Date Title
US7728903B2 (en) Focus adjustment device, focus adjustment method and camera
JP2001004909A (en) Camera having automatic focusing device
JP2004109690A (en) Camera system and camera
US6112029A (en) Camera, exchangeable lens, and camera system
US5623707A (en) Auto focus adjustment system and auto focus adjustment method
JP3080968B2 (en) Photometric device
US5526088A (en) Focus detection device
US5539493A (en) Autofocus camera
JP3574157B2 (en) Auto focus camera
JPH06186473A (en) Automatic focusing camera
JP4426670B2 (en) Camera focusing device
JP2000131595A (en) Camera and focusing device
JPH0875994A (en) Focus detector
JPH11281884A (en) Focus position detecting device
JP4182546B2 (en) Focus detection device
JPH06273665A (en) Automatic focusing camera
JPH11337813A (en) Autofocus camera
JP4774670B2 (en) Focus detection device, focus detection method, automatic focus adjustment camera, imaging device
JPH09311269A (en) Focus detector
JP2004045728A (en) Camera, focusing device and focusing method
JPH10133097A (en) Camera equipped with automatic focusing device
JP4608728B2 (en) Focus detection device
JPH04283733A (en) Automatic focusing camera
JP2003098421A (en) Multipoint range-finding device for camera and camera
JPH03146915A (en) Automatic focus adjusting device