JPH03192521A - Production of thin film magnetic recording medium - Google Patents

Production of thin film magnetic recording medium

Info

Publication number
JPH03192521A
JPH03192521A JP33150589A JP33150589A JPH03192521A JP H03192521 A JPH03192521 A JP H03192521A JP 33150589 A JP33150589 A JP 33150589A JP 33150589 A JP33150589 A JP 33150589A JP H03192521 A JPH03192521 A JP H03192521A
Authority
JP
Japan
Prior art keywords
substrate
surface roughness
magnetic
drying
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33150589A
Other languages
Japanese (ja)
Inventor
Manabu Koike
学 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP33150589A priority Critical patent/JPH03192521A/en
Publication of JPH03192521A publication Critical patent/JPH03192521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain such a medium which has little variation of surface roughness and realizes traveling of a magnetic head at super-low floating height by drying a nonmagnetic substrate after washing in a manner that the substrate is dried at usual temp. while rotating the substrate so as to utilize centrifugal force. CONSTITUTION:A nonmagnetic substrate 2 after precisely washed is mounted on a variable-speed spindle 1, and treated for finish washing by injecting a finish washing agent (e.g. pure water) while slowly rotating the substrate in the direction shown by the arrow A in the figure. Then, the substrate is fast rotated and completely dried, and detached from the spindle 1. By this method, a film formed by sputtering on the substrate can have fine projections uniformly and stably distributed thereon. Thus, variation of surface roughness of the medium due to various distribution of fine projections can be suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、コンピュータなど情報処理装置の外部記憶
装置として用いられる固定磁気ディスク装置に適用され
る薄膜磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a thin film magnetic recording medium applied to a fixed magnetic disk device used as an external storage device of an information processing device such as a computer.

〔従来の技術〕[Conventional technology]

薄膜磁気記録媒体(以下、単に媒体とも称する)は、−
船釣に、M合金基板を所定の平行度。
A thin film magnetic recording medium (hereinafter also simply referred to as a medium) is -
For boat fishing, M alloy substrate with specified parallelism.

平面度1表面粗度に仕上げ、その表面に無電解めっき法
でN1−P合金層を形成し、このN1−P合金層表面を
所要の均一な粗度に研磨して非磁性基板とし、この非磁
性基板の表面を溶剤、界面活性剤、純水などで精密洗浄
したのち、I P A(is。
The flatness is finished to a surface roughness of 1, an N1-P alloy layer is formed on the surface by electroless plating, and the surface of this N1-P alloy layer is polished to the required uniform roughness to make a nonmagnetic substrate. After precision cleaning the surface of the non-magnetic substrate with a solvent, surfactant, pure water, etc., IPA (is.

−propylalcoho1)、  フレオン−11
3(デュポン製;1、 1. 2−trichloro
−1,2,2−trifluor。
-propylalcoho1), freon-11
3 (manufactured by DuPont; 1, 1. 2-trichloro
-1,2,2-trifluor.

−ethane )などの含ふっ素炭化水素系溶剤で蒸
気浸漬洗浄乾燥を施し、その上にスパッタ法で磁性を強
化するためのCr下地層、磁性層としてのCo合金層、
保護潤滑層としてのa−C層を順次成膜積層して製作さ
れる。固定磁気ディスク装置では、通常、CS S (
Contact 5tart 5top)方式が採られ
るため、媒体表面は磁気ヘッドの安定した低浮上走行が
実現でき、かつ、摩擦係数が小さくて磁気ヘッドとの摺
動が円滑に行われるように、適切に微細にあれた表面形
状であることが要求される。
Steam immersion cleaning and drying is performed using a fluorine-containing hydrocarbon solvent such as -ethane), and then sputtering is applied to a Cr underlayer to strengthen the magnetism, a Co alloy layer as a magnetic layer,
It is manufactured by sequentially depositing a-C layers as protective lubricant layers. Fixed magnetic disk devices usually use CSS (
Contact 5tart 5top) method is adopted, so the medium surface is appropriately finely patterned so that the magnetic head can run stably at a low flying height, and the coefficient of friction is small to ensure smooth sliding with the magnetic head. A rough surface shape is required.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、従来の製造方法で作製された媒体では、高記
録密度を得るために磁気ヘッドの極低浮上走行(例えば
浮上量的0.12μm)が要求されるような場合には、
媒体の表面粗度のばらつきが大きすぎて、適切な磁気ヘ
ッド滑走特性を有していないという問題があった。
However, in a medium manufactured using a conventional manufacturing method, when an extremely low flying height of the magnetic head (for example, 0.12 μm in terms of flying height) is required to obtain high recording density,
There is a problem in that the surface roughness of the medium varies too much, and the magnetic head does not have suitable sliding characteristics.

この発明は、上述の問題点を解消して、表面粗さのばら
つきが少なくて磁気ヘッドの安定した極低浮上走行を可
能とする適切な磁気ヘッド滑走特性を有する表面を備え
た薄膜磁気記録媒体の製造方法を提供することを課題と
する。
The present invention solves the above-mentioned problems and provides a thin film magnetic recording medium having a surface with suitable magnetic head sliding characteristics that have little variation in surface roughness and enable the magnetic head to run stably at an extremely low flying height. The objective is to provide a manufacturing method for.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、この発明によれば、所要の表面粗さに加
工された非磁性基板を洗浄し乾燥した後、この非磁性基
板上にスパッタ法で非磁性金属下地層、磁性層、保護潤
滑層を順次成膜積層する薄膜磁気記録媒体の製造方法に
おいて、前記乾燥を非磁性基板を回転させそのときの遠
心力を利用した常温乾燥とする製造方法とすることによ
って解決される。
According to the present invention, the above problem can be solved by cleaning and drying a non-magnetic substrate processed to a desired surface roughness, and then sputtering a non-magnetic metal base layer, a magnetic layer, a protective lubricant, etc. onto this non-magnetic substrate by sputtering. In a method for manufacturing a thin film magnetic recording medium in which layers are sequentially deposited, the problem can be solved by using a manufacturing method in which drying is performed at room temperature by rotating a nonmagnetic substrate and utilizing the centrifugal force generated at that time.

〔作用〕[Effect]

媒体の表面粗度は非磁性基板の表面粗度がベースとなり
、その上に媒体を構成するに必要な各層をスパッタ法で
成膜した結果形成される表面微小突起が加わって決まる
The surface roughness of the medium is determined based on the surface roughness of the nonmagnetic substrate, and is determined by the addition of surface microprotrusions formed as a result of forming each layer necessary to constitute the medium by sputtering.

従来の製造方法においては、スパッタ成膜前の非磁性基
板の乾燥はIPA(沸点約70℃)、フレオン−113
(沸点約47℃)などを用いた蒸気浸漬洗浄乾燥であり
、かなりの高温での乾燥が行われていた。そのためにス
パッタ成膜において非磁性金属下地層成膜時に結晶の異
常成長が起こり、これに起因して表面微小突起が微細に
均一に形成されなくなり、媒体の表面粗度のばらつきを
増長させていた。
In the conventional manufacturing method, drying of the non-magnetic substrate before sputtering film formation is carried out using IPA (boiling point approximately 70°C), Freon-113.
(boiling point: about 47°C), etc., and drying was carried out at a considerably high temperature. As a result, abnormal crystal growth occurs during sputter deposition during deposition of the non-magnetic metal underlayer, which prevents the formation of fine and uniform surface microprotrusions, increasing variations in the surface roughness of the media. .

この非磁性基板の乾燥を常温乾燥とすることにより、ス
パッタ成膜により表面微小突起が微細に均一に安定して
形成されることになり、表面微小突起のばらつきによる
媒体の表面粗度のばらつきを抑えることができる。従っ
て、媒体の表面粗度は非磁性基板の表面粗度により精度
良く制御できることになり、非磁性基板を適切な表面粗
度に加工しておくことにより適切な磁気ヘッド滑走特性
を有する表面を備えた媒体を得ることが可能となる。
By drying this nonmagnetic substrate at room temperature, fine, uniform, and stable surface microprotrusions are formed by sputtering film formation, and variations in the surface roughness of the medium due to variations in surface microprotrusions are eliminated. It can be suppressed. Therefore, the surface roughness of the medium can be precisely controlled by the surface roughness of the non-magnetic substrate, and by processing the non-magnetic substrate to an appropriate surface roughness, a surface with appropriate magnetic head sliding characteristics can be created. It becomes possible to obtain a medium that is

また、遠心力を利用した常温乾燥とすることにより、高
温乾燥から常温乾燥にかえることにより乾燥時間が長く
なるという問題点も解消される。
Moreover, by using centrifugal force to dry at room temperature, the problem that drying time becomes longer when changing from high temperature drying to room temperature drying is also solved.

〔実施例〕〔Example〕

第1図は、この発明の乾燥法の一実施例の概念図であり
、第1図(a)は下面図、第111A(ハ)は側面図で
ある。可変速のスピンドル1に装着された精密洗浄後の
非磁性基板2を、矢印Aの方向に低速回転(例えば11
00rpさせながらノズル3より乾燥直前洗浄液(例え
ば純水)を射出して最終洗浄を行い、引き続いて高速回
転(例えば3000rpm )に切り換え、完全に乾燥
するまで回転させた後、非磁性基板2をスピンドルlか
ら取りはずす。
FIG. 1 is a conceptual diagram of an embodiment of the drying method of the present invention, with FIG. 1(a) being a bottom view and FIG. 111A(c) being a side view. The precision-cleaned non-magnetic substrate 2 mounted on the variable speed spindle 1 is rotated at low speed in the direction of arrow A (for example, 11
Final cleaning is performed by injecting a pre-drying cleaning liquid (e.g. pure water) from the nozzle 3 while the rotation speed is 00 rpm, and then the rotation is switched to high speed (e.g. 3000 rpm) and rotated until completely dry. Remove from l.

A1合金基板を所要の平行度、平面度1表面粗度に仕上
げ、その表面に無電解めっき法でN1−P合金層を形成
して非磁性基板とし、このN1−P合金層表面を研磨し
て、表面粗度が相対負荷曲線の相対負荷長さ10%にお
けるカッティング深さから相対負荷長さ1%におけるカ
ッティング深さを差し引いたΔC,(10%−1%)で
80±6人とした非磁性基板を精密洗浄し、その後、上
述の方法で遠心力を利用した常温乾燥を行い、その表面
にスパッタ成膜法でCr下地層、 Co合金磁性層、a
−C保護潤滑層を順次成膜積層して媒体とする。その際
、乾燥直前洗浄液を純水、アルカリ系洗剤、IPAと変
えてそれぞれ実施例1.2および303種類の媒体を作
製した。これらの媒体について、表面粗度としてΔC,
(10%−1%)を測定した。その結果を第1表に示す
An A1 alloy substrate is finished to the required parallelism, flatness, and surface roughness, and an N1-P alloy layer is formed on its surface by electroless plating to make it a nonmagnetic substrate.The surface of this N1-P alloy layer is polished. Therefore, the surface roughness was calculated by subtracting the cutting depth at 1% relative load length from the cutting depth at 10% relative load length in the relative load curve, ΔC, (10% - 1%), which was 80 ± 6 people. The non-magnetic substrate is precisely cleaned, then dried at room temperature using centrifugal force using the method described above, and a Cr underlayer, a Co alloy magnetic layer, a
-C Protective lubricant layers are sequentially formed and laminated to form a medium. At that time, the cleaning liquid immediately before drying was changed to pure water, an alkaline detergent, and IPA to prepare Examples 1.2 and 303 types of media, respectively. For these media, the surface roughness is ΔC,
(10%-1%) was measured. The results are shown in Table 1.

第  1  表 比較のために、実施例と同様の非磁性基板を用い、精密
洗浄後の乾燥を従来の蒸気浸漬洗浄乾燥としたこと以外
は実施例と同様にして媒体を作製した。その際、乾燥に
用いる蒸気をIPA、フレオン−113と変えてそれぞ
れ比較例1および202種類の媒体を作製した。これら
比較例の媒体について、実施例と同様に表面粗度として
ΔCv(10%−1%)を測定した結果を第2表に示す
Table 1 For comparison, a medium was produced in the same manner as in the example except that the same non-magnetic substrate as in the example was used and the drying after precision cleaning was performed using conventional steam immersion cleaning and drying. At that time, Comparative Example 1 and 202 types of media were produced by changing the steam used for drying to IPA and Freon-113, respectively. Table 2 shows the results of measuring the surface roughness ΔCv (10%-1%) for the media of these comparative examples in the same manner as in the examples.

第  2  表 第1表および第2表より、実施例の媒体の表面粗度はい
ずれもベースとなる非磁性基板の表面粗度より若干大(
ΔC,(10%−1%)で20人程度)となる程度であ
り、そのばらつきも小さい。これに対して、比較例の媒
体の表面粗度は非磁性基板の表面粗度より大幅に大(Δ
C,(10%−1%)で150人程程度となり、しかも
そのばらつきが非常に大きい。媒体の表面粗度を制御す
る方法として実施例の方法が極めて有効であることは明
らかである。このような遠心力を利用した常温乾燥法を
採ることにより、媒体の表面粗度はベースとなる非磁性
基板の表面粗度によって精度良く制御できることになり
、非磁性基板を適切な表面粗度に加工しておくことによ
り、適切な磁気ヘッド滑走特性を有する媒体を得ること
が可能となる。
Table 2 From Tables 1 and 2, the surface roughness of the media of the examples is slightly larger than that of the non-magnetic substrate that is the base (
ΔC, (10%-1%) is about 20 people), and the variation is small. On the other hand, the surface roughness of the comparative example medium is significantly larger than that of the non-magnetic substrate (Δ
C, (10%-1%), there are about 150 people, and the variation is very large. It is clear that the method of the example is extremely effective as a method for controlling the surface roughness of the medium. By adopting this normal temperature drying method that utilizes centrifugal force, the surface roughness of the medium can be precisely controlled by the surface roughness of the base non-magnetic substrate, allowing the non-magnetic substrate to have an appropriate surface roughness. By processing it in advance, it becomes possible to obtain a medium having appropriate magnetic head sliding characteristics.

以上の実施例においては、非磁性基板自体を単体で回転
させて遠心力を利用した常温乾燥を行ったが、これに限
定されるものではなく、例えばホルダーに複数個の非磁
性基板をセットし、このホルダーを回転させることによ
り多数の非磁性基板を一度に乾燥させることも可能であ
る。
In the above example, the non-magnetic substrate itself was rotated by itself and dried at room temperature using centrifugal force, but the invention is not limited to this. For example, multiple non-magnetic substrates may be set in a holder. By rotating this holder, it is also possible to dry a large number of nonmagnetic substrates at once.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、薄膜磁気記録媒体の製造方法におい
て、スパッタ成膜前の非磁性基板の精密洗浄後の乾燥を
、非磁性基板を回転させ、そのときの遠心力を利用した
常温乾燥法とする。このような乾燥方法とすることによ
り、スパッタ成膜により表面微小突起が微細に均一に安
定して形成されることになり、表面微小突起のばらつき
による媒体の表面粗度のばらつきを抑えることができる
According to the present invention, in a method for manufacturing a thin film magnetic recording medium, drying after precision cleaning of a non-magnetic substrate before sputtering film formation is performed by rotating the non-magnetic substrate and using the centrifugal force generated at room temperature drying. do. By using this drying method, fine, uniform surface microprotrusions are stably formed by sputtering film formation, and variations in the surface roughness of the medium due to variations in surface microprotrusions can be suppressed. .

従って、媒体の表面粗度は非磁性基板の表面粗度により
精度良く制御できることになり、非磁性基板を適切な表
面粗度に加工しておくことにより、表面粗さのばらつき
が少なくて、磁気ヘッドの安定した極低浮上走行を可能
とする適切な磁気ヘッド滑走特性を有する表面を備えた
薄膜磁気記録媒体を、安定して量産することが可能とな
る。
Therefore, the surface roughness of the medium can be precisely controlled by the surface roughness of the non-magnetic substrate, and by processing the non-magnetic substrate to an appropriate surface roughness, the variation in surface roughness is small and the magnetic It becomes possible to stably mass-produce a thin-film magnetic recording medium having a surface having appropriate magnetic head sliding characteristics that enable the head to run at a stable and extremely low flying height.

この発明による製造方法は、高記録密度を得るために磁
気ヘッドの低浮上走行化がさらに進められるとより有効
となる。
The manufacturing method according to the present invention will become more effective as the flying motion of the magnetic head is further reduced in order to obtain a high recording density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の乾燥法の一実施例の概念図である。 ■ スピンドル、2 非磁性基板、3 ノズル。 (a) (b) 第1図 FIG. 1 is a conceptual diagram of an embodiment of the drying method of the present invention. ■ Spindle, 2 non-magnetic substrate, 3 nozzle. (a) (b) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1)所要の表面粗さに加工された非磁性基板を洗浄し乾
燥した後、この非磁性基板上にスパッタ法で非磁性金属
下地層、磁性層、保護潤滑層を順次成膜積層する薄膜磁
気記録媒体の製造方法において、前記乾燥を非磁性基板
を回転させそのときの遠心力を利用した常温乾燥とする
ことを特徴とする薄膜磁気記録媒体の製造方法。
1) After cleaning and drying a non-magnetic substrate processed to the required surface roughness, a thin film magnetic layer is formed by sequentially depositing a non-magnetic metal base layer, a magnetic layer, and a protective lubricant layer on this non-magnetic substrate using a sputtering method. 1. A method for manufacturing a thin film magnetic recording medium, characterized in that the drying is carried out at room temperature by rotating a non-magnetic substrate and utilizing centrifugal force at that time.
JP33150589A 1989-12-21 1989-12-21 Production of thin film magnetic recording medium Pending JPH03192521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33150589A JPH03192521A (en) 1989-12-21 1989-12-21 Production of thin film magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33150589A JPH03192521A (en) 1989-12-21 1989-12-21 Production of thin film magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH03192521A true JPH03192521A (en) 1991-08-22

Family

ID=18244390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33150589A Pending JPH03192521A (en) 1989-12-21 1989-12-21 Production of thin film magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH03192521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176893A (en) * 2007-01-22 2008-07-31 Nakamura Tome Precision Ind Co Ltd Dryer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176893A (en) * 2007-01-22 2008-07-31 Nakamura Tome Precision Ind Co Ltd Dryer

Similar Documents

Publication Publication Date Title
US4326229A (en) Magnetic record member and process for manufacturing the same
US5635037A (en) Method of texture by in-situ masking and etching for thin film magnetic recording medium
JPH07192257A (en) Manufacture of recording medium for disk drive and recording disk
JP2000506300A (en) Sputter texture magnetic recording media
JPH03192521A (en) Production of thin film magnetic recording medium
JP5032758B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JPS6038720A (en) Substrate for magnetic disk
US20140231385A1 (en) Method for manufacturing a magnetic media having ultra thin bonded lubrication layer
JPS63152022A (en) Glass substrate for magnetic disk
JP3010599B2 (en) Method for manufacturing thin-film magnetic recording medium
JP2621616B2 (en) Method for manufacturing thin-film magnetic recording medium
JP3156314B2 (en) Method of manufacturing thin film magnetic recording medium
JP3203691B2 (en) Manufacturing method of magnetic disk
JP3591331B2 (en) Magnetic recording medium and method of manufacturing the same
JPH04251438A (en) Production of magnetic recording medium
JPS62134826A (en) Production of magnetic memory body
JP2792239B2 (en) Method and apparatus for smoothing surface of magnetic disk substrate
JPH06325342A (en) Magnetic recording medium
JP2959124B2 (en) Surface smoothing device for magnetic disk substrates
JP2638228B2 (en) Manufacturing method of magnetic recording medium
JPH11353647A (en) Disk processor
JP3606106B2 (en) Magnetic recording medium and method for manufacturing the same
JPS5853026A (en) Manufacture for magnetic disc medium
JPH0376023A (en) Magnetic disk
WO1999045537A1 (en) Magnetic recording medium, process for fabricating the same, and magnetic storage apparatus made by using the same