JPH04204133A - Calibrating device for reference vacuum gage - Google Patents

Calibrating device for reference vacuum gage

Info

Publication number
JPH04204133A
JPH04204133A JP33439490A JP33439490A JPH04204133A JP H04204133 A JPH04204133 A JP H04204133A JP 33439490 A JP33439490 A JP 33439490A JP 33439490 A JP33439490 A JP 33439490A JP H04204133 A JPH04204133 A JP H04204133A
Authority
JP
Japan
Prior art keywords
vacuum
gas
vacuum chamber
oxygen gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33439490A
Other languages
Japanese (ja)
Inventor
Masato Maeda
眞人 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP33439490A priority Critical patent/JPH04204133A/en
Publication of JPH04204133A publication Critical patent/JPH04204133A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to calibrate the specified vacuum region simply and highly accurately by inputting the mole fraction of the oxygen gas in a gas which is introduced into a vacuum chamber beforehand, and obtaining the absolute pressure of the oxygen gas and the degree of vacuum based on the electromotive force generated with a zirconia sensor. CONSTITUTION:The mole fraction of the oxygen gas contained in a gas which is introduced into a vacuum chamber 17 is inputted into a signal converter 20 beforehand. A reference vacuum gage 19 to be calibrated is mounted on the vacuum chamber 17 on the side of measuring gas. A specified amount of standard gas and a specified amount of instrumentation air are supplied into the chamber 17 from a standard gas cylinder 11 and an instrumentation air source 15, respectively. When measuring gas 8a and reference gas 8b are supplied into the inside and the outside of a zirconia cell 1, electromotive force is generated. The absolute pressure of the oxygen gas and the degree of vacuum are obtained by the operation and displayed on the converter 20. The values are outputted as the measured signals at the same time.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、基準真空計の校正装置に関し、更に詳しくは
、半導体プロセスを始めとした各種の産業分野で使用さ
れ105〜1O−2Paまでの真空領域を手軽にしかも
高精度に校正できる基準真空計の校正装置に関する。
Detailed Description of the Invention <Industrial Field of Application> The present invention relates to a calibration device for reference vacuum gauges, and more specifically, it is used in various industrial fields including semiconductor processing, and is used in various industrial fields including semiconductor processing. The present invention relates to a calibration device for a reference vacuum gauge that can easily and highly accurately calibrate a vacuum region.

〈従来の技術〉 従来、基準真空計の校正装置は、各種の真空計を校正す
るのに満足できるものはなかっな、その理由は、いずれ
も基準真空計の測定範囲が狭いことである。即ち、−次
標準として用いられている干渉式標準気圧計は102〜
(10りX105)Paであり、@準マクラウド真空計
は(1,3X10−’) 〜(3X10−’ )Paで
ある。また、二次標準として用いられているマクラウド
真空計は、(3X10−1) 〜(IXIO’ )Pa
であり、副標率電離真空計は、(1,3X10−’)〜
(2゜7X10−’)Paである。
<Prior Art> Conventionally, there has been no standard vacuum gauge calibration device that is satisfactory for calibrating various vacuum gauges, and the reason for this is that the measurement range of all reference vacuum gauges is narrow. In other words, the interferometric standard barometer used as the -order standard is 102~
(10×105) Pa, and the @ quasi-McLeod vacuum gauge is (1,3×10−′) to (3×10−′) Pa. In addition, the MacLeod vacuum gauge used as a secondary standard has a range of (3X10-1) to (IXIO') Pa
The sub-standard ionization vacuum gauge is (1,3X10-')~
(2°7×10-')Pa.

一方、副S準電離真空計は、日本真空協会を通じて一般
に配布されているもので、入手しやすい唯一の基準真空
計である。しかし、測定値にバラツキか大きいうえ取り
扱いに十分注意が必要である。このため、熟練した専門
家でないと取り扱えないという欠点があった。
On the other hand, the sub-S quasi-ionization vacuum gauge is generally distributed through the Japan Vacuum Association, and is the only standard vacuum gauge that is easily available. However, the measured values vary widely and must be handled with great care. For this reason, there is a drawback that only skilled professionals can handle it.

〈発明が解決しようとする問題点〉 本発明は、かかる従来例の欠点に鑑みてなされたもので
あり、その目的は、半導体プロセスを始めとした各種の
産業分野で使用され10’〜10’paまでの真空領域
を手軽にしかも高精度に校正できる基準真空計の校正装
置を提供することにある。
<Problems to be Solved by the Invention> The present invention has been made in view of the drawbacks of the conventional examples, and its purpose is to provide a 10' to 10' It is an object of the present invention to provide a calibration device for a reference vacuum gauge that can easily and highly accurately calibrate a vacuum region up to 100 mA.

く問題点を解決するための手段〉 上述のような問題点を解決する本発明の特徴は、基準真
空計の校正装置において、校正されるべき基準真空計の
測定カス側に装着された真空チャンバーと、該真空チャ
ンバーに開閉弁及び絞り弁を介して一定流量の標準ガス
を供給する標準ガスボンベ若しくは前記真空チャンバー
内に開閉弁及び絞り弁を介して一定流量の計装空気を供
給する計装空気源と、前記基準真空計の出力を受けて信
号処理すると共に該基準真空計の内部温度を一定に制御
する信号変換器と、前記真空チャンバー内を真空にする
排気装置とを具備し、前記真空チャンバー内に導入する
気体に含まれている酸素ガスの゛モル分率を予め前記信
号変換器に入力しておき、前記基準真空計のジルコニア
センサーで生じた起電力から演算で酸素ガスの絶対圧と
真空度を求め、前記信号変換器で表示すると共に測定信
号として出力するようにしたことにある。
Means for Solving the Problems> A feature of the present invention that solves the above-mentioned problems is that, in a reference vacuum gauge calibration device, a vacuum chamber is installed on the measurement waste side of the reference vacuum gauge to be calibrated. and a standard gas cylinder that supplies a constant flow rate of standard gas to the vacuum chamber through an on-off valve and a throttle valve, or an instrument air supply that supplies a constant flow rate of instrumentation air into the vacuum chamber through an on-off valve and a throttle valve. a signal converter that receives the output of the reference vacuum gauge, processes the signal, and controls the internal temperature of the reference vacuum gauge to a constant level; and an exhaust device that evacuates the inside of the vacuum chamber, The molar fraction of oxygen gas contained in the gas introduced into the chamber is input into the signal converter in advance, and the absolute pressure of oxygen gas is calculated from the electromotive force generated by the zirconia sensor of the reference vacuum gauge. The vacuum degree is determined and displayed by the signal converter and outputted as a measurement signal.

く作用〉 本発明は次のように作用する。Effect〉 The invention works as follows.

即ち、真空チャンバー内に導入する気体に含まれている
酸素ガスのモル分率を予め信号変換器に入力しておき、
ジルコニアセンサーで生じた起電力から演算で酸素ガス
の絶対圧と真空度を求め、信号変換器で表示すると共に
測定信号として出力するようになっている。
That is, the molar fraction of oxygen gas contained in the gas introduced into the vacuum chamber is input into the signal converter in advance,
The absolute pressure and degree of vacuum of oxygen gas are calculated from the electromotive force generated by the zirconia sensor, and are displayed on a signal converter and output as a measurement signal.

また、本発明実施例の校正に際しては次のようにして大
気圧点と真空点を求めた。まず、大気圧力点は、ジルコ
ニアセンサーの参照ガスと同じガスをジルコニアセンサ
ーの測定ガス側に導入し、両者の圧力を大気圧力とする
。このとき、ジルコニアセンサーの出力はOmVである
ため、ジルコニアセンサーの実測値を読み取って補正デ
ータとする。また、真空点は、酸素ガス濃度が既知(例
えば、10ppm)既知の標準ガスをジルコニアセンサ
ーの測定ガス側に大気圧状態で導入し、ジルコニアセン
サーの起電力から計算される真空度の点のデータとする
Furthermore, when calibrating the embodiment of the present invention, the atmospheric pressure point and vacuum point were determined as follows. First, at the atmospheric pressure point, the same gas as the reference gas of the zirconia sensor is introduced to the measurement gas side of the zirconia sensor, and the pressures of both are set to atmospheric pressure. At this time, since the output of the zirconia sensor is OmV, the actual measured value of the zirconia sensor is read and used as correction data. The vacuum point is calculated from the electromotive force of the zirconia sensor by introducing a standard gas with a known oxygen gas concentration (for example, 10 ppm) into the measurement gas side of the zirconia sensor at atmospheric pressure. shall be.

〈実施例〉 以下、本発明について図を用いて詳細に説明する。第1
図は本発明に係わる基準真空計の構成断面図であり、図
中、1はジルコニアセル、2はヒータ、3はコンタクト
、4は断熱材、5は鉛ガラス、6はOリング、7は熱電
対、8aは参照ガス、8bは測定ガス、9は真空フラン
ジ、10は端子箱である。尚、ジルコニアセル1の底部
には、内側に内側電極が装着されると共に外側に外@電
極が装着されてジルコニアセンサーが形成されている。
<Example> Hereinafter, the present invention will be described in detail using the drawings. 1st
The figure is a cross-sectional view of the configuration of a reference vacuum gauge according to the present invention. In the figure, 1 is a zirconia cell, 2 is a heater, 3 is a contact, 4 is a heat insulator, 5 is a lead glass, 6 is an O-ring, and 7 is a thermoelectric 8a is a reference gas, 8b is a measurement gas, 9 is a vacuum flange, and 10 is a terminal box. Incidentally, on the bottom of the zirconia cell 1, an inner electrode is attached to the inside and an outer @ electrode is attached to the outer side, thereby forming a zirconia sensor.

このような要部構成からなる本発明の実施例において、
ジルコニアセル1の内側に測定ガス8aが供給され外側
に参照ガス8bが供給されると、測定ガス中の酸素イオ
ン濃度と参照ガス中の酸素イオン濃度との比に対応した
起電力がジルコニアセンサーに生じる。この起電力に基
ずいて最終的に測定ガス中の酸素ガス濃度が求められる
In an embodiment of the present invention having such a main configuration,
When the measurement gas 8a is supplied to the inside of the zirconia cell 1 and the reference gas 8b is supplied to the outside, an electromotive force corresponding to the ratio of the oxygen ion concentration in the measurement gas to the oxygen ion concentration in the reference gas is applied to the zirconia sensor. arise. Based on this electromotive force, the oxygen gas concentration in the measurement gas is finally determined.

また、第2図は本発明実施例の構成説明図であり、図中
、11は標準ガスボンベ、12は圧力調整バルブ、13
は圧力計、14a、14bは開閉弁、15は計装空気源
、16は絞り、17は真空チャンバー、18aは真空圧
力計、19は第1図を用いて詳述した基準真空計、20
は信号変換器、21はターボモレキュラーポンプ、22
は回転ポンプである。このような構成からなる本発明実
施例の使用例において、第1図のヒータ2及び熱電対7
と第2図の信号変換器20(詳しくは、信号変換器20
の内部に収納されている図示しない温訓回路)により、
ジルコニアセル1の温度が750” K〜1200°に
の範囲で一定温度に制御される。また、第1図を用いて
説明したようにしてジルコニアセンサーで得られる起電
力は、コンタクト3を介して第2図の信号変換器20に
導かれ、ここで、測定ガス中の酸素ガス分率が求められ
ると共に、予め設定されている酸素ガス濃度を用いて真
空度が求められる。
FIG. 2 is an explanatory diagram of the configuration of an embodiment of the present invention, in which 11 is a standard gas cylinder, 12 is a pressure regulating valve, and 13 is a standard gas cylinder.
1 is a pressure gauge, 14a and 14b are on-off valves, 15 is an instrumentation air source, 16 is a throttle, 17 is a vacuum chamber, 18a is a vacuum pressure gauge, 19 is a reference vacuum gauge detailed using FIG. 1, and 20
is a signal converter, 21 is a turbo molecular pump, 22
is a rotary pump. In an example of use of the embodiment of the present invention having such a configuration, the heater 2 and thermocouple 7 in FIG.
and the signal converter 20 in FIG.
Due to the heating circuit (not shown) housed inside the
The temperature of the zirconia cell 1 is controlled to a constant temperature within the range of 750" K to 1200°. Furthermore, the electromotive force obtained by the zirconia sensor as explained using FIG. The signal is guided to the signal converter 20 in FIG. 2, where the oxygen gas fraction in the measurement gas is determined, and the degree of vacuum is determined using a preset oxygen gas concentration.

即ち、第2図の真空チャンバー17内に導入する気体に
含まれている酸素ガスのモル分率を予め信号変換器20
に入力しておき、ジルコニアセンサーで生じた起電力か
ら演算で酸素ガスの絶対圧と真空度を求め、信号変換器
20で表示すると共に信号S。とじて出力するようにな
っている。
That is, the molar fraction of oxygen gas contained in the gas introduced into the vacuum chamber 17 shown in FIG. 2 is determined in advance by the signal converter 20.
The absolute pressure and degree of vacuum of oxygen gas are calculated from the electromotive force generated by the zirconia sensor, and the signal S is displayed on the signal converter 20. It is designed to be output in a closed format.

尚、本発明実施例の校正に際しては次のようにして大気
圧点と真空点を求めた。まず、大気圧力点は、ジルコニ
アセンサーの参照ガスと同じガスをジルコニアセンサー
の測定ガス側に導入し、両者の圧力を大気圧力とする。
Incidentally, when calibrating the embodiment of the present invention, the atmospheric pressure point and the vacuum point were determined as follows. First, at the atmospheric pressure point, the same gas as the reference gas of the zirconia sensor is introduced to the measurement gas side of the zirconia sensor, and the pressures of both are set to atmospheric pressure.

このとき、ジルコニアセンサーの出力はOmVであるた
め、ジルコニアセンサーの実測値を読み取って補正デー
タとする。また、真空点は、酸素カス既知の標準ガスを
ジルコニアセンサーの測定カス側に大気圧状態で導入し
、ジルコニアセンサーの起電力から計算される真空度の
点のデータとする。
At this time, since the output of the zirconia sensor is OmV, the actual measured value of the zirconia sensor is read and used as correction data. Further, the vacuum point is determined by introducing a standard gas with a known oxygen residue into the measurement residue side of the zirconia sensor at atmospheric pressure, and using the vacuum point data calculated from the electromotive force of the zirconia sensor.

このような本発明実施例においては、酸素カスの絶対圧
を直接電気量に変換するようになっている。このため、
大気圧状態で測定カス中の酸素カスのモル分率が分かっ
ていれば直ちに全圧か求められる。この意味で、ジルコ
ニアセンサは、真空度を絶対測定することか可能なセン
サであるということができる。このことは、熱伝導式真
空計(所謂ピラニゲージ)や電離真空計が、池の絶対測
定可能な真空計を用いて校正しないと使えないようにな
っているのに比し、ジルコニアセンサの大きな利点とな
っている。
In such an embodiment of the present invention, the absolute pressure of oxygen gas is directly converted into an amount of electricity. For this reason,
If the mole fraction of oxygen scum in the measurement scum at atmospheric pressure is known, the total pressure can be immediately determined. In this sense, the zirconia sensor can be said to be a sensor that can absolutely measure the degree of vacuum. This is a major advantage of the zirconia sensor, compared to thermal conduction vacuum gauges (so-called Pirani gauges) and ionization vacuum gauges, which cannot be used unless they are calibrated using Ike's vacuum gauge, which allows absolute measurement. It becomes.

第3図は本発明に係わる基準真空計を用いて実際に測定
した結果を示す特性曲線図であり、図中、横軸は真空圧
を示し、右縦軸は雰囲気圧力下での酸素濃度を示し、左
縦軸はジルコニアセルの出力を示している。また、Aは
空気(即ち、酸素濃度が20.95%のガス)を測定し
た特性曲線であり、Bは酸素濃度が47ppmのガスを
測定した特性曲線であり、Cは酸素濃度が4.06pp
mのカスを測定した特性曲線である。この特性曲線図か
ら明らかなように、空気を真空引きする時には10!i
〜10“2Paまでの真空領域で対数的に直Il(いわ
ゆるLogLi near)を示す特性が得られること
が分かる。
FIG. 3 is a characteristic curve diagram showing the results actually measured using the reference vacuum gauge according to the present invention. In the figure, the horizontal axis shows the vacuum pressure, and the right vertical axis shows the oxygen concentration under atmospheric pressure. The left vertical axis shows the output of the zirconia cell. Further, A is a characteristic curve measured for air (that is, a gas with an oxygen concentration of 20.95%), B is a characteristic curve measured for a gas with an oxygen concentration of 47 ppm, and C is a characteristic curve measured for a gas with an oxygen concentration of 4.06 ppm.
This is a characteristic curve obtained by measuring the residue of m. As is clear from this characteristic curve diagram, when the air is evacuated, 10! i
It can be seen that a characteristic exhibiting logarithmically direct Il (so-called LogLi near) can be obtained in the vacuum region up to 10"2 Pa.

尚、本発明は上述の実施例に限定されることなく種々の
変形が可能である。
Note that the present invention is not limited to the above-described embodiments, and can be modified in various ways.

〈発明の効果〉 以上詳しく説明したような本発明によれば、次のような
効果が得られる。
<Effects of the Invention> According to the present invention as described in detail above, the following effects can be obtained.

■真空度を絶対測定できるうえ熱力学的に明解な動作原
理に立脚しているため、基準真空計の測定値の信頼性が
極めて高い。■圧力を直接電気量に変換できるため、誤
差の入り込む要因が極めて少ない、■大気圧の酸素圧分
圧を置き換えて校正や動作確認ができるため、測定値の
信頼性が高い。
■Since it can absolutely measure the degree of vacuum and is based on a thermodynamically clear operating principle, the reliability of the measured values of the reference vacuum gauge is extremely high. ■Since pressure can be directly converted into electrical quantity, there are extremely few sources of error.■Measurement values are highly reliable because calibration and operation confirmation can be performed by replacing atmospheric pressure with partial oxygen pressure.

■取扱いが容易なうえ操作に熟練を必要としない。■Easy to handle and does not require skill to operate.

■廃棄時に有害たったりする水銀などを使用しないうえ
、小型でしかもこわれにくい、■10’〜10’Paと
107のダイナミックレンジを有するうえ、105〜1
0−’Paまでの真空顧域で直線性も優れているため、
応用範囲が広い。
■It does not use mercury, which is harmful when disposed of, and is small and hard to break. ■It has a dynamic range of 10' to 10' Pa and 107, and has a dynamic range of 105 to 1
Excellent linearity in the vacuum range up to 0-'Pa,
Wide range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる基準酸素計の構成断面図、第2
図は本発明実施例の構成説明図、第3図は本発明に係わ
る基準真空計を用いて実際に測定した結果を示す特性曲
線図特性曲線図である。 1・・・ジルコニアセル、2・・・ヒータ、3・・・コ
ンタクト、4・・・断熱材、5・・・釦ガラス、6・・
・Oリング、7・・・熱電対、9・・・真空フランジ、
10・・・端子箱 11・・・標準ガスボンベ、12・・・圧力調整バルブ
、13・・・圧力計、14a、14b・・・開閉弁、1
5・・・計装空気源、16・・・絞り、17・・・真空
チャンバー、18a・・・真空圧力計、1つ・・・基準
真空計、20・・・信号変換器、21・・・ターボモレ
キュラーポンプ、22・・・回転ポンプ
Fig. 1 is a sectional view of the configuration of a standard oxygen meter according to the present invention, Fig.
The figure is an explanatory diagram of the configuration of an embodiment of the present invention, and FIG. 3 is a characteristic curve diagram showing actual measurement results using the reference vacuum gauge according to the present invention. 1...zirconia cell, 2...heater, 3...contact, 4...insulating material, 5...button glass, 6...
・O-ring, 7...Thermocouple, 9...Vacuum flange,
10... Terminal box 11... Standard gas cylinder, 12... Pressure adjustment valve, 13... Pressure gauge, 14a, 14b... Open/close valve, 1
5... Instrumentation air source, 16... Throttle, 17... Vacuum chamber, 18a... Vacuum pressure gauge, one... Reference vacuum gauge, 20... Signal converter, 21...・Turbo molecular pump, 22... rotary pump

Claims (1)

【特許請求の範囲】[Claims] 基準真空計の校正装置において、校正されるべき基準真
空計の測定ガス側に装着された真空チャンバーと、該真
空チャンバーに開閉弁及び絞り弁を介して一定流量の標
準ガスを供給する標準ガスボンベ若しくは前記真空チャ
ンバー内に開閉弁及び絞り弁を介して一定流量の計装空
気を供給する計装空気源と、前記基準真空計の出力を受
けて信号処理すると共に該基準真空計の内部温度を一定
に制御する信号変換器と、前記真空チャンバー内を真空
にする排気装置とを具備し、前記真空チャンバー内に導
入する気体に含まれている酸素ガスのモル分率を予め前
記信号変換器に入力しておき、前記基準真空計のジルコ
ニアセンサーで生じた起電力から演算で酸素ガスの絶対
圧と真空度を求め、前記信号変換器で表示すると共に測
定信号として出力することを特徴とする基準真空計の校
正装置。
A calibration device for a reference vacuum gauge includes a vacuum chamber attached to the measurement gas side of the reference vacuum gauge to be calibrated, and a standard gas cylinder or gas cylinder that supplies a constant flow rate of standard gas to the vacuum chamber via an on-off valve and a throttle valve. an instrumentation air source that supplies a constant flow of instrumentation air into the vacuum chamber through an on-off valve and a throttle valve; and an instrumentation air source that receives the output of the reference vacuum gauge and processes the signal, and also maintains the internal temperature of the reference vacuum gauge. and an evacuation device that evacuates the inside of the vacuum chamber, and inputs a molar fraction of oxygen gas contained in the gas introduced into the vacuum chamber into the signal converter in advance. The reference vacuum is characterized in that the absolute pressure of oxygen gas and the degree of vacuum are determined by calculation from the electromotive force generated by the zirconia sensor of the reference vacuum gauge, and the absolute pressure of oxygen gas and the degree of vacuum are displayed by the signal converter and output as a measurement signal. Calibration device for meter.
JP33439490A 1990-11-30 1990-11-30 Calibrating device for reference vacuum gage Pending JPH04204133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33439490A JPH04204133A (en) 1990-11-30 1990-11-30 Calibrating device for reference vacuum gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33439490A JPH04204133A (en) 1990-11-30 1990-11-30 Calibrating device for reference vacuum gage

Publications (1)

Publication Number Publication Date
JPH04204133A true JPH04204133A (en) 1992-07-24

Family

ID=18276879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33439490A Pending JPH04204133A (en) 1990-11-30 1990-11-30 Calibrating device for reference vacuum gage

Country Status (1)

Country Link
JP (1) JPH04204133A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121267A (en) * 2005-10-27 2007-05-17 Korea Research Inst Of Standards & Science ABSOLUTE CALIBRATION OF VACUUM GAUGE BY In-Situ METHOD, COMPARISON CALIBRATION DEVICE, AND ITS CALIBRATION METHOD
CN100395531C (en) * 2006-06-15 2008-06-18 中国航天科技集团公司第五研究院第五一○研究所 Bypass type ultrahigh and extreme-high vacuum gauge calibrating device and method thereof
CN104977123A (en) * 2015-04-22 2015-10-14 中国航天空气动力技术研究院 Differential pressure type pulse pressure sensor calibration device
CN107894301A (en) * 2017-12-15 2018-04-10 芜湖致通汽车电子有限公司 A kind of vacuum pressure sensor experimental rig and method
CN108896241A (en) * 2018-03-22 2018-11-27 东莞市鼎力自动化科技有限公司 A kind of vacuum degree measurement system and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121267A (en) * 2005-10-27 2007-05-17 Korea Research Inst Of Standards & Science ABSOLUTE CALIBRATION OF VACUUM GAUGE BY In-Situ METHOD, COMPARISON CALIBRATION DEVICE, AND ITS CALIBRATION METHOD
CN100395531C (en) * 2006-06-15 2008-06-18 中国航天科技集团公司第五研究院第五一○研究所 Bypass type ultrahigh and extreme-high vacuum gauge calibrating device and method thereof
CN104977123A (en) * 2015-04-22 2015-10-14 中国航天空气动力技术研究院 Differential pressure type pulse pressure sensor calibration device
CN107894301A (en) * 2017-12-15 2018-04-10 芜湖致通汽车电子有限公司 A kind of vacuum pressure sensor experimental rig and method
CN108896241A (en) * 2018-03-22 2018-11-27 东莞市鼎力自动化科技有限公司 A kind of vacuum degree measurement system and method
CN108896241B (en) * 2018-03-22 2021-07-06 东莞市鼎力自动化科技有限公司 Vacuum degree detection system and method

Similar Documents

Publication Publication Date Title
US4866640A (en) Temperature compensation for pressure gauge
US8423311B2 (en) Method for calibrating and operating a measuring cell arrangement
JPS614934A (en) Assembly of differential pressure sensor
US4015473A (en) Mass flowmeter for a gaseous medium, for example air
US5303167A (en) Absolute pressure sensor and method
US3442773A (en) Electrochemical gas measuring systems
JP4669193B2 (en) Temperature measuring device for pressure flow control device
JPH04204133A (en) Calibrating device for reference vacuum gage
US20150030054A1 (en) Wide-range precision constant volume gas thermometer
JPS6325524A (en) Pressure calibrator
JP3570666B2 (en) Gas sensor, method for correcting measured value of gas sensor, and pressure sensor unit
JP4852619B2 (en) Pressure flow control device
US20220228939A1 (en) Load-Lock Gauge
JPS6222040A (en) Semiconductor pressure sensor
RU8802U1 (en) STABILIZATION CAMERA
US2596744A (en) Moisture indicating instrument
US2348607A (en) Vacuum gauge
JPS62211531A (en) Vacuum gage equipment
JPH0812174B2 (en) Oxygen concentration analysis method and apparatus
JPH05149821A (en) Absolute pressure sensor and inspecting method of airtightness thereof
SU1747970A1 (en) Pressure transducer calibrator
Boyd et al. Cryogenic pressure sensor calibration facility
Harrison Temperature-compensated meteorological barometer
SU998883A1 (en) Thermoelectric vacuum meter
SU767583A1 (en) Pressure measuring device