JPH03194434A - Vacuum gauge - Google Patents

Vacuum gauge

Info

Publication number
JPH03194434A
JPH03194434A JP33427989A JP33427989A JPH03194434A JP H03194434 A JPH03194434 A JP H03194434A JP 33427989 A JP33427989 A JP 33427989A JP 33427989 A JP33427989 A JP 33427989A JP H03194434 A JPH03194434 A JP H03194434A
Authority
JP
Japan
Prior art keywords
pressure
electrode
voltage
vacuum
vacuum gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33427989A
Other languages
Japanese (ja)
Other versions
JPH079383B2 (en
Inventor
Nobuhiro Tsukagoshi
塚越 庸弘
Kazushige Ishikawa
石川 和茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP33427989A priority Critical patent/JPH079383B2/en
Publication of JPH03194434A publication Critical patent/JPH03194434A/en
Publication of JPH079383B2 publication Critical patent/JPH079383B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To form the vacuum gauge which has high accuracy and high sensitivity by providing a pressure transducing element which is structured by inserting an insulating thin film between a couple of metallic electrode members differing in work function, and amplifying the generated voltage of the element with a specific amplification characteristics and driving a display device. CONSTITUTION:An MIM element 11 is provided as the pressure-voltage transducing element and one metallic electrode 2 is vapor-deposited on a slide substrate 1 by using, for example, Au as a negative electrode. An LB film 3 which is accumulated as an insulating layer is formed on the metal 2. The other metallic electrode 4 is vapor-deposited on the LB film 3. This electrode 4 differs in work function from the electrode 2 and is formed of, for example, Al to operate as a positive electrode. The negative electrode 2 of the element 11 is grounded and a DC amplifier 12 is connected to the positive electrode 4. The generated voltage of this element is amplified with the specific amplification characteristic to drive the display device, thereby obtaining the vacuum gauge with high accuracy and high sensitivity.

Description

【発明の詳細な説明】 技術分野 本発明は絶縁薄膜を仕事関数が互いに異なる1対の電極
部材によって挟んだ構造の圧力電圧変換素子(いわゆる
MIM素子)を含む真空計に関する。
TECHNICAL FIELD The present invention relates to a vacuum gauge including a pressure-voltage conversion element (so-called MIM element) having a structure in which an insulating thin film is sandwiched between a pair of electrode members having different work functions.

背景技術 従来の真空計としては、大気圧に近い圧力を測定するも
のとして、U字管マノメータ、マクラウド真空計、隔膜
真空計、熱伝導を利用する真空計などがある。
BACKGROUND ART Conventional vacuum gauges that measure pressure close to atmospheric pressure include U-tube manometers, MacLeod vacuum gauges, diaphragm vacuum gauges, and vacuum gauges that utilize thermal conduction.

U字管マノメータは、一端が開管又は閉管したU字形の
管に水銀を入れ、大気圧から数Torrまでの圧力を測
定するものである。これは水銀柱の高さを読み取る方式
であるから、一般に±I Torr位の誤差は有るもの
としなければならないし、高真空の測定はできない。ま
た、水銀のような液体を使うので、取り付けなどに制限
があり使い辛いという欠点もある。
A U-tube manometer measures pressures ranging from atmospheric pressure to several Torr by placing mercury in a U-shaped tube with one end open or closed. Since this is a method of reading the height of the mercury column, it must generally be assumed that there is an error of about ±I Torr, and high vacuum measurements cannot be made. Additionally, since it uses a liquid such as mercury, it has the disadvantage of being difficult to use due to restrictions on installation.

マクラウド真空計は、被測定気体を一定体積において圧
縮して圧力を増大させ、その圧力をU字管真空計で読み
、その時の圧力比で元の圧力を求めるものである。故に
、ある瞬間の圧力を知るだけで、圧力変化を連続的に測
定できない重大な欠点があるほか、10−3 Torr
位の比較的高い圧力までしか測定することができない。
The MacLeod vacuum gauge compresses the gas to be measured in a constant volume to increase the pressure, reads the pressure with a U-tube vacuum gauge, and determines the original pressure using the pressure ratio at that time. Therefore, there is a serious drawback that only the pressure at a certain moment is known, and pressure changes cannot be measured continuously.
It is only possible to measure pressures up to relatively high pressures.

隔膜真空計には、ブルドン管を使用したもの、ベローズ
又は同心円にひだが入った平面状の隔膜を使用したもの
等があり、大気圧を基準として圧力差を求めることによ
り、真空度を知るものである。測定範囲は大気圧から2
0Torr程度で、精度も良くないので、圧力の目安と
して使われることが多い。他の隔膜真空計としては、隔
膜の変位をキャパシタンスの変化で読むことにより、1
0’Torrまで測定可能なものも有る。しかしながら
、かなり高価であるという欠点がある。
Diaphragm vacuum gauges include those that use a Bourdon tube, bellows, or a flat diaphragm with concentric pleats, and gauge the degree of vacuum by determining the pressure difference based on atmospheric pressure. It is. Measurement range is from atmospheric pressure to 2
Since it is around 0 Torr and its accuracy is not good, it is often used as a standard for pressure. Other diaphragm vacuum gauges measure the displacement of the diaphragm by reading the change in capacitance.
There are some that can measure up to 0'Torr. However, it has the disadvantage of being quite expensive.

熱伝導を利用した真空計の代表例としては、ビラニー真
空計とサーミスタ真空計がある。低圧では気体の熱伝導
率が圧力に比例して変化するので、ビラニー真空計では
線状の発熱体及び抵抗変化素子を用い、サーミスタ真空
計ではサーミスタを用いて、圧力変化を電気信号に変換
して読み取っている。しかしながら、発熱体の酸化の問
題などがあり、大気近くの圧力apl定ができず、測定
範囲は10 Torr〜10−3 Torr位である。
Typical examples of vacuum gauges that utilize heat conduction are Villaney vacuum gauges and thermistor vacuum gauges. At low pressures, the thermal conductivity of gas changes in proportion to the pressure, so Villany vacuum gauges use a linear heating element and variable resistance element, and thermistor vacuum gauges use a thermistor to convert pressure changes into electrical signals. is being read. However, due to problems such as oxidation of the heating element, it is not possible to determine the pressure apl near the atmosphere, and the measurement range is about 10 Torr to 10 -3 Torr.

一方、高真空を計るものとしては、電離真空計がある。On the other hand, there is an ionization vacuum gauge that measures high vacuum.

これは空間にある気体分子をイオン化し、それを電気的
に集めてイオン電流として取り出すことにより、真空度
を測定するものである。測定子は一種の真空管であるか
ら、10−3 Torrより圧力の高いところではヒー
ターが酸化して使えない。
This measures the degree of vacuum by ionizing gas molecules in space, collecting them electrically, and extracting them as an ion current. Since the probe is a type of vacuum tube, the heater will oxidize and cannot be used at pressures higher than 10-3 Torr.

高真空側の測定は10’Torr以上まで可能ではある
が、測定子の信頼性が高いとは言えないので、よく問題
を起こす他、操作の誤りによる圧力上昇により測定子を
壊してしまうこともしばしば発生している。
Although measurements on the high vacuum side are possible up to 10'Torr or more, the reliability of the probe is not high, which often causes problems, and the probe may be damaged due to pressure increase due to incorrect operation. It happens often.

このように、従来から使用されてきた真空計においては
、大気から高真空まで単一のものでは測定できないので
、2つ以上の形式の異なる真空計を組み合わせて使う必
要があった。更に、精度が悪い、取り付けが制限される
、高価である、不安定で誤操作に弱いなど、多くの問題
を抱えていた。
As described above, the conventionally used vacuum gauges cannot measure from atmospheric air to high vacuum with a single vacuum gauge, so it has been necessary to use a combination of two or more different types of vacuum gauges. Furthermore, they had many problems, such as poor accuracy, limited installation, high price, instability, and susceptibility to incorrect operation.

発明の概要 [発明の目的] 本発明の目的は、大気圧から高真空まで比較的安価で高
精度で測定でき、また大気にさらしても破壊の心配がな
い真空計を提供することである。
Summary of the Invention [Object of the Invention] An object of the present invention is to provide a vacuum gauge that can measure from atmospheric pressure to high vacuum at a relatively low cost and with high accuracy, and that is free from damage even when exposed to the atmosphere.

[発明の構成] 本発明による真空計は、絶縁薄膜を仕事関数が互いに異
なる1対の金属電極部材によって挟んだ構造の圧力電圧
変換素子と、該圧力電圧変換素子の出力電圧を所定の増
幅特性にて増幅する増幅手段と、該増幅手段の出力電圧
に応じて駆動される表示手段とからなることを特徴とし
ている。
[Structure of the Invention] The vacuum gauge according to the present invention includes a pressure-voltage conversion element having a structure in which an insulating thin film is sandwiched between a pair of metal electrode members having different work functions, and an output voltage of the pressure-voltage conversion element with predetermined amplification characteristics. The present invention is characterized in that it comprises an amplifying means for amplifying the amplification, and a display means driven in accordance with the output voltage of the amplifying means.

実施例 以下、本発明の実施例を図面を参照しつつ詳細に説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図に示した本発明の一実施例たる真空計においては
、圧力電圧変換素子としてMIM素子11が設けられて
いる。このMIM素子11は電池素子としても知られて
いる。MIM素子11においてはスライドガラス基板1
上に一方の金属電極2が蒸着形成されている。金属電極
2は例えば、金(Au)であり、負電極として作動する
。金属電極2には絶縁層として累積されたL B (L
anga+u1r−Blodgett)膜3が形成され
ている。LB膜3は例えば、ポリイミド(PI)からな
り、トンネル電流が生ずる数十人程度の厚さを有する。
In the vacuum gauge which is an embodiment of the present invention shown in FIG. 1, an MIM element 11 is provided as a pressure-voltage conversion element. This MIM element 11 is also known as a battery element. In the MIM element 11, the slide glass substrate 1
One metal electrode 2 is formed on top by vapor deposition. The metal electrode 2 is, for example, gold (Au) and operates as a negative electrode. The metal electrode 2 has L B (L
anga+u1r-Blodgett) film 3 is formed. The LB film 3 is made of polyimide (PI), for example, and has a thickness of about several tens of nanometers so that a tunnel current occurs.

LB膜膜上上は他方の金属電極4が蒸着形成されている
The other metal electrode 4 is formed by vapor deposition on the LB film.

金属電極4は金属電極2とは仕事関数が異なる、例えば
、アルミニウム(AI)からなり、正電極として作動す
る。
The metal electrode 4 has a different work function from the metal electrode 2, is made of aluminum (AI), for example, and operates as a positive electrode.

MIM素子11の負電極2はアースされており、正電極
4には直流アンプ12が接続されている。
The negative electrode 2 of the MIM element 11 is grounded, and the positive electrode 4 is connected to the DC amplifier 12.

直流アンプ12はMIM素子11の正電極4及び負電極
2間に発生する電圧を増幅する。直流アンプ12の入出
力間には温度補償回路13が接続され、温度補償回路1
3はMIM素子11の温度による発生電圧変化を補償す
る帰還回路である。直流アンプ12の出力には電圧計か
らなる真空度指示計14が接続されている。
The DC amplifier 12 amplifies the voltage generated between the positive electrode 4 and the negative electrode 2 of the MIM element 11. A temperature compensation circuit 13 is connected between the input and output of the DC amplifier 12.
Reference numeral 3 denotes a feedback circuit that compensates for voltage variations caused by the temperature of the MIM element 11. A vacuum degree indicator 14 consisting of a voltmeter is connected to the output of the DC amplifier 12.

かかる構成において、MIM素子11の正電極4と負電
極2との間に生ずる電圧は空気圧に対して例えば、第2
図に示すように変化する。この発生電圧は数百mVであ
り、直流アンプ12によって電圧増幅される。直流アン
プ12の出力電圧は温度補償回路13を介して直流アン
プ12の人力に帰還される。MIM素子11の発生電圧
は空気圧だけでなく周囲温度による影響を受けて素子自
身の温度によっても変化するので温度補償回路13によ
ってその発生電圧のうちの温度変化分が補償される。例
えば、一定の空気圧力下における素子温度とMIM素子
11の発生電圧との関係を予め測定して置いてその空気
圧に応じた温度補償特性を温度補償回路13に備えさせ
るのである。温度補償回路13は素子温度をセンサ(図
示せず)により検出しその検出温度に応じて直流アンプ
12の出力電圧の一部を直流アンプ12の入力に帰還さ
せることにより温度補償を行なう。
In such a configuration, the voltage generated between the positive electrode 4 and the negative electrode 2 of the MIM element 11 is, for example, the second
Changes as shown in the figure. This generated voltage is several hundred mV, and is amplified by the DC amplifier 12. The output voltage of the DC amplifier 12 is fed back to the human power of the DC amplifier 12 via the temperature compensation circuit 13. Since the voltage generated by the MIM element 11 is influenced not only by air pressure but also by the ambient temperature and changes depending on the temperature of the element itself, the temperature compensation circuit 13 compensates for the temperature change portion of the generated voltage. For example, the relationship between the element temperature and the voltage generated by the MIM element 11 under a constant air pressure is measured in advance, and the temperature compensation circuit 13 is provided with a temperature compensation characteristic corresponding to the air pressure. The temperature compensation circuit 13 detects the element temperature with a sensor (not shown) and performs temperature compensation by feeding back a part of the output voltage of the DC amplifier 12 to the input of the DC amplifier 12 according to the detected temperature.

よって、直流アンプ12から真空度指示計14に供給さ
れる電圧はほぼ空気圧に対して変化するものとなる。真
空度指示計14はその供給電圧に応じた指示を行ない、
目盛りにより空気圧、すなわち真空度を読み取ることが
できるのである。
Therefore, the voltage supplied from the DC amplifier 12 to the vacuum level indicator 14 changes approximately with respect to the air pressure. The vacuum degree indicator 14 gives instructions according to the supplied voltage,
The scale allows you to read the air pressure, that is, the degree of vacuum.

なお、上記した実施例においては、圧力電圧変換素子の
1対の金属電極部材に金及びアルミニウムを用い、絶縁
薄膜にはポリイミドを用いているが、これに限定される
ものではない。例えば、金属電極部材には銅や銀を用い
ても良いし、絶縁薄膜にはポリアミドや無機材料のアル
ミナ、SiO2などを用いても良い。
In the above embodiment, gold and aluminum are used for the pair of metal electrode members of the pressure-voltage conversion element, and polyimide is used for the insulating thin film, but the present invention is not limited thereto. For example, copper or silver may be used for the metal electrode member, and polyamide, inorganic materials such as alumina, SiO2, etc. may be used for the insulating thin film.

また、上記した実施例においては、表示手段としては電
圧計を用いて測定圧力を示しているが、これに限らず、
入力端子を対応する測定圧力としてディジタル表示する
LCD等の表示器を用いたディジタル表示装置でも良い
Further, in the above-described embodiments, a voltmeter is used as the display means to indicate the measured pressure, but the display is not limited to this.
A digital display device using a display such as an LCD that digitally displays the input terminal as the corresponding measured pressure may also be used.

発明の効果 以上の如く、本発明による真空計は、絶縁薄膜を仕事関
数が互いに異なる1対の金属電極部材によって挟んだ構
造の圧力電圧変換素子を有し、その圧力電圧変換素子の
発生電圧を所定の増幅特性にて増幅して表示手段を駆動
するようになっている。圧力電圧変換素子の出力電圧特
性は気圧の変化による電圧変化率が大きいので、圧力電
圧変換素子を用いたことにより高精度で高感度の真空計
を得ることができる。しかもその電圧変化率は低圧はど
大きくなっているので高真空はど高精度で測定すること
ができる。また、圧力電圧変換素子は大気中にさらして
も全く動作上の問題がないので誤操作により破壊を生ず
る心配もない。更に、圧力電圧変換素子を用いたことに
より構成が簡単であるので低コストになるという利点も
ある。
Effects of the Invention As described above, the vacuum gauge according to the present invention has a pressure-voltage conversion element having a structure in which an insulating thin film is sandwiched between a pair of metal electrode members having different work functions, and the voltage generated by the pressure-voltage conversion element is The signal is amplified with a predetermined amplification characteristic to drive the display means. Since the output voltage characteristic of the pressure-voltage conversion element has a large voltage change rate due to changes in atmospheric pressure, a vacuum gauge with high accuracy and sensitivity can be obtained by using the pressure-voltage conversion element. Furthermore, since the rate of voltage change is greater at low pressures, it can be measured with high precision at high vacuums. In addition, since the pressure-voltage conversion element has no operational problems even if exposed to the atmosphere, there is no fear that it will be destroyed due to erroneous operation. Furthermore, the use of the pressure-voltage converting element simplifies the configuration and has the advantage of reducing costs.

【図面の簡単な説明】 第1図は本発明の実施例を示すブロック図、第2図は圧
力電圧変換素子の空気圧−電圧特性を示す図である。 主要部分の符号の説明 2.4・・・金属電極 3・・・LB膜 11・・・圧力電圧変換素子 12・・・直流アンプ 13・・・温度補償回路 14・・・真空度指示計
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing air pressure-voltage characteristics of a pressure-voltage conversion element. Explanation of symbols of main parts 2.4... Metal electrode 3... LB membrane 11... Pressure voltage conversion element 12... DC amplifier 13... Temperature compensation circuit 14... Vacuum degree indicator

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁薄膜を仕事関数が互いに異なる1対の金属電
極部材によって挟んだ構造の圧力電圧変換素子と、前記
圧力電圧変換素子の出力電圧を所定の増幅特性にて増幅
する増幅手段と、前記増幅手段の出力電圧に応じて駆動
される表示手段とからなることを特徴とする真空計。
(1) a pressure-voltage conversion element having a structure in which an insulating thin film is sandwiched between a pair of metal electrode members having different work functions; an amplifying means for amplifying the output voltage of the pressure-voltage conversion element with a predetermined amplification characteristic; A vacuum gauge comprising: a display means driven in accordance with the output voltage of the amplification means.
(2)前記増幅手段は前記圧力電圧変換素子の出力電圧
の温度補償を行なう温度補償回路を備えていることを特
徴とする請求項1記載の真空計。
(2) The vacuum gauge according to claim 1, wherein the amplification means includes a temperature compensation circuit that performs temperature compensation for the output voltage of the pressure-voltage conversion element.
JP33427989A 1989-12-22 1989-12-22 Vacuum gauge Expired - Lifetime JPH079383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33427989A JPH079383B2 (en) 1989-12-22 1989-12-22 Vacuum gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33427989A JPH079383B2 (en) 1989-12-22 1989-12-22 Vacuum gauge

Publications (2)

Publication Number Publication Date
JPH03194434A true JPH03194434A (en) 1991-08-26
JPH079383B2 JPH079383B2 (en) 1995-02-01

Family

ID=18275565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33427989A Expired - Lifetime JPH079383B2 (en) 1989-12-22 1989-12-22 Vacuum gauge

Country Status (1)

Country Link
JP (1) JPH079383B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508001A (en) * 2022-09-28 2022-12-23 山东大学 High-sensitivity capacitance film vacuum gauge based on MEMS and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508001A (en) * 2022-09-28 2022-12-23 山东大学 High-sensitivity capacitance film vacuum gauge based on MEMS and manufacturing method thereof

Also Published As

Publication number Publication date
JPH079383B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
US4866640A (en) Temperature compensation for pressure gauge
CN105466626B (en) Diaphragm pressure sensor and its manufacturing method
US7635091B2 (en) Humidity sensor formed on a ceramic substrate in association with heating components
US20070295095A1 (en) Apparatus for providing an output proportional to pressure divided by temperature (P/T)
US6655216B1 (en) Load transducer-type metal diaphragm pressure sensor
US7347098B2 (en) Apparatus for providing an output proportional to pressure divided by temperature (P/T)
JPH04232436A (en) Automatic transducer selecting system for measuring pressure
JPS5862533A (en) Pressure gage
US4638664A (en) Quartz barometer
JPS646691B2 (en)
JPH03194434A (en) Vacuum gauge
JP3964037B2 (en) Pressure gauge calibration method and apparatus
JPS61240135A (en) Vacuum gauge
US3820402A (en) Electrical pressure transducer
JPH109979A (en) Type pressure detector
JPH04204133A (en) Calibrating device for reference vacuum gage
EP0108141A1 (en) Oxygen analyzer
SU1139986A1 (en) Device for measuring pressure
JPH05249165A (en) Semiconductor potential sensor
JPH06102128A (en) Semiconductor composite function sensor
RU2024830C1 (en) Unit for measuring pressure
Loughlin Pressure Sensing
JPS6222040A (en) Semiconductor pressure sensor
SU1545115A1 (en) Pressure pickup
SU1737291A1 (en) Pressure sensor