JPS5963499A - Control of nozzle for cleaning - Google Patents

Control of nozzle for cleaning

Info

Publication number
JPS5963499A
JPS5963499A JP17368582A JP17368582A JPS5963499A JP S5963499 A JPS5963499 A JP S5963499A JP 17368582 A JP17368582 A JP 17368582A JP 17368582 A JP17368582 A JP 17368582A JP S5963499 A JPS5963499 A JP S5963499A
Authority
JP
Japan
Prior art keywords
nozzle
switch
heat storage
storage body
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17368582A
Other languages
Japanese (ja)
Other versions
JPH0319479B2 (en
Inventor
Yasuaki Shinomiya
四之宮 泰昭
Fumio Kodama
児玉 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP17368582A priority Critical patent/JPS5963499A/en
Publication of JPS5963499A publication Critical patent/JPS5963499A/en
Publication of JPH0319479B2 publication Critical patent/JPH0319479B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G3/00Rotary appliances
    • F28G3/16Rotary appliances using jets of fluid for removing debris

Abstract

PURPOSE:To permit the nozzle for cleaning to scan the whole surface of a rotary heat accumulating body by a method wherein the periodical reciprocating motion of the nozzle is stopped temporarily to disturb the period of the motion so that the rotary motion of the rotary heat accumulating body and the reciprocating motion of the nozzle is not synchronized in a short period. CONSTITUTION:When the main switch S1 of a whole circuit and the sub-switch S3 of a heat accumulating body driving motor M2 are closed and a push-bottom switch PB1 is closed, the operations of the heat accumulating body and a cleaning device are initiated. When a time switch T1 is started at the same time and a contact t1 is closed after a predetermined time, a switch r1 and a solenoid switch MS2 are opened and the motor M2 is stopped. When the contact t2 is closed after a predetermined time from the closing of the time switch T2, the switch T1 is started again and the contact t1 is opened, therefore, the motor M2 is started. The whole surface of the heat accumulating body is scanned and the same may be cleaned by repeating these motions thereafter.

Description

【発明の詳細な説明】 本発明は回転式熱交換機の蓄熱体に付着したダスト等に
水蒸気又は高圧空気等を噴射してその付着物を除去する
クリーニング用ノズルの制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling a cleaning nozzle for removing dust or the like adhering to a heat storage body of a rotary heat exchanger by injecting water vapor or high-pressure air to the dust or the like.

回転式熱交換機は通常プロセスの一構成要素として用い
られるもので例えば金属リボノを波状に加工して形成し
た層を円盤状に集積した蓄熱体をケーシングで軸支し、
一方の半円側は高温ダクトに、他方は低温タクトに連結
されている。すなわち第1(2)及び第2図に示す如く
回転熱交換機はケーシング1に軸架された回転蓄熱体2
全備え蓄熱体2の高温タクト3の側にある部分を高温流
体が通過する際に、その顕熱を蓄熱体2に供給して昇温
させ、次に蓄熱された蓄熱体2が回転駆動装置5によっ
て回転して低温側ダクト4に入ると低温流体に放熱する
ことによシ熱交換を行っている。
A rotary heat exchanger is normally used as a component of a process. For example, a heat storage body made of layers formed by processing metal ribs into a corrugated shape is accumulated in a disk shape, and is supported by a casing.
One semicircular side is connected to the high temperature duct, and the other side is connected to the cold tact. That is, as shown in FIG. 1 (2) and FIG.
When the high-temperature fluid passes through the part of the fully equipped heat storage body 2 on the high temperature tact 3 side, the sensible heat is supplied to the heat storage body 2 to raise the temperature, and then the stored heat storage body 2 is transferred to the rotation drive device. 5 and enters the low temperature side duct 4, heat is exchanged by radiating heat to the low temperature fluid.

上記の高温流体としては通常プロセスの排ガス等が利用
されることが多いので、ガス中のダストやミスト等が蓄
熱体2の表面に付着し、そのため圧力損失の増大、伝熱
性能の低下、蓄熱体の腐蝕等の障害が生じる。この蓄熱
体へのイζ]着物を除去する目的で、通常固定式クリー
ナ又は往復動式クリーナが設置されている。しかし、固
定式クリーナは高温側蓄熱体の半径線上に多数のノズル
を並設し、水蒸気又は空気等の清掃媒体を噴射する必要
があるので、聾体量が多くそのだめの大きな設備を要す
るほか、媒体によるガス温度の低下により回収熱効率を
低下させる等の問題がある。
As the above-mentioned high-temperature fluid is often exhaust gas from a normal process, dust, mist, etc. in the gas adhere to the surface of the heat storage element 2, resulting in an increase in pressure loss, a decrease in heat transfer performance, and heat storage. Disturbances such as body corrosion occur. A stationary cleaner or a reciprocating cleaner is usually installed for the purpose of removing kimono from the heat storage body. However, fixed cleaners require a large number of nozzles to be installed in parallel along the radius of the high-temperature side heat storage element and spray cleaning media such as water vapor or air, which requires a large amount of hearing aid and equipment with a large capacity. However, there are problems such as a decrease in heat recovery efficiency due to a decrease in gas temperature due to the medium.

往椀動式のクリーナとして、第1図及び第2図に示す如
く、円形の回転蓄熱体2の中心軸部を除いた範囲を先端
にノズル7の設けられたツ[副管8を高温1[411機
体の上部に設けられた駆動装置(jによりスイングさせ
、ノズル7より清掃媒体を蓄熱体2に噴射してクリーニ
ングを行っている。蓄熱体2が回転し、同時にノズルを
周期的に往復動させることによりノズル7は蓄熱体2の
全面を走査することとなり、全面のクリーニングを行う
ものである。
As shown in FIGS. 1 and 2, as a reciprocating type cleaner, a nozzle 7 is provided at the tip of the circular rotating heat storage body 2 excluding the center axis. [411 The drive device (J) installed at the top of the fuselage swings it and injects the cleaning medium from the nozzle 7 onto the heat storage body 2 for cleaning. By moving the nozzle 7, the entire surface of the heat storage body 2 is scanned, thereby cleaning the entire surface.

しかし実際にこの様な装置でクリーニングを行うと、部
分的にクリーニングされない部分が生ずることがある。
However, when cleaning is actually performed using such an apparatus, some parts may not be cleaned.

それtよ、ノズル7の走査の軌跡が蓄熱体2の全面ケカ
バーしないパターンで繰返すようなノズルの往復動と蓄
熱体の回転との間の同ル」が生じプ杜場合である。
This is the case when there is a coincidence between the reciprocating movement of the nozzle and the rotation of the heat storage body, such that the scanning locus of the nozzle 7 repeats in a pattern that does not cover the entire surface of the heat storage body 2.

この点を詳しく解析すると次の通りであるっ第3図にお
いて蓄熱体2の外周円をQ+ 、中心軸部の円をQ2 
、中心をO1外周円Q1の一点をA、OAと円Q2の交
点を13とすると、ノズル7はABの間を往復動する。
A detailed analysis of this point is as follows: In Figure 3, the outer circumferential circle of the heat storage body 2 is Q+, and the circle around the central axis is Q2.
, the center is O1, a point on the outer circumferential circle Q1 is A, and the intersection of OA and circle Q2 is 13, then the nozzle 7 reciprocates between AB.

ノズル7の動きは実際は第1図に示す如く噴射管8の根
元全中心とした円周の一部であるが、ABの範囲ではほ
ぼ直iが状とみなすことができる。そうすると第4図に
示す如く、直tq A Bの中点Cを中心とし、点A、
Bを通る円の円周上の点りが等速で円周上を回転した時
の「j線A 13 =−下す垂線の直線A Bとの変点
Eの几・υきがノズル7の!11hきとなる。そして例
えば蓄熱体2の回転′0.孕4゜1回/分、ノズルの往
復数1゜8回/分、g ry:s体の直径1)(・−1
3)=2500肌、中心軸部の直径α(=DB )・・
650&#、とすると、ノズルの点Eが一回の往1ソ動
で描く軌跡Sは第;3図に示す如くにAを始点とし、に
を終点とする軌跡となる。
Although the movement of the nozzle 7 is actually a part of the circumference centered around the base of the injection pipe 8 as shown in FIG. 1, it can be considered to be approximately in the shape of a straight line in the range AB. Then, as shown in Fig. 4, centering on the midpoint C of direct tq A B, points A,
When a point on the circumference of a circle passing through B rotates on the circumference at a constant speed, the "j line A 13 = - straight line A of the downward perpendicular line. For example, the rotation of the heat storage body 2'0.4° is 1 time/min, the number of reciprocations of the nozzle is 1°8 times/min, and gry: diameter of the body 1) (・-1
3) = 2500 skin, diameter α of central shaft part (=DB)...
650&#, then the trajectory S drawn by the point E of the nozzle in one forward movement is a trajectory with A as the starting point and N as the ending point, as shown in FIG.

ここで描かれた軌跡が基準となり、この後終点A′を始
点に同じ軌跡が描かれ、終点となった点が寸だ始点とな
る。これを繰返した後、再び八を始点として軌跡を描く
様Qてなると同期することになる。ここで始点Aと終点
にの角度孕αとするととの角度の自然数1音で軌跡勿繰
返づことにな9、このαの自フ、:\数倍の数値が3 
G Oすの目然数培の数値と一致し7ζ時、′−)′!
:りこの2つの最小公倍数で同期が始まることになる。
The trajectory drawn here becomes the reference, and after that, the same trajectory is drawn starting from the end point A', and the point that becomes the end point becomes the starting point. After repeating this, synchronization will be achieved when the trajectory starts at 8 and begins again at Q. Here, if the angle between the starting point A and the ending point is α, then the trajectory will be repeated by the natural number 1 note of the angle.
It matches the numerical value of G Osu's mekari number, and at 7ζ,'-)'!
: Synchronization will start at the least common multiple of the two Riko.

ここで前記条件におυブる軌跡をd1詩、すると軌跡か
始点Aから終点N廿でeこ要する時間はノズルかA1区
間t】回動するのと回じCめるvjhら1回動り時間は 1 / 18−5/’9分でめシ この間(cお’/−J /l) U−ターの回;耘は4
.1 X 5/9−41/18回転と7r 6 。
Here, the trajectory that meets the above conditions is d1, then the time required for the trajectory from the starting point A to the ending point N is the nozzle's rotation in A1 section t] and one rotation from C to vjh. The time is 1/18-5/'9 minutes, and the time is Meshiko (c O'/-J/l).
.. 1 x 5/9-41/18 rotations and 7r 6.

つ゛まりΔを柄へ5に考えると2回顕と5/18回転し
7″こことになりこの5/18回転は角α〒表わしてお
υ α/360= 5/18 d==  :360X5/18  =  1000角1
1) 0  と360の最小公倍数は最小公倍数は18
00とな9ノズルが18回往復動すると、つまシ18/
1.8 == −10分間すると(〕び八点が始点とな
や同期しその後同じ軌跡を繰返し′C走食することとな
る。
In other words, if we consider Δ to be 5 to the handle, we will make a 5/18 rotation with 2 rotations and 7″, and this 5/18 rotation will represent the angle α〒 υ α/360= 5/18 d== :360X5/ 18 = 1000 angles 1
1) The least common multiple of 0 and 360 is 18
When the 9 nozzles 00 reciprocate 18 times, the tab 18/
1.8 == - After 10 minutes, the eight points become somewhat synchronized with the starting point, and then the same trajectory is repeated.

第5図は上記条沖で2000秒(33分20秒)連続運
転した時のノズルが蓄熱体を走査した軌跡ヲコンピュー
タで描かした図である。この□□□からも明らかなよう
に走査は一定のパターンの繰返しとなり蓄熱体の全面を
カバーしていない。そのためノズルが吹き付けを行わな
い部分ができてクリーニングがされず、伺着物が堆積し
て目詰シ等の障害が生ずることになる。
FIG. 5 is a computer-drawn diagram showing the trajectory of the nozzle scanning the heat storage body during continuous operation for 2000 seconds (33 minutes 20 seconds) off the coast of the above-mentioned area. As is clear from this □□□, the scanning repeats a certain pattern and does not cover the entire surface of the heat storage body. As a result, there are areas where the nozzle does not spray and cleaning is not performed, and debris accumulates and causes problems such as clogging.

つきeてノズルが伺回往傷動する間に同期すればクリー
ニングできなへ所ができるか検討する。
If the nozzles are synchronized while they move back and forth, we will consider whether there will be any areas that cannot be cleaned.

ノズルによる噴射の有効にクリ一二ノグできる範囲をl
 Q MI、蓄熱体をなすコルゲートの一層の厚さを2
1@とすると、走査の間隔は6勲以下であることが望ま
しい。
The range in which the nozzle can effectively spray
Q MI, the thickness of the corrugated layer that forms the heat storage body is 2.
1@, it is desirable that the scanning interval be 6 times or less.

前記の条件で検討するとABの長さは AB=(2500−6501/2=9251nlロ一タ
ー面をノズルが1回動する間のローター回転数は41/
18  回転、軌跡は交差しながら移動する所から全面
を走査した時点ではそれぞれの面上を2度通過した仁ど
になりローター面全面を走査するに必要なノズル往復動
数は 925 X 2/6X’41/18 + 135回時間
は 135/1.8−75分 すなわち前記設備の場合はノズルが135回動、時間に
して75分間の間に同期しないように制御する必要があ
る。
Considering the above conditions, the length of AB is AB = (2500-6501/2 = 9251nl) The number of rotor rotations during one rotation of the nozzle on the rotor surface is 41/2
18 When the entire surface is scanned from a place where the rotation and trajectory intersect, the number of nozzle reciprocations required to scan the entire rotor surface is 925 x 2/6 '41/18 + 135 times The time is 135/1.8-75 minutes, that is, in the case of the above equipment, it is necessary to control so that the nozzle does not synchronize during 135 rotations, which is 75 minutes in time.

なお、走査線が余シにも近接するパターンを描く場合は
この間同期しなくともやはりクリーニングできない部分
が残る。
Note that if a pattern is drawn in which the scanning lines are close to the margins, there will still be areas that cannot be cleaned even if the scanning lines are not synchronized during this period.

熱交換機の運転中にはこの様な同期が生じているかどう
かを発見することは困離であり、もし部分的に強度の付
層が生ずるとその除去のため長時間運転を休止し〕シけ
ればならない。
It is difficult to detect whether such synchronization is occurring while the heat exchanger is in operation, and if a strong build-up occurs in some areas, operation must be stopped for a long period of time to remove it. Must be.

本発明は上記の問題点を解決するだめに、クリーニング
用ノズルの往復動を一時停止させることにより同期状態
を防止し、均一にクリーニングする方法を見出したもの
である。すなわち同期をくずすためには第3図において
同じA点から始動しない様に始点をずらせば(9)くノ
ズルの往復動を一時停止すれば始点はずれる。往復動停
止のザイクルは同期する寸での最大時間以下で良く前述
の条件の場合はノズルの18回往復動の時間10分間の
間にずらせはよい。
In order to solve the above-mentioned problems, the present invention has discovered a method for uniformly cleaning the cleaning nozzle by temporarily stopping the reciprocating movement of the cleaning nozzle to prevent synchronization. That is, in order to break the synchronization, the starting point can be shifted so that it does not start from the same point A in FIG. 3 (9), and the starting point can be shifted by temporarily stopping the reciprocating movement of the nozzle. The cycle of stopping the reciprocating motion may be shorter than the maximum time for synchronization, and in the case of the above-mentioned conditions, the cycle of reciprocating motion may be delayed for 10 minutes during the 18 reciprocating motions of the nozzle.

例えば同期を赴けるために10分間に1回転8秒ノズル
回動を停止した場合を計算すると、停止時間中に始点の
ずれる角度は 360X4.IXo、8/60= 19.68始点のず
れる角度は 360と119.68の最小公倍数は 119.68X9000−1077120360X29
92=1077120 すなわちノズルが9000回往徨動するまでつ1シ50
00分間は同期しない。この様に長時間同期しなければ
同期するまでの間に蓄熱体の全面が確実に走査されるこ
とになる。計算上は上記の例ては一周期の終了時点にノ
ズル停止時間を設けたが現実的には周期の途中に停止時
間をe足する事になシ、多少の停止時間の変動を考慮す
れば同期することはほとんど考えられなくなる。
For example, when calculating the case where the nozzle rotation is stopped for 8 seconds per rotation for 10 minutes to achieve synchronization, the angle at which the starting point shifts during the stop time is 360 x 4. IXo, 8/60 = 19.68 The angle of deviation of the starting point is 360 and the least common multiple of 119.68 is 119.68X9000-1077120360X29
92=1077120 That is, until the nozzle moves back and forth 9000 times, 50
No synchronization for 00 minutes. If synchronization is not performed for a long time in this way, the entire surface of the heat storage body will be reliably scanned until synchronization is achieved. In the calculation, the nozzle stop time is set at the end of one cycle in the above example, but in reality, the stop time e should be added in the middle of the cycle, and if some fluctuations in the stop time are taken into account, Synchronization becomes almost unthinkable.

この様に、ノズルの往復動を一時停止するだめの回路の
一例を第6図に示す。
An example of a circuit for temporarily stopping the reciprocating movement of the nozzle in this manner is shown in FIG.

第6図の回路図において、全回路の王ス1ソチS1と蓄
熱体、駆動モーター浦の副ス1ツチS2及びクリーニン
グ装置駆動モーターM2の副スィッチS3を閉じ押釦ス
イッチPB+を閉じるとMIの電硼スイッチMS+:保
持スイッチM S I X 、 MIの電磁スイッチM
’S2が閉じ蓄熱体及びクリーニング装置の運転が開始
される。同時にタイムスイッチT1が始動し所定時間後
にtlが閉じるとリレー出とタイムスイッチT2が作動
1.てスイッチrlが開きMS2が開いてモーターM2
が停止I:、する。T2の所定時間後にt2が閉じると
I′+1ひTIが始動して1.が開き、rl及びMS2
が閉じるのでモーターM2は作動を開始し、以後この動
作を繰返すことになる。捷たTR+ 、 TR,2はM
、及びM2の保護剤サーマルリレーで過負荷時のみ作動
し。
In the circuit diagram shown in Fig. 6, when the main switch S1 of all circuits, the heat storage body, the sub-switch S2 of the drive motor ura, and the sub-switch S3 of the cleaning device drive motor M2 are closed and the push button switch PB+ is closed, the MI power Switch MS+: Holding switch MSIX, MI electromagnetic switch M
'S2 is closed and the operation of the heat storage body and cleaning device is started. At the same time, time switch T1 starts, and after a predetermined time, tl closes, relay output and time switch T2 are activated. switch rl opens, MS2 opens, and motor M2
stops I:, does. When t2 closes after a predetermined time of T2, I'+1 TI starts and 1. opens, rl and MS2
Since the motor M2 is closed, the motor M2 starts operating, and this operation will be repeated from now on. Cut TR+, TR, 2 is M
, and the protective agent thermal relay of M2, which operates only in case of overload.

てモーター=イ・ゾ止させる。to stop the motor.

第7121は120秒毎にノズルの往復動孕0.8秒停
]卜した例、第8図は同様に120秒毎に1.2秒停止
した例についてそれぞれ2000秒運転までの走査パタ
ーンを示す。
Fig. 7121 shows the scanning pattern for an example in which the nozzle reciprocates and stops for 0.8 seconds every 120 seconds, and Fig. 8 similarly shows the scanning pattern for an example in which the nozzle stops for 1.2 seconds every 120 seconds, up to 2000 seconds of operation. .

第7図の場合はノズルの回動を一時停止するのでM点で
軌跡か順次ずれることにな9同期することはなく、20
00秒を越えて更に・運転を続けると全体が走査線で埋
ってくる。第8図の例の場合は更にその効果が顕著とな
シ何れも蓄熱体の全面を走査しクリーニングすることが
できる、なお蓄熱体又はクリーニング用ノズルの回転(
往復)数ケ可変にし、両者の相対速度を変えることによ
っても同一な効果を得ることができるが、蓄熱体の回転
数を変更することは設備費が高くなるばかりでなく回転
数を大巾に変更すると熱交換が均一に行なわれなくなる
問題がある。また速度可要モーターや、電磁クラッチ等
を使用してノズルのスイング速度を可変にすることも可
能であるが設備が複雑になシ費用が篩くなる問題がある
In the case of Figure 7, since the rotation of the nozzle is temporarily stopped, the trajectory will shift sequentially at point M.9 There will be no synchronization, and 20
If you continue driving beyond 00 seconds, the entire area will be filled with scanning lines. In the case of the example shown in Fig. 8, the effect is even more remarkable.In both cases, the entire surface of the heat storage body can be scanned and cleaned, and the rotation of the heat storage body or the cleaning nozzle (
The same effect can be obtained by making several variables (reciprocating) and changing the relative speed of the two, but changing the rotation speed of the heat storage element not only increases equipment costs but also increases the rotation speed. If changed, there is a problem that heat exchange will not be performed uniformly. It is also possible to make the swing speed of the nozzle variable using a variable speed motor, an electromagnetic clutch, etc., but this poses a problem in that the equipment becomes complicated and costs increase.

本発明は比較的nI】巣な方法で目的を達成することが
できるので実用上の効果が極めて大きい。
The present invention achieves its purpose in a relatively simple manner, and therefore has extremely great practical effects.

41シ1面のf7iコ単な説り」 第1図は回転式熱交換器の止面図である。F7i on page 1 of 41 is just a theory.” FIG. 1 is a top view of the rotary heat exchanger.

声、2図は回転式熱交換器の一部断面を示す側面図で、
ちる、 第3図はノズルの走査のパターンを説明する図でち6.
Figure 2 is a side view showing a partial cross section of a rotary heat exchanger.
6. Figure 3 is a diagram explaining the nozzle scanning pattern.
.

第41・に目1、ノズルの往復動を説明する図である。41. It is a figure explaining the reciprocating motion of the nozzle.

第5図はノズルの走査の同期するパターンの軌跡を示す
図である。
FIG. 5 is a diagram showing the trajectory of a synchronized pattern of nozzle scanning.

第6図はノズルの往復動を制御する回路の一例を示す図
である。
FIG. 6 is a diagram showing an example of a circuit that controls the reciprocating movement of the nozzle.

第7図及び第8図はノズルの走査の同期しないパターン
の軌跡を示す図である。
FIGS. 7 and 8 are diagrams showing trajectories of patterns in which nozzle scanning is not synchronized.

符号の説明 1・・ケーシング、2・・蓄熱体、3・・高温ダクト、
4・・低温側ダクト、5・・・回転駆動装置、7・・・
ノズル、8・・噴射管。
Explanation of symbols 1...Casing, 2...Heat storage body, 3...High temperature duct,
4... Low temperature side duct, 5... Rotation drive device, 7...
Nozzle, 8... injection pipe.

第3図 第4図 第6図 第7図 口Figure 3 Figure 4 Figure 6 Figure 7 mouth

Claims (1)

【特許請求の範囲】[Claims] ノズルを所定の軌道に沿って一定周期で往復動させて回
転蓄熱体に流体を吹きつけて付着物を吹落す回転蓄熱体
のクリーニング用ノズルの制御方法において、該ノズル
の周期的性律動を一時的に停止又/i速度を変更させる
こ々によ多周期をみだし該回転蓄熱体の回転運動と該ノ
ズルの往復動が短周期で同期することを防ぎ、それによ
って該ノズルが回転蓄熱体の全面を確実に走査できるよ
うにしたことを特徴とするクリーニング用ノズルの制徊
1方法。
In a control method for a nozzle for cleaning a rotating heat storage body, the nozzle is reciprocated at a constant period along a predetermined trajectory to spray fluid onto the rotating heat storage body to blow off deposits, and the periodic rhythm of the nozzle is temporarily controlled. By stopping the rotary heat storage body or changing its speed, the rotational movement of the rotary heat storage body and the reciprocating movement of the nozzle are prevented from synchronizing in short periods, thereby preventing the nozzle from rotating the rotational heat storage body. A cleaning nozzle control method characterized in that the entire surface can be reliably scanned.
JP17368582A 1982-10-01 1982-10-01 Control of nozzle for cleaning Granted JPS5963499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17368582A JPS5963499A (en) 1982-10-01 1982-10-01 Control of nozzle for cleaning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17368582A JPS5963499A (en) 1982-10-01 1982-10-01 Control of nozzle for cleaning

Publications (2)

Publication Number Publication Date
JPS5963499A true JPS5963499A (en) 1984-04-11
JPH0319479B2 JPH0319479B2 (en) 1991-03-15

Family

ID=15965197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17368582A Granted JPS5963499A (en) 1982-10-01 1982-10-01 Control of nozzle for cleaning

Country Status (1)

Country Link
JP (1) JPS5963499A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017524A (en) * 2009-07-08 2011-01-27 Breen Energy Solutions Method for cleaning air preheater in operating state

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415366A (en) * 1977-07-04 1979-02-05 Ebara Infilco Co Ltd Method of cleaning element for air preheater or the like

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415366A (en) * 1977-07-04 1979-02-05 Ebara Infilco Co Ltd Method of cleaning element for air preheater or the like

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017524A (en) * 2009-07-08 2011-01-27 Breen Energy Solutions Method for cleaning air preheater in operating state

Also Published As

Publication number Publication date
JPH0319479B2 (en) 1991-03-15

Similar Documents

Publication Publication Date Title
JP6807613B2 (en) How to clean a suit blower and a tube heat exchanger using it
JPH09222025A (en) Method and device for wet-purifying nozzle ring of exhaust gas turbine
CN113091034B (en) Anti-scaling energy-saving steam generator and using method thereof
JPS5963499A (en) Control of nozzle for cleaning
US9816391B2 (en) Compressor wash system with spheroids
CN109373800A (en) Can on-line cleaning rotary air preheating system and on-line cleaning method
JPS61289296A (en) Cleaning device for heat exchanger
US2236635A (en) Apparatus for cleaning preheaters
CN208592144U (en) For making the metal tape ultrasonic cleaning apparatus of metallic carrier
CN109174814A (en) A kind of automatic ultrasonic salt bath cleaning device
JP2005024191A (en) Cleaning device and method for boiler room
CN107755437A (en) A kind of throwing stream purging system and cleaning method for Cold-strip Steel Surface cleaning
JPH02219905A (en) Soot blow method of waste heat boiler
CN110160080B (en) Pressurization type blockage control device and method for rotary air preheater
JP2000233216A (en) Steel cleaning and drying method
JPH06281127A (en) Soot blower for heat-exchanger using gas outside of pipe
JPH09155178A (en) Washing method of humidifyng kneader
JP2004028506A (en) Exhaust equipment
CN211400951U (en) Anti-blocking ash device for rotary air preheater of power station boiler
JPH08178588A (en) Water washing equipment for regenerative heat exchanger
CN116833143A (en) Cover plate glass AF (AF) film plating rear circulation cleaning system
JP2001074228A (en) Operation of soot blowing device
JP4919553B2 (en) Mist eliminator cleaning method and flue gas desulfurization method for flue gas desulfurization equipment
CN107932080B (en) A kind of tubular object extruding equipment
JP3073356B2 (en) Sootblower