JPH0319479B2 - - Google Patents

Info

Publication number
JPH0319479B2
JPH0319479B2 JP57173685A JP17368582A JPH0319479B2 JP H0319479 B2 JPH0319479 B2 JP H0319479B2 JP 57173685 A JP57173685 A JP 57173685A JP 17368582 A JP17368582 A JP 17368582A JP H0319479 B2 JPH0319479 B2 JP H0319479B2
Authority
JP
Japan
Prior art keywords
nozzle
heat storage
storage body
cleaning
reciprocating motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57173685A
Other languages
Japanese (ja)
Other versions
JPS5963499A (en
Inventor
Yasuaki Shinomya
Fumio Kodama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP17368582A priority Critical patent/JPS5963499A/en
Publication of JPS5963499A publication Critical patent/JPS5963499A/en
Publication of JPH0319479B2 publication Critical patent/JPH0319479B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G3/00Rotary appliances
    • F28G3/16Rotary appliances using jets of fluid for removing debris

Description

【発明の詳細な説明】 本発明は回転式熱交換機の蓄熱体に付着したダ
スト等に水蒸気又は高圧空気等を噴射してその付
着物を除去するクリーニング用ノズルの制御方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling a cleaning nozzle for removing dust or the like adhering to a heat storage body of a rotary heat exchanger by injecting water vapor or high-pressure air to the dust or the like.

回転式熱交換機は通常プロセスの一構成要素と
して用いられるもので例えば金属リボンを波状に
加工して形成した層を円盤状に集積した蓄熱体を
ケーシングで軸支し、一方の半円側は高温ダクト
に、他方は低温ダクトに連結されている。すなわ
ち第1図及び第2図に示す如く回転熱交換機はケ
ーシング1に軸架された回転蓄熱体2を備え蓄熱
体2の高温ダクト3の側にある部分を高温流体が
通過する際に、その顕熱を蓄熱体2に供給して昇
温させ、次に蓄熱された蓄熱体2が回転駆動装置
5によつて回転して低温側ダクト4に入ると低温
流体に放熱することにより熱交換を行つている。
上記の高温流体としては通常プロセスの排ガス等
が利用されることが多いので、ガス中のダストや
ミスト等が蓄熱体2の表面に付着し、そのため圧
力損失の増大、伝熱性能の低下、蓄熱体の腐蝕等
の障害が生じる。この蓄熱体への付着物を除去す
る目的で、通常固定式クリーナ又は往復動式クリ
ーナが設置されている。しかし、固定式クリーナ
は高温側蓄熱体の半径線上に多数のノズルを並設
し、水蒸気又は空気等の清掃媒体を噴射する必要
があるので、媒体量が多くそのための大きな設備
を要するほか、媒体によるガス温度の低下により
回収熱効率を低下させる等の問題がある。
A rotary heat exchanger is normally used as a component of a process. For example, a heat storage body consisting of layers formed by processing a metal ribbon into a corrugated shape and accumulated in a disk shape is supported by a casing, and one semicircular side is heated to a high temperature. duct and the other to the cold duct. That is, as shown in FIGS. 1 and 2, the rotary heat exchanger includes a rotating heat storage body 2 that is mounted on a shaft of a casing 1. Sensible heat is supplied to the heat storage body 2 to raise the temperature, and then the stored heat storage body 2 is rotated by the rotary drive device 5 and enters the low temperature side duct 4, and heat exchange is performed by dissipating heat to the low temperature fluid. I'm going.
As the above-mentioned high-temperature fluid is often exhaust gas from a normal process, dust, mist, etc. in the gas adhere to the surface of the heat storage element 2, resulting in an increase in pressure loss, a decrease in heat transfer performance, and heat storage. Disturbances such as body corrosion occur. A fixed cleaner or a reciprocating cleaner is usually installed for the purpose of removing deposits from the heat storage body. However, fixed cleaners require a large number of nozzles to be installed in parallel along the radius of the high-temperature side heat storage element to inject a cleaning medium such as steam or air, which requires large amounts of medium and large equipment. There are problems such as a decrease in heat recovery efficiency due to a decrease in gas temperature due to

往復動式のクリーナとして、第1図及び第2図
に示す如く、円形の回転蓄熱体2の中心軸部を除
いた範囲を先端にノズル7の設けられた噴射管8
を高温側機体の上部に設けられた駆動装置6によ
りスイングさせ、ノズル7より清掃媒体を蓄熱体
2に噴射してクリーニングを行つている。蓄熱体
2が回転し、同時にノズルを周期的に往復動させ
ることによりノズル7は蓄熱体2の全面を走査す
ることとなり、全面のクリーニングを行うもので
ある。
As a reciprocating cleaner, as shown in FIGS. 1 and 2, an injection pipe 8 is provided with a nozzle 7 at the tip of the area excluding the central axis of the circular rotating heat storage body 2.
is swung by a drive device 6 provided on the upper part of the body on the high temperature side, and a cleaning medium is injected onto the heat storage body 2 from a nozzle 7 to perform cleaning. By rotating the heat storage body 2 and at the same time periodically reciprocating the nozzle, the nozzle 7 scans the entire surface of the heat storage body 2, thereby cleaning the entire surface.

しかし実際にこの様な装置でクリーニングを行
うと、部分的にクリーニングされない部分が生ず
ることがある。それは、ノズル7の走査の軌跡が
蓄熱体2の全面をカバーしないパターンで繰返す
ようなノズルの往復動と蓄熱体の回転との間の同
期が生じた場合である。
However, when cleaning is actually performed using such an apparatus, some parts may not be cleaned. This is a case where the reciprocating movement of the nozzle and the rotation of the heat storage body are synchronized such that the scanning locus of the nozzle 7 repeats in a pattern that does not cover the entire surface of the heat storage body 2.

この点を詳しく解析すると次の通りである。第
3図において蓄熱体2の外周円をQ1、中心軸部
の円をQ2、中心O、外周円Q1の一点をA、OAと
円Q2の交点をBとすると、ノズル7はABの間を
往復動する。ノズル7の動きは実際は第1図に示
す如く噴射管8の根元を中心とした円周の一部で
あるが、ABの範囲ではほぼ直線状とみなすこと
ができる。そうすると第4図に示す如く、直線
ABの中点Cを中心とし、点A、Bを通る円の円
周上の点Dが等速で円周上を回転した時の直線
ABへ下す垂線の直線ABとの交点Eの動きがノ
ズル7の動きとなる。そして例えば蓄熱体2の回
転数を4.1回/分、ノズルの往復数1.8回/分、蓄
熱体の直径D(=)=2500mm、中心軸部の直径
α(=DB)=650mmとすると、ノズルの点Eが一
回の往復動で描く軌跡Sは第3図に示す如くにA
を始点とし、A′を終点とする軌跡となる。
A detailed analysis of this point is as follows. In FIG. 3, if the outer circumferential circle of the heat storage body 2 is Q 1 , the circle of the central axis part is Q 2 , the center O, one point of the outer circumferential circle Q 1 is A, and the intersection of OA and circle Q 2 is B, the nozzle 7 is It moves back and forth between AB. Although the movement of the nozzle 7 is actually a part of the circumference centered on the root of the injection pipe 8 as shown in FIG. 1, it can be regarded as approximately linear within the range AB. Then, as shown in Figure 4, a straight line
A straight line when point D on the circumference of a circle centered on midpoint C of AB and passing through points A and B rotates on the circumference at a constant speed.
The movement of the intersection point E of the perpendicular line drawn down to AB with the straight line AB is the movement of the nozzle 7. For example, if the rotation speed of the heat storage body 2 is 4.1 times/min, the number of reciprocations of the nozzle is 1.8 times/min, the diameter of the heat storage body D (=) = 2500 mm, and the diameter of the central shaft part α (= DB) = 650 mm, the nozzle The trajectory S drawn by point E in one reciprocating motion is as shown in Figure 3.
The starting point is A′, and the ending point is A′.

ここで描かれた軌跡が基準となり、この後終点
A′を始点に同じ軌跡が描かれ、終点となつた点
がまた始点となる。これを繰返した後、再びAを
始点として軌跡が描く様になると同期することに
なる。ここで始点Aと終点A′の角度をα゜とすると
この角度の自然数倍で軌跡を繰返すことになり、
このα゜の自然数倍の数値が360゜の自然数倍の数値
と一致した時、つまりこの2つの最小公倍数で同
期が始まることになる。ここで前記条件における
軌跡を計算すると軌跡が始点Aから終点A′まで
に要する時間はノズルが区間を1回動するの
と同じであるから1回動の時間は 1/18=5/9分であり この間におけるローターの回転は 4.1×5/9=41/18回転となる。
The trajectory drawn here becomes the reference, and after this the end point
The same trajectory is drawn with A' as the starting point, and the point that became the ending point also becomes the starting point. After repeating this, synchronization will be achieved when the trajectory starts from A again. Here, if the angle between the starting point A and the ending point A' is α°, the trajectory will be repeated at a natural number multiple of this angle,
When the natural number multiple of α° matches the natural number multiple of 360°, synchronization begins at the least common multiple of these two. Here, when calculating the trajectory under the above conditions, the time required for the trajectory from the start point A to the end point A' is the same as the nozzle moving once in the section, so the time for one revolution is 1/18 = 5/9 minutes. The rotation of the rotor during this period is 4.1×5/9=41/18 rotations.

つまりAを基準に考えると2回転と5/18回転し
たことになりこの5/18回転は角α゜を表わしており α/360=5/18 α=360×5/18=100゜ 角100゜と360゜の最小公倍数は 100゜×18=1800° 360゜×5=1800゜ 最小公倍数は1800となりノズルが18回往復動す
ると、つまり18/1.8=10分間すると再びA点が始
点となり同期しその後同じ軌跡を繰返して走査す
ることとなる。
In other words, if we consider A as a reference, we have made 2 rotations and 5/18 rotations, and this 5/18 rotation represents an angle α°, α/360 = 5/18 α = 360 × 5/18 = 100° Angle 100 The least common multiple of degrees and 360 degrees is 100 degrees × 18 = 1800 degrees 360 degrees × 5 = 1800 degrees The least common multiple is 1800, and when the nozzle moves back and forth 18 times, that is, after 18/1.8 = 10 minutes, point A becomes the starting point again and synchronization occurs. After that, the same trajectory will be scanned repeatedly.

第5図は上記条件で2000秒(33分20秒)連続運
転した時のノズルが蓄熱体を走査した軌跡をコン
ピユータで描かした図である。この図からも明ら
かなように走査一定のパターンの繰返しとなり蓄
熱体の全面をカバーしていない。そのためノズル
が吹き付けを行わない部分ができてクリーニング
がされず、付着物が堆積して目詰り等の障害がが
生ずることになる。
FIG. 5 is a computer-drawn diagram of the locus of the nozzle scanning the heat storage element during continuous operation for 2000 seconds (33 minutes 20 seconds) under the above conditions. As is clear from this figure, the scanning pattern is repeated and the entire surface of the heat storage body is not covered. As a result, there are areas where the nozzle does not spray and cleaning is not performed, and deposits accumulate and cause problems such as clogging.

つぎにノズルが何回往復動する間に同期すれば
クリーニングできない所ができるか検討する。
Next, consider how many times the nozzles must be synchronized to reciprocate to avoid areas that cannot be cleaned.

ノズルによる噴射の有効にクリーニングできる
範囲を10mm、蓄熱体をなすコルゲートの一層の厚
さを2mmとすると、走査の間隔は6mm以下である
ことが望ましい。
Assuming that the range that can be effectively cleaned by spraying from the nozzle is 10 mm and the thickness of one layer of corrugated material forming the heat storage body is 2 mm, it is desirable that the scanning interval be 6 mm or less.

前記の条件で検討するとABの長さは =(2500−650)/2=925mm ローター面をノズルが1回動する間のローター
回転数は41/18回転、軌跡は交差しながら移動す
る所から全面を走査した時点ではそれぞれの面上
を2度通過したことになりローター面全面を走査
するに必要なノズル往復動数は 925×2/6×4/18≒135回 時間は 135/1.8=75分 すなわち前記設備の場合はノズル135回動、時
間にして75分間の間に同期しないように制御する
必要がある。
Considering the above conditions, the length of AB is = (2500-650)/2 = 925mm The rotor rotation speed during one rotation of the nozzle on the rotor surface is 41/18 rotations, and the trajectory is from the point where it moves while intersecting. When the entire surface is scanned, each surface has been passed twice, so the number of nozzle reciprocations required to scan the entire rotor surface is 925 x 2/6 x 4/18 ≒ 135 times, and the time is 135/1.8 = 75 minutes In other words, in the case of the above-mentioned equipment, it is necessary to control the nozzle so that it does not synchronize during the 135 rotations, which is 75 minutes.

なお、走査線が余りにも近接するパターンを描
く場合はこの間同期しなくともやはりクリーニン
グできない部分が残る。
Note that if a pattern is drawn in which the scanning lines are too close together, there will still be areas that cannot be cleaned even if they are not synchronized during this period.

熱交換機の運転中にはこの様な同期が生じてい
るかどうかを発見することは困難であり、もし部
分的に強度の付着が生ずるとその除去のため長時
間運転を休止しなければならない。
It is difficult to detect whether such synchronization is occurring while the heat exchanger is in operation, and if strong build-up occurs in some areas, the operation must be stopped for a long time to remove it.

本発明は上記の問題点を解決するために、クリ
ーニング用ノズルの往復動を一時停止させること
により同期状態を防止し、均一にクリーニングす
る方法を見出したものである。すなわち同期をく
ずすためには第3図において同じA点から始動し
ない様に始点をずらせば良くノズルの往復動を一
時停止すれば始点はずれる。往復動停止のサイク
ルは同期するまでの最大時間以下で良く前述の条
件の場合はノズルの18回往復動の時間10分間の間
にずらせばよい。
In order to solve the above-mentioned problems, the present invention has discovered a method of preventing synchronization by temporarily stopping the reciprocating movement of the cleaning nozzle and cleaning uniformly. That is, in order to break the synchronization, the starting point can be shifted so that it does not start from the same point A in FIG. 3, and the starting point can be shifted by temporarily stopping the reciprocating motion of the nozzle. The cycle of stopping the reciprocating motion may be less than the maximum time required for synchronization, and in the case of the above-mentioned conditions, it is sufficient to shift the nozzle reciprocating motion 18 times within 10 minutes.

例えば同期を避けるために10分間に1回0.8秒
ノズル回動を停止した場合を計算すると、停止時
間中に始点のずれる角度は 360×4.1×0.8/60=19.68゜ 始点のずれる角度は 100×19.68=119.68゜ 360と119.68の最小公倍数は 119.68×9000=1077120 360×2992=1077120 すなわちノズルが9000回往復動するまでつまり
5000分間は同期しない。この様に長時間同期しな
ければ同期するまでの間に蓄熱体の全面が確実に
走査されることになる。計算上は上記の例では一
周期の終了時点にノズル停止時間を設けたが現実
的には周期の途中に停止時間を設定する事にな
り、多少の停止時間の変動を考慮すれば同期する
ことはほとんど考えられなくなる。
For example, when calculating the case where the nozzle rotation is stopped for 0.8 seconds once every 10 minutes to avoid synchronization, the angle at which the starting point shifts during the stop time is 360 x 4.1 x 0.8/60 = 19.68° The angle at which the starting point shifts is 100 x 19.68=119.68° The least common multiple of 360 and 119.68 is 119.68×9000=1077120 360×2992=1077120 In other words, the nozzle will clog until it reciprocates 9000 times.
It will not synchronize for 5000 minutes. If synchronization is not performed for a long time in this way, the entire surface of the heat storage body will be reliably scanned until synchronization is achieved. Calculatedly, in the above example, the nozzle stop time was set at the end of one cycle, but in reality, the stop time would be set in the middle of the cycle, and if some fluctuations in the stop time are considered, synchronization is possible. becomes almost unthinkable.

この様に、ノズルの往復動を一時停止するため
の回路の一例を第6図に示す。
FIG. 6 shows an example of a circuit for temporarily stopping the reciprocating movement of the nozzle in this manner.

第6図の回路図において、全回路の主スイツチ
S1と蓄熱体駆動モーターM1の副スイツチS2及び
クリーニング装置駆動モーターM2の副スイツチ
S3を閉じ押釦スイツチPB1を閉じるとM1の電磁
スイツチMS1:保持スイツチMS1X、M2の電磁
スイツチM′S2が閉じ蓄熱体及びクリーニング装
置の運転が開始される。同時にタイムスイツチ
T1が始動し所定時間後にt1が閉じるとリレーR1
とタイムスイツチT2が作動してスイツチr1が開
きMS2が開いてモーターM2が停止する。T2の所
定時間後にt2が閉じると再びT1が始動してt1が開
き、r1及びMS2が閉じるのでモーターM2は作動
を開始し、以後この動作を繰返すことになる。ま
たTR1、TR2はM1及びM2の保護用サーマルリレ
ーで過負荷時のみ作動してモーターを停止させ
る。
In the circuit diagram of Figure 6, the main switch of all circuits is
S 1 and sub-switch of heat storage body drive motor M 1 S 2 and sub-switch of cleaning device drive motor M 2
When S3 is closed and the push button switch PB1 is closed, the electromagnetic switch MS1 of M1 : the holding switch MS1X and the electromagnetic switch M'S2 of M2 are closed, and the operation of the heat storage body and cleaning device is started. time switch at the same time
When T 1 starts and after a predetermined time t 1 closes, relay R 1
and time switch T2 operates, switch R1 opens, MS2 opens, and motor M2 stops. When t 2 closes after a predetermined time of T 2 , T 1 starts again, t 1 opens, r 1 and MS 2 close, and motor M 2 starts operating, and this operation is repeated thereafter. Also, TR 1 and TR 2 are thermal relays for protection of M 1 and M 2 , which operate only in the event of an overload to stop the motor.

第7図は120秒毎にノズルの往復動を0.8秒停止
した例、第8図は同様に120秒毎に1.2秒停止た例
についてそれぞれ2000秒運転までの走査パターン
を示す。
FIG. 7 shows an example in which the reciprocating motion of the nozzle is stopped for 0.8 seconds every 120 seconds, and FIG. 8 shows a scanning pattern for an example in which the reciprocating motion of the nozzle is similarly stopped for 1.2 seconds every 120 seconds up to 2000 seconds of operation.

第7図の場合はノズルの回動を一時停止するの
でM点で軌跡が順次ずれることになり同期するこ
とはなく、2000秒を越えて更に運転を続けると全
体が走査線で埋つてくる。第8図の例の場合は更
にその効果が顕著となり何れも蓄熱体の全面を走
査しクリーニングすることができる。
In the case of FIG. 7, since the rotation of the nozzle is temporarily stopped, the locus will shift sequentially at point M, and will not be synchronized, and if the operation continues beyond 2000 seconds, the entire area will be filled with scanning lines. In the case of the example shown in FIG. 8, the effect is even more remarkable, and in both cases, the entire surface of the heat storage body can be scanned and cleaned.

なお蓄熱体又はクリーニング用ノズルの回転
(往復)数を可変し、両者の相対速度を変えるこ
とによつても同一な効果を得ることができるが、
蓄熱体の回転数を変更することは設備費が高くな
るばかりでなく回転数を大巾に変更すると熱交換
が均一に行なわれなくなる問題がある。また速度
可変モーターや、電磁クラツチ等を使用してノズ
ルのスイング速度を可変にすることも可能である
が設備が複雑になり費用が高くなる問題がある。
本発明は比較的簡単な方法で目的を達成すること
ができるので実用上の効果が極めて大きい。
Note that the same effect can be obtained by varying the number of rotations (reciprocating) of the heat storage body or the cleaning nozzle and changing the relative speed of the two.
Changing the rotational speed of the heat storage body not only increases equipment costs, but also has the problem that heat exchange is not performed uniformly if the rotational speed is drastically changed. It is also possible to make the swing speed of the nozzle variable using a variable speed motor, an electromagnetic clutch, etc., but this poses a problem of complicating the equipment and increasing costs.
The present invention achieves the object using a relatively simple method, and therefore has extremely great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は回転式熱交換器の正面図である。第2
図は回転式熱交換器の一部断面を示す側面図であ
る。第3図はノズルの走査のパターンを説明する
図である。第4図はノズルの往復動を説明する図
である。第5図はノズルの走査の同期するパター
ンの軌跡を示す図である。第6図はノズルの往復
動を制御する回路の一例を示す図である。第7図
及び第8図はノズルの走査の同期しないパターン
の軌跡を示す図である。 符号の説明、1……ケーシング、2……蓄熱
体、3……高温ダクト、4……低温側ダクト、5
……回転駆動装置、7……ノズル、8……噴射
管。
FIG. 1 is a front view of the rotary heat exchanger. Second
The figure is a side view showing a partial cross section of the rotary heat exchanger. FIG. 3 is a diagram illustrating a nozzle scanning pattern. FIG. 4 is a diagram illustrating the reciprocating movement of the nozzle. FIG. 5 is a diagram showing the trajectory of a synchronized pattern of nozzle scanning. FIG. 6 is a diagram showing an example of a circuit that controls the reciprocating movement of the nozzle. FIGS. 7 and 8 are diagrams showing trajectories of patterns in which nozzle scanning is not synchronized. Explanation of symbols, 1...Casing, 2...Heat storage body, 3...High temperature duct, 4...Low temperature side duct, 5
... Rotation drive device, 7 ... Nozzle, 8 ... Injection pipe.

Claims (1)

【特許請求の範囲】 1 一定速度で回転する回転蓄熱体の中心部と周
縁部とで折り返すよう一定周期でノズルを往復動
させて流体を吹きつけ付着物を吹き落とす回転蓄
熱体のクリーニング用ノズル制御方法において、
該ノズルの周期的往復動を一時的に停止させるこ
とにより周期をみだし該回転蓄熱体の回転運動と
該ノズルの往復動が短周期で同期することを防
ぎ、それによつて該ノズルが回転蓄熱体の全面を
確実に走査できるようにしたことを特徴とするク
リーニング用ノズルの制御方法。 2 一定速度で回転する回転蓄熱体の中心部と周
縁部とで折り返すよう一定周期でノズルを往復動
させて流体を吹きつけ付着物を吹き落とす回転蓄
熱体のクリーニング用ノズル制御方法において、
該ノズルの周期的往復動を一時的に速度を変更さ
せることにより周期をみだし該回転蓄熱体の回転
運動と該ノズルの往復動が短周期で同期すること
を防ぎ、それによつて該ノズルが回転蓄熱体の全
面を確実に走査できるようにしたことを特徴とす
るクリーニング用ノズルの制御方法。
[Scope of Claims] 1. A cleaning nozzle for a rotating heat storage body that sprays fluid and blows off deposits by reciprocating the nozzle at a constant cycle so as to fold back the center and periphery of the rotating heat storage body that rotates at a constant speed. In the control method,
By temporarily stopping the periodic reciprocating motion of the nozzle, the period is exceeded and the rotational motion of the rotating heat storage body and the reciprocating motion of the nozzle are prevented from synchronizing in a short period. A method of controlling a cleaning nozzle, characterized in that the entire surface of the cleaning nozzle can be reliably scanned. 2. In a nozzle control method for cleaning a rotating heat storage body, the nozzle is reciprocated at a constant cycle so as to turn around the center and periphery of the rotating heat storage body rotating at a constant speed to spray fluid and blow off deposits.
By temporarily changing the speed of the periodic reciprocating motion of the nozzle, the period is increased and the rotational motion of the rotary heat storage body and the reciprocating motion of the nozzle are prevented from synchronizing in a short period, thereby causing the nozzle to rotate. A method for controlling a cleaning nozzle, characterized in that the entire surface of a heat storage body can be reliably scanned.
JP17368582A 1982-10-01 1982-10-01 Control of nozzle for cleaning Granted JPS5963499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17368582A JPS5963499A (en) 1982-10-01 1982-10-01 Control of nozzle for cleaning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17368582A JPS5963499A (en) 1982-10-01 1982-10-01 Control of nozzle for cleaning

Publications (2)

Publication Number Publication Date
JPS5963499A JPS5963499A (en) 1984-04-11
JPH0319479B2 true JPH0319479B2 (en) 1991-03-15

Family

ID=15965197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17368582A Granted JPS5963499A (en) 1982-10-01 1982-10-01 Control of nozzle for cleaning

Country Status (1)

Country Link
JP (1) JPS5963499A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110005706A1 (en) * 2009-07-08 2011-01-13 Breen Energy Solutions Method for Online Cleaning of Air Preheaters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415366A (en) * 1977-07-04 1979-02-05 Ebara Infilco Co Ltd Method of cleaning element for air preheater or the like

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415366A (en) * 1977-07-04 1979-02-05 Ebara Infilco Co Ltd Method of cleaning element for air preheater or the like

Also Published As

Publication number Publication date
JPS5963499A (en) 1984-04-11

Similar Documents

Publication Publication Date Title
JP6807613B2 (en) How to clean a suit blower and a tube heat exchanger using it
EP0933502B1 (en) Wash system for gas turbine compressors
JP2011017524A (en) Method for cleaning air preheater in operating state
JP6419183B2 (en) Combined cleaning method for heat exchangers
US5416946A (en) Sootblower having variable discharge
JP7013520B2 (en) Cleaning method
JP2007144297A (en) Thin film formation method
JPH0319479B2 (en)
KR101736334B1 (en) Soot blower and method for cleaning heat exchanger
JPH0347991B2 (en)
CN109373800A (en) Can on-line cleaning rotary air preheating system and on-line cleaning method
JPS61289296A (en) Cleaning device for heat exchanger
CN112682814A (en) Blockage clearing device and method for multiple air preheater systems
JP2013503996A (en) Combustion system and method for cleaning a catalytic converter installed in an exhaust duct of a combustion system
WO1996019008A1 (en) Crt electron gun cleaning using carbon dioxide snow
JP2005024191A (en) Cleaning device and method for boiler room
JP2007192417A (en) Soot blower and its control method
CN211330454U (en) Cleaning device for soldering flux condenser of reflow soldering equipment
JPH06281127A (en) Soot blower for heat-exchanger using gas outside of pipe
JP4423983B2 (en) Blast furnace top pressure power generation facility and turbine blade cleaning method in blast furnace top pressure power generation facility
CN110201533B (en) SCR denitration system catalyst ash removal and discharge device and working method thereof
EP0023937B1 (en) Soot blowing system
CN217191343U (en) Steam cleaning system for ash scale of air preheater
CA1290742C (en) Heat generator
JP3310798B2 (en) Rinsing equipment for regenerative heat exchangers