JPH03192804A - Antenna system - Google Patents

Antenna system

Info

Publication number
JPH03192804A
JPH03192804A JP33103189A JP33103189A JPH03192804A JP H03192804 A JPH03192804 A JP H03192804A JP 33103189 A JP33103189 A JP 33103189A JP 33103189 A JP33103189 A JP 33103189A JP H03192804 A JPH03192804 A JP H03192804A
Authority
JP
Japan
Prior art keywords
dielectric
radiating element
dielectric constant
antenna
dielectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33103189A
Other languages
Japanese (ja)
Inventor
Koichi Tsunekawa
光一 常川
Kenichi Kagoshima
憲一 鹿子嶋
Keizo Cho
敬三 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP33103189A priority Critical patent/JPH03192804A/en
Publication of JPH03192804A publication Critical patent/JPH03192804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To realize an antenna with high gain in spite of small size and light weight by increasing the dielectric constant of a dielectric substance in existence between a ground plate and at least a part of a radiation element surrounding part more than the dielectric constant of the dielectric substance in existence between the ground plate and the radiation element in addition to the said dielectric substance. CONSTITUTION:The dielectric constant of 1st dielectric substances 7, 7a inserted between a ground plate and a radiation element surrounding part is increased more than the dielectric constant of a 2nd dielectric substance filling a part other than the 1st dielectric substance between the ground plate and the radiation element. In figure, rounds shown in caption 10 depict the actual measurement data and caption 11 indicates an approximated curve based on the actual measurement data, and then it is recognized as the 1st dielectric substance is inserted deeper, the resonance frequency is lowered more. That is, since a substance with a small specific gravity such as air is used for the dielectric substance having a low dielectric constant, the volume of the dielectric substance with a comparatively large specific gravity having a high dielectric constant is reduced to make the weight of the antenna light.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、マイクロストリップ7ンテナあるいは板状逆
Fアンテナの構造に関し、特に小形かつ軽量で、しかも
高い利得を得ることのできるアンテナの構造に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a microstrip 7 antenna or a plate-shaped inverted F antenna, and particularly to the structure of an antenna that is small and lightweight and can obtain high gain. It is something.

〔従来の技術〕[Conventional technology]

第12図は従来の矩形マイクロストリップアンテナの例
を示す図であって、51放射素子、52は地板、53は
放射素子と地板の間に挿入された誘電体、54は給電点
、55は放射素子の長さを表わしている。
FIG. 12 is a diagram showing an example of a conventional rectangular microstrip antenna, in which 51 is a radiating element, 52 is a ground plane, 53 is a dielectric inserted between the radiating element and the ground plane, 54 is a feeding point, and 55 is a radiating element. It represents the length of the element.

同図に示したアンテナの共振条件は放射素子の長さ55
がほばλ。/2 (人。二基板上の実効波長)となる時
である。
The resonance condition of the antenna shown in the figure is that the length of the radiating element is 55
Gahoba λ. /2 (person. Effective wavelength on two substrates).

すなわち、誘電体53の替わりに、これを空気層とした
場合、IGHzでは放射素子の長さが約15cmとなる
。そのため、一般的に放射素子と地板との闇を誘電体で
満たすことにより小形化を図っている。
That is, if an air layer is used instead of the dielectric 53, the length of the radiating element will be approximately 15 cm at IGHz. Therefore, miniaturization is generally achieved by filling the space between the radiating element and the ground plane with a dielectric material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したように、放射素子と地板との間を誘電体で満た
すように構成したアンテナにおいで、例えばε丁(比誘
電率)=15の場合、IGHzでは放射素子の長さが約
7c論となる。しかし、このようにしてアンテナの小形
化を図った場合、誘電体を充填したことによりアンテナ
が重くなる上、さらに、アンテナ形状がが小形になるの
で利得も低下するという欠点があった。
As mentioned above, in an antenna configured to fill the space between the radiating element and the ground plane with a dielectric material, for example, when ε (relative dielectric constant) = 15, the length of the radiating element at IGHz is approximately 7 cm. Become. However, when the antenna is made smaller in this way, there are disadvantages in that the antenna becomes heavier due to filling with dielectric material, and the gain also decreases because the antenna shape becomes smaller.

また、板状逆Fアンテナにおいても、同様にして小形化
を図ることができるが、上記マイクロストリップアンテ
ナの場合と同じ欠点があった。
Further, a plate-shaped inverted F antenna can also be made smaller in the same way, but it has the same drawbacks as the microstrip antenna.

本発明は、このような従来の問題点の鑑み、小形軽量で
ありながら、高利得を有するマイクロストリップアンテ
ナまたは板状逆Fアンテナを提供することを目的として
いる。
SUMMARY OF THE INVENTION In view of these conventional problems, an object of the present invention is to provide a microstrip antenna or a plate-shaped inverted F antenna that is small and lightweight and has a high gain.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するため、マイクロストリッ
プアンテナまたは板状逆Fアンテナの放射素子周辺部分
の少なくとも一部と地板の開に存在する誘電体の誘電率
を、該誘電体以外に放射素子と地板の開に存在する誘電
体の誘電率よりも高くするごとく構成したものである。
In order to achieve the above object, the present invention has the dielectric constant of a dielectric material existing between at least a part of the peripheral portion of the radiating element of a microstrip antenna or a plate-shaped inverted F antenna and the ground plane to a radiating element other than the dielectric material. It is constructed so that the dielectric constant is higher than that of the dielectric material existing in the open part of the ground plane.

以下、本発明の作用等に関し、実施例に基づいて詳細に
説明する。
Hereinafter, the effects and the like of the present invention will be explained in detail based on Examples.

〔実施例〕〔Example〕

第1図は本発明の第一の実施例を示す図であって、1は
放射素子、2は地板、4は給電点、5は放射素子の氏さ
、6は放射素子の幅、77aは放射素子周辺部分と地板
の開に挿入された第一の誘電体、8は放射素子と地板の
闇で第一の誘電体以外の部分を満たしている第二の誘電
体、9は放射素子と第一の誘電体の重なり部分の長さを
表わしている。同図に示した第一の誘電体7  7aの
誘電率は第二の誘電体8の誘電率よりも高い。
FIG. 1 is a diagram showing a first embodiment of the present invention, in which 1 is a radiating element, 2 is a ground plane, 4 is a feed point, 5 is a height of the radiating element, 6 is a width of the radiating element, and 77a is a diagram showing a first embodiment of the present invention. A first dielectric is inserted between the surrounding area of the radiating element and the ground plane, 8 is a second dielectric that fills the area other than the first dielectric between the radiating element and the ground plane, and 9 is the radiating element. It represents the length of the overlapping portion of the first dielectric. The dielectric constant of the first dielectric 77a shown in the figure is higher than the dielectric constant of the second dielectric 8.

このような構造のアンテナにおいて、放射素子の長さ5
を10cm、幅6を6c−とし、第一の誘電体7  7
aとして、8丁 (比誘電率)15のものを、第二の誘
電体8を空気として、放射素子1と第一の誘電体7,7
aとの重なり部分の長さ9と共振周波数との関係を調べ
た結果を第2図に示す。
In an antenna with such a structure, the length of the radiating element is 5
is 10cm, the width 6 is 6c-, and the first dielectric 7 7
As a, 8 pieces (relative dielectric constant) of 15 are used, the second dielectric 8 is air, and the radiating element 1 and the first dielectric 7, 7 are used.
FIG. 2 shows the results of investigating the relationship between the length 9 of the overlapping portion with a and the resonance frequency.

同図において、10で示す丸印が実測定データ、11が
実測定データをもとにした近似曲線を示しており、これ
によれば、第一の誘電体を深く挿入するほど共振周波数
が低下していくことがわかる。
In the figure, the circle mark 10 indicates actual measurement data, and 11 indicates an approximate curve based on the actual measurement data. According to this, the deeper the first dielectric is inserted, the lower the resonant frequency is. I know what I'm going to do.

さらに、この結果をもとに、同じ共振周波数を得るため
に、本実施例のように部分的に高い誘電率を有する誘電
体を実装した場合と従来例のように全部同じ誘電体を実
装した場合のアンテナの重さの比較を第3図に示す。
Furthermore, based on this result, in order to obtain the same resonant frequency, it is possible to mount a dielectric material with a high dielectric constant partially as in this example and mount the same dielectric material as in the conventional example. Figure 3 shows a comparison of the weights of the antennas in these cases.

同図において、数字符12で示しているのは、本実施例
の高い誘電率を有する誘電体を部分実装した場合のデー
タ、数字符13で示しているのは、従来の低い誘電率を
有する誘電体を全部に満たした場合のデータである。こ
の図から、同じ共振周波数を得るためには、本発明のよ
うに高い誘電率を有する誘電体を部分実装するほうが、
低い誘電率を有する誘電体を全部溝たすよりも軽くなる
ことがわかる。
In the figure, the number 12 indicates data when the dielectric material with a high dielectric constant of this embodiment is partially mounted, and the number 13 indicates data with the conventional low permittivity dielectric material. This is data when the entire area is filled with dielectric material. From this figure, in order to obtain the same resonant frequency, it is better to partially mount a dielectric material with a high permittivity as in the present invention.
It can be seen that it is lighter than if all the grooves were filled with dielectric material having a low dielectric constant.

すなわち、本発明のアンテナにおいては、低い誘電率を
有する誘電体として空気あるいは比重の小さい物質を使
うことが可能になるから、比較的比重の大きい高い誘電
率を有する誘電体の体積を減少せしめて、アンテナの軽
量化を図ることができるものである。
That is, in the antenna of the present invention, air or a substance with a low specific gravity can be used as the dielectric material having a low permittivity, so that the volume of the dielectric material having a relatively large specific gravity and a high permittivity can be reduced. , it is possible to reduce the weight of the antenna.

次に、第4図に放射素子と地板との開の電界の様子を示
す。
Next, FIG. 4 shows the state of the open electric field between the radiating element and the ground plane.

同図において、1は放射素子、2は地板、4は給電点、
7,7aは高い誘電率をもつ第一の誘電体、8は第一の
誘電体よりも低い誘電率をもつ第二の誘電体を表わして
おり、これらは第1図の場合と同様である。このように
、本実施例では高い誘電率の誘電体が放射エッソ部分に
あるため、同図に矢印で表わしたように、そこに電界が
集中することになり、利得が上昇する。
In the figure, 1 is a radiating element, 2 is a ground plane, 4 is a feeding point,
7 and 7a represent a first dielectric with a high dielectric constant, and 8 represents a second dielectric with a lower dielectric constant than the first dielectric; these are the same as in Figure 1. . As described above, in this embodiment, since the dielectric material having a high dielectric constant is present in the radiating esso part, the electric field is concentrated there, as indicated by the arrow in the figure, and the gain increases.

すなわち、本実施例のように高い誘電率を有する誘電体
を部分実装することにより、小形、軽量で高利得のアン
テナを実現することができる。
That is, by partially mounting a dielectric material having a high dielectric constant as in this embodiment, it is possible to realize a small, lightweight, and high-gain antenna.

第5図は、本発明の第二の実施例を示す図であって、1
aは放射素子、2aは地板、4aは給電点、5aは放射
素子の長さ、6aは放射素子の幅、7b、7cは放射素
子周辺部分と地板の間に挿入された第一の誘電体、8a
は放射素子と地板の間で第一の誘電体以外の部分を満た
している第二の誘電体、9&は放射素子と第一の誘電体
の重なり部分の長さを表わしている。
FIG. 5 is a diagram showing a second embodiment of the present invention, 1
a is the radiating element, 2a is the ground plane, 4a is the feeding point, 5a is the length of the radiating element, 6a is the width of the radiating element, 7b and 7c are the first dielectric bodies inserted between the surrounding area of the radiating element and the ground plane. ,8a
9 represents a second dielectric filling the area other than the first dielectric between the radiating element and the ground plane, and 9 & represents the length of the overlapping portion of the radiating element and the first dielectric.

同図の第一の誘電体7b、7eの誘電率は第二の誘電体
8aの誘電率よりも高い。
The dielectric constants of the first dielectrics 7b and 7e shown in the figure are higher than the dielectric constant of the second dielectric 8a.

本実施例が第一の実施例と異なるのは、放射素子の幅方
向に高誘電体を部分実装したものである。克である。
This embodiment differs from the first embodiment in that a high dielectric material is partially mounted in the width direction of the radiating element. It's the best.

本実施例において、放りt素子の長さ5aを10c■、
幅を6c−とし、第一の誘電体7b、7Cとして、6丁
 (比誘電率)=15のものを、第二の誘電体8aを空
気として、放射素子と第一の誘電体の重なり部分の氏さ
9aと共振周波数との関係を調べた結果を第6図に示す
In this example, the length 5a of the t-element is 10c■,
The width is 6c-, the first dielectrics 7b and 7C are 6 dielectric constants (relative permittivity) = 15, and the second dielectric 8a is air, and the overlapping part of the radiating element and the first dielectric is FIG. 6 shows the results of investigating the relationship between the height 9a and the resonance frequency.

同図において、数字群14で示す丸印は片側の誘電体の
み(7bまたは7c)を高誘電体とした場合を、また、
数字群15で示す黒丸印は両側の誘電体(7bおよび7
c)を高誘電体とした場合のデータを示している。
In the same figure, the circle indicated by the number group 14 indicates the case where only one side of the dielectric (7b or 7c) is made of a high dielectric material.
The black circles shown in the number group 15 are the dielectrics on both sides (7b and 7
The data is shown when c) is a high dielectric material.

同図から、本実施例においても共振周波数が低下し、ア
ンテナの小形化が図られていることがわかる。しかし、
この場合は放射エツジ部分にのみ高い誘電率を有する誘
電体を部分実装したのではないため、利得の上昇効果は
前記第一の実施例はど烏いものではない。
From the figure, it can be seen that in this example as well, the resonant frequency is lowered and the antenna is made smaller. but,
In this case, since the dielectric material having a high dielectric constant is not partially mounted only on the radiation edge portion, the gain increasing effect is not as great as in the first embodiment.

また、第一の実施例および第二の実施例を岨み合わせて
、放射素子の周囲全てに高い誘電率を有する誘電体を部
分実装することによっても同様の効果が得られる。
Further, the same effect can be obtained by combining the first embodiment and the second embodiment and partially mounting a dielectric material having a high dielectric constant all around the radiating element.

第7図は本発明の第三の実施例を示す図であって、1b
は放射素子、2bは地板、4bは給電点、7d、7eは
放射素子周辺部分と地板の間に挿入された第一の誘電体
、8bは放射素子と地板の開で第一の誘電体以外の部分
を満たしている第二の誘電体を表わしている。
FIG. 7 is a diagram showing a third embodiment of the present invention, 1b
is the radiating element, 2b is the ground plane, 4b is the feeding point, 7d and 7e are the first dielectrics inserted between the radiating element peripheral part and the ground plane, and 8b is the opening between the radiating element and the ground plane other than the first dielectric. represents the second dielectric filling the area.

第一の誘電体7d、7eの誘電率は第二の誘電体8bの
誘電率よりも高く、その誘電率は、徐々に変化している
The dielectric constants of the first dielectrics 7d and 7e are higher than the dielectric constant of the second dielectric 8b, and the dielectric constants are gradually changing.

本実施例の誘電体の位置による誘電率の変化の例を第8
図に示した。
An example of the change in permittivity depending on the position of the dielectric material in this example is shown in the eighth example.
Shown in the figure.

同図において、(a)はアンテナの断面、(b)は誘電
率の変化の特性を(a)に対応付けて示しており、数字
群16は誘電率の変化特性を示している。
In the figure, (a) shows the cross section of the antenna, (b) shows the characteristics of change in dielectric constant in correspondence with (a), and the group of numbers 16 shows the characteristics of change in permittivity.

誘電率の変化は、第8図に示すように直線的でなくとも
よく、三角関数的に変化させる方法もある。この場合も
放射素子周辺の誘電率が商く、一方、中心部の誘電率が
低いので、第一の実施例と同様の効果があることは明ら
かである。
The change in dielectric constant does not have to be linear as shown in FIG. 8, and there is also a method of changing it trigonometrically. In this case as well, the dielectric constant around the radiating element is high, while the dielectric constant at the center is low, so it is clear that the same effect as in the first embodiment is obtained.

さらに、誘電率の変化が連続的であるため、周波数特性
が優れており、帯域幅が広くなる。
Furthermore, since the dielectric constant changes continuously, the frequency characteristics are excellent and the bandwidth is wide.

また、同様の効果を得るものとして、$9図に示すよう
に、第一の高誘電体と第二の低誘電体をテーパ状にして
組み合わせることもできる。
Further, to obtain the same effect, the first high dielectric material and the second low dielectric material may be combined in a tapered shape, as shown in Figure $9.

同図において、1cは放射素子、2cは地板、4cは給
電点、7ft7gは放射素子周辺部分と地板の間に挿入
された第一の誘電体、8cは放射素子と地板の間で第一
の誘電体以外の部分を満たしている第二の誘電体を表わ
している。
In the figure, 1c is the radiating element, 2c is the ground plane, 4c is the feed point, 7ft7g is the first dielectric inserted between the radiating element peripheral part and the ground plane, and 8c is the first dielectric between the radiating element and the ground plane. It represents a second dielectric filling the area other than the dielectric.

この構造においては、第一の高誘電体7f。In this structure, the first high dielectric material 7f.

7gと第二の低誘電体8cをテーパ状に接合することに
より、前記第三の実施例のように、誘電率が徐々に変化
していく場合と等価なものとしている。第一の高い誘電
率を有する誘電体と第二の低い誘電率を有する誘電体の
接合方法は、第9図に示したように、直線的なテーバに
限定されるものではなく、三角関数的な曲面で組み合わ
せる等の方法もある。
By joining 7g and the second low dielectric material 8c in a tapered shape, it is equivalent to the case where the dielectric constant gradually changes as in the third embodiment. As shown in FIG. 9, the joining method of the first dielectric material having a high dielectric constant and the second dielectric material having a low dielectric constant is not limited to a linear Taber, but a trigonometric method. There are also methods such as combining them on curved surfaces.

すなわち、本実施例のように誘電率が部分的に変化する
誘電体を実装し、連続的に誘電率を変化させるか、また
は誘電体をテーパ状に組み合わせる等により誘電率を連
続的に変化させることにより、小形軽量でありながら、
高利得かつ広帯域なアンテナが実現できる。
That is, as in this example, a dielectric material whose permittivity changes partially is mounted and the permittivity changes continuously, or the permittivity is changed continuously by combining dielectric materials in a tapered shape. As a result, while being small and lightweight,
A high gain and wideband antenna can be realized.

第10図は本発明の第四の実施例を示す図であって、板
状逆Fアンテナの場合の実施例である。
FIG. 10 is a diagram showing a fourth embodiment of the present invention, and is an embodiment in the case of a plate-shaped inverted F antenna.

同図において、1dは放射素子、2dは地板、4dは給
電点、7hは放射素子周辺部分と地板の間に挿入された
第一の誘電体、8dは放射素子と地板の間で第一の誘電
体以外の部分を満たしている第二の誘電体、17は放射
素子1dと地板2dを接続するスタブを表わしている。
In the figure, 1d is the radiating element, 2d is the ground plane, 4d is the feeding point, 7h is the first dielectric inserted between the radiating element peripheral part and the ground plane, and 8d is the first dielectric between the radiating element and the ground plane. A second dielectric 17 filling the area other than the dielectric represents a stub connecting the radiating element 1d and the ground plane 2d.

第一の誘電体7hの誘電率は第二の誘電体8dの誘電率
よりも高い、この場合も放射素子周辺の誘電率が^く、
一方中心部の誘電率が低いので、第一の実施例と同様の
効果があることは明らかである。
The dielectric constant of the first dielectric 7h is higher than that of the second dielectric 8d, and in this case also the dielectric constant around the radiating element is
On the other hand, since the dielectric constant at the center is low, it is clear that the same effect as in the first embodiment is obtained.

すなわち、板状逆Fアンテナの場合も本実施例のように
高い誘電率を有する誘電体を部分実装することによって
、小形、軽量なアンテナが実現される。
That is, even in the case of a plate-shaped inverted F antenna, a small and lightweight antenna can be realized by partially mounting a dielectric material having a high dielectric constant as in this embodiment.

第11図は本発明の第五の実施例を示す図であって、円
形マイクロストリップアンテナに本発明を適用した場合
を示している。
FIG. 11 is a diagram showing a fifth embodiment of the present invention, in which the present invention is applied to a circular microstrip antenna.

同図において、1eは放射素子、4e、4fは給電、弘
、7e〜7qは放射素子周辺部分と地板の開に挿入され
た第一の誘電体、8eは放射素子と地板の間で第一の誘
電体以外の部分を満たしている第二の誘電体を表わして
いる。第一の誘電体7e〜7qの誘電率は、第二の誘電
体8eの誘電率よりも高い。
In the same figure, 1e is a radiating element, 4e and 4f are power feeders, 7e to 7q are first dielectrics inserted into the opening between the radiating element and the ground plane, and 8e is the first dielectric between the radiating element and the ground plane. represents a second dielectric filling the part other than the dielectric. The dielectric constants of the first dielectrics 7e to 7q are higher than the dielectric constant of the second dielectric 8e.

同図中、(&)は放射素子周辺を一様に高い誘電率を有
する誘電体にした場合、(b)は電界の集中する部分の
み円形に高い誘電率を有する誘電体にした場合、(c)
は(b)と同様であるが、2点で給電して偏波共用をし
た場合、(d)は電界の集中する部分のみを扇形に高い
誘電率を有する誘電体にした場合、(e)は(d)と 
同様であるが、2点で給電して偏波共用をした場合の例
を示している。
In the figure, (&) indicates when a dielectric material having a high permittivity is used uniformly around the radiating element, and (b) indicates when a dielectric material having a high permittivity is made circularly around the area where the electric field is concentrated. c)
is the same as (b), but when power is fed at two points and polarization is shared, (d) is when only the part where the electric field is concentrated is made of a fan-shaped dielectric with a high permittivity, (e) is (d) and
Although it is similar, an example is shown in which power is supplied at two points and polarization is shared.

本実施例の場合も、第一の誘電体と第二の誘電体の直断
面を突き合わせしめて接合するだけでなり、誘電体その
ものの誘電率を連続的に変化させる方法や、テーパ状に
接合する等の方法を採ることができる。
In the case of this example as well, the first dielectric and the second dielectric are simply joined by butting the straight cross sections of the first dielectric and the second dielectric. The following methods can be adopted.

また、板状逆Fアンテナの場合も本実施例と同様な考え
方によって、いくつも高誘電体を部分実装する方法が考
えられる。
Furthermore, in the case of a plate-shaped inverted F antenna, several methods of partially mounting high dielectric materials can be considered based on the same concept as in this embodiment.

これらは、いずれのものも、前記第一あるいは第二の方
形マイクロストリップアンテナの場合と同様の効果を得
ることができる。
Any of these can achieve the same effect as the first or second rectangular microstrip antenna.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、マイクロストリ
ップアンテナ、または板状逆Fアンテナの放射素子周辺
部分の少なくとも一部と地板の開に存在する第一の誘電
体の誘電率を、第一の誘電体以外に放射素子と地板の闇
に存在する誘電体の誘電率よりも高くするという簡潔な
構成により、従来のマイクロストリップアンテナまたは
板状逆Fアンテナを小形化した場合に、その重量が増大
し利得も低下するという欠点を除去することが可能であ
り、小形軽量でありながら、高利得なアンテナを実現し
得る利点がある。
As explained above, according to the present invention, the dielectric constant of the first dielectric material existing between at least a part of the peripheral portion of the radiating element of a microstrip antenna or a plate-shaped inverted F antenna and the ground plane is By making the dielectric constant higher than the dielectric constant of the dielectric material existing between the radiating element and the ground plane, the weight of the conventional microstrip antenna or plate-shaped inverted F antenna is reduced when the size is reduced. It is possible to eliminate the drawbacks of increase in gain and decrease in gain, and there is an advantage that a high gain antenna can be realized while being small and lightweight.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一の実施例を示す図、第2図は放射
素子と第一の誘電体との重なり部分の長さと共振周波数
との関係を示す図、第3図は従来のアンテナと本発明に
よるアンテナの重量の比較について示す図、第4図は放
射素子と地板との開の電界の様子を示す図、第5図は本
発明の第二の実施例を示す図、第6図は第二の実施例に
おける放射素子と第一の誘電体の重なり部分の長さと共
振周波数の関係を示す図、第7図は本発明の第三の実施
例を示す図、第8図は本発明の第三の実施例の誘電体の
誘電率の変化について示す図、第9図は第三の実施例の
変形についで示す図、第10図は本発明の第四の実施例
について示す図、第11図は本発明の第五の実施例につ
いて示す図、第12図は従来の矩形マイクロストリップ
7ンテナの例を示す図である。 1.1a〜 1f ・・・・・・放射素子、2  2a
〜 2d・・・・・・地板、4.3a〜 4d・・・・
・・給電点、5  5m・・・・・・ 放射素子の長さ
、6  6m・・・・・・放射素子の幅、7  7a〜
7q・・・・・・放射素子周辺部分と地板の開に挿入さ
れた第一の誘電体、 8  8a〜8e・・・・・・放射素子と地板の闇で第
一の誘電体以外の部分を満たしている第二の誘電体、 9  9a・・・・・・放射素子と第一の誘電体の重な
り部分の氏さ、    10 ・・・・・・実測定デー
タ、11 ・・・・・・実測定データをもとにした近似
曲線、12 ・・・・・・高い誘電率を有する誘電体を
部分実装した場合のデータ、 13 ・・・・・・低い誘電率を有する誘電体を全部に
満たした場合のデータ、 14 ・・・・・・片側のみを高い誘電率を有する誘電
体とした場合のデータ、 15 ・・・・・・両側を高い誘電率を有する誘電体と
した場合のデータ、 16 ・・・・・・誘電率の変化を示す特性17・・・
・・・スタブ
FIG. 1 is a diagram showing the first embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the length of the overlapping portion of the radiating element and the first dielectric and the resonant frequency, and FIG. FIG. 4 is a diagram showing the state of the open electric field between the radiating element and the ground plane; FIG. 5 is a diagram showing the second embodiment of the present invention; FIG. Fig. 6 is a diagram showing the relationship between the length of the overlapping portion of the radiating element and the first dielectric material and the resonance frequency in the second embodiment, Fig. 7 is a diagram showing the third embodiment of the present invention, and Fig. 8 9 is a diagram showing a change in the permittivity of a dielectric material according to a third embodiment of the present invention, FIG. 9 is a diagram showing a modification of the third embodiment, and FIG. 10 is a diagram regarding a fourth embodiment of the present invention. 11 is a diagram showing a fifth embodiment of the present invention, and FIG. 12 is a diagram showing an example of a conventional rectangular microstrip 7 antenna. 1.1a to 1f...radiating element, 2 2a
~ 2d... Main plate, 4.3a ~ 4d...
... Feeding point, 5 5 m ... Length of radiating element, 6 6 m ... Width of radiating element, 7 7 a ~
7q...The first dielectric inserted between the surrounding area of the radiating element and the ground plane, 8 8a to 8e...The area between the radiating element and the ground plane other than the first dielectric Second dielectric that satisfies the following: 9 9a...Tightness of the overlapping part of the radiating element and the first dielectric, 10...Actual measurement data, 11...・Approximate curve based on actual measurement data, 12...Data when dielectrics with high permittivity are partially mounted, 13...All dielectrics with low permittivity are mounted 14...Data when only one side is made of a dielectric material with a high permittivity, 15......Data when both sides are made of a dielectric material with a high permittivity. Data, 16... Characteristics showing changes in permittivity 17...
···stub

Claims (1)

【特許請求の範囲】[Claims] 波長に比して十分狭い間隔を持つ2枚の導体板の一方を
地板とし、他方を放射素子としたアンテナ装置において
、放射素子周辺部分の少なくとも一部と地板の間に存在
する誘電体の誘電率が、該誘電体以外に放射素子と地板
の間に存在する誘電体の誘電率よりも高いことを特徴と
するアンテナ装置。
In an antenna device in which one of two conductor plates having a sufficiently narrow interval compared to the wavelength is used as the ground plate and the other is used as the radiating element, the dielectric of the dielectric material that exists between at least a part of the surrounding area of the radiating element and the ground plate. An antenna device characterized in that the dielectric constant is higher than that of a dielectric material other than the dielectric material that exists between the radiating element and the ground plane.
JP33103189A 1989-12-22 1989-12-22 Antenna system Pending JPH03192804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33103189A JPH03192804A (en) 1989-12-22 1989-12-22 Antenna system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33103189A JPH03192804A (en) 1989-12-22 1989-12-22 Antenna system

Publications (1)

Publication Number Publication Date
JPH03192804A true JPH03192804A (en) 1991-08-22

Family

ID=18239052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33103189A Pending JPH03192804A (en) 1989-12-22 1989-12-22 Antenna system

Country Status (1)

Country Link
JP (1) JPH03192804A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122032A (en) * 1997-10-11 1999-04-30 Yokowo Co Ltd Microstrip antenna
JP2002217638A (en) * 2001-01-23 2002-08-02 Mitsubishi Electric Corp Antenna unit
JP2002271119A (en) * 2001-03-06 2002-09-20 Ngk Insulators Ltd Antenna
JP2004104678A (en) * 2002-09-12 2004-04-02 Matsushita Electric Ind Co Ltd Antenna device
JP2005198335A (en) * 2005-02-08 2005-07-21 Matsushita Electric Ind Co Ltd Dual-resonant dielectric antenna and on-vehicle radio apparatus
JP2005286990A (en) * 2004-03-05 2005-10-13 Yagi Antenna Co Ltd Grid array antenna
JP2005303637A (en) * 2004-04-09 2005-10-27 Furukawa Electric Co Ltd:The Multi-frequency common antenna and miniaturized antenna
JP2006080609A (en) * 2004-09-07 2006-03-23 Otsuka Chemical Co Ltd Planar antenna
JP2006157290A (en) * 2004-11-26 2006-06-15 Kyocera Corp Surface mounted antenna, and antenna system and wireless communication apparatus employing antenna
JPWO2005013418A1 (en) * 2003-08-01 2006-09-28 三洋電機株式会社 Patch antenna
WO2008108112A1 (en) * 2007-03-07 2008-09-12 Konica Minolta Holdings, Inc. Antenna device
JP2010148054A (en) * 2008-12-22 2010-07-01 Yokowo Co Ltd Adjusting method of antenna device
JP2010154215A (en) * 2008-12-25 2010-07-08 Yokowo Co Ltd Antenna device and method for adjusting the same
WO2019106772A1 (en) * 2017-11-29 2019-06-06 株式会社フェニックスソリューション Antenna for rf tag, and rf tag
WO2022234769A1 (en) * 2021-05-07 2022-11-10 株式会社村田製作所 Antenna element and electronic device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122032A (en) * 1997-10-11 1999-04-30 Yokowo Co Ltd Microstrip antenna
JP2002217638A (en) * 2001-01-23 2002-08-02 Mitsubishi Electric Corp Antenna unit
JP2002271119A (en) * 2001-03-06 2002-09-20 Ngk Insulators Ltd Antenna
JP2004104678A (en) * 2002-09-12 2004-04-02 Matsushita Electric Ind Co Ltd Antenna device
JPWO2005013418A1 (en) * 2003-08-01 2006-09-28 三洋電機株式会社 Patch antenna
JP2005286990A (en) * 2004-03-05 2005-10-13 Yagi Antenna Co Ltd Grid array antenna
JP2005303637A (en) * 2004-04-09 2005-10-27 Furukawa Electric Co Ltd:The Multi-frequency common antenna and miniaturized antenna
JP2006080609A (en) * 2004-09-07 2006-03-23 Otsuka Chemical Co Ltd Planar antenna
JP2006157290A (en) * 2004-11-26 2006-06-15 Kyocera Corp Surface mounted antenna, and antenna system and wireless communication apparatus employing antenna
JP2005198335A (en) * 2005-02-08 2005-07-21 Matsushita Electric Ind Co Ltd Dual-resonant dielectric antenna and on-vehicle radio apparatus
WO2008108112A1 (en) * 2007-03-07 2008-09-12 Konica Minolta Holdings, Inc. Antenna device
JP2010148054A (en) * 2008-12-22 2010-07-01 Yokowo Co Ltd Adjusting method of antenna device
JP2010154215A (en) * 2008-12-25 2010-07-08 Yokowo Co Ltd Antenna device and method for adjusting the same
WO2019106772A1 (en) * 2017-11-29 2019-06-06 株式会社フェニックスソリューション Antenna for rf tag, and rf tag
US11030507B2 (en) 2017-11-29 2021-06-08 Phoenix Solution Co., Ltd. Antenna for RF tag, and RF tag
WO2022234769A1 (en) * 2021-05-07 2022-11-10 株式会社村田製作所 Antenna element and electronic device

Similar Documents

Publication Publication Date Title
JP3990735B2 (en) Antenna element
EP0688040B1 (en) Bidirectional printed antenna
US4067016A (en) Dual notched/diagonally fed electric microstrip dipole antennas
JPH03192804A (en) Antenna system
EP0825673B1 (en) Plane antenna with interposed short-circuited elements
EP1488476B1 (en) Dielectric resonator antenna
US4775866A (en) Two-frequency slotted planar antenna
JPH0671171B2 (en) Wideband antenna
JP2002517925A (en) antenna
US6919854B2 (en) Variable inclination continuous transverse stub array
CA2182334C (en) Mini-cap radiating element
JPS6141205A (en) Antenna for wide-band transmission line
US5126751A (en) Flush mount antenna
CN1046998A (en) The flat slot array antenna that TE mode wave is used
EP0394960A1 (en) A microstrip antenna
EP0980113A3 (en) Antenna device
JPH03192805A (en) Antenna system
JPH02883B2 (en)
EP0402005B1 (en) Flush mount antenna
CN112803159A (en) Feed linear array and radar antenna
JPH0666577B2 (en) Micro strip antenna
JP2565108B2 (en) Planar antenna
JPH02105704A (en) Circularly polarized wave micro-strip antenna
CN115882187B (en) Side-emitting omnidirectional antenna
Fassetta et al. Low-profile circular array of equilateral triangular patches for angular diversity