JP3606106B2 - Magnetic recording medium and method for manufacturing the same - Google Patents

Magnetic recording medium and method for manufacturing the same Download PDF

Info

Publication number
JP3606106B2
JP3606106B2 JP13394099A JP13394099A JP3606106B2 JP 3606106 B2 JP3606106 B2 JP 3606106B2 JP 13394099 A JP13394099 A JP 13394099A JP 13394099 A JP13394099 A JP 13394099A JP 3606106 B2 JP3606106 B2 JP 3606106B2
Authority
JP
Japan
Prior art keywords
film
substrate
bump
recording medium
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13394099A
Other languages
Japanese (ja)
Other versions
JP2000322727A (en
Inventor
秀樹 松尾
慶孝 増馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP13394099A priority Critical patent/JP3606106B2/en
Publication of JP2000322727A publication Critical patent/JP2000322727A/en
Application granted granted Critical
Publication of JP3606106B2 publication Critical patent/JP3606106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、コンピュータなどの情報処理装置の外部記憶装置として用いられるハードディスクドライブ装置に搭載される磁気記録媒体およびその製造方法に関する。
【0002】
【従来の技術】
ハードディスクドライブ装置(以下、HDDと称する)は磁気記録媒体(以下、単に媒体と称する)とそれに対向配置された磁気ヘッドを備えてなり、磁気ヘッドを介して媒体への情報信号の書き込みあるいは読み取りが行われる。
【0003】
HDDにおいては、通常、CSS(コンタクト・スタート・ストップ)方式が採られており、情報信号の書き込み,読み取りが行われる駆動時には、磁気ヘッドは高速回転する媒体上を媒体の回転によって生じる空気流により僅かに浮上走行し、駆動停止時には停止している媒体表面に接触停止しており、駆動の開始時および中止時には磁気ヘッドは媒体表面と過渡的に接触摺動する。情報信号の書き込み,読み取りが良好に行われるためには、媒体表面は平滑で装置駆動時には磁気ヘッドの安定,円滑な浮上走行が妨げられるような異常突起がなく、かつ、駆動停止時に磁気ヘッドの媒体表面への吸着が起こらず、駆動の開始時,中止時の磁気ヘッドの接触摺動が円滑に行われるように適度に微細に粗面化されていることが必要である。
【0004】
媒体は、通常、アルミニウム合金などからなるディスク状の非磁性部材板表面を平滑に加工した後、表面にNi−P膜を形成し、媒体表面への磁気ヘッドの吸着を防ぎ、かつ、媒体表面と磁気ヘッドの接触摺動が円滑に行われるように、さらに媒体の磁気異方性を向上させ保磁力を高めるために、Ni−P膜表面に円周方向に沿って機械的に微細に凹凸を形成して粗面化する加工(機械的テクスチャリング加工)を施し、このようなテクスチャーが形成された非磁性基板上に、Cr合金下地層,Co合金磁性層,カーボン系保護層,液体潤滑剤の潤滑層を順次成膜積層して作製される。基板上に形成される各層は薄層であるため基板のNi−P膜表面の形状がそのまま媒体表面の形状となる。
【0005】
媒体への情報信号の記録密度は媒体の磁性層とその上を浮上走行する磁気ヘッドとの距離(以下、単にヘッド浮上量と称する)に大きく依存し、この量が小さい程記録密度は大きくなる。近年、HDDの高記録密度化の要望が強く、磁気ヘッドの浮上量はますます小さくすることが要求され、20nm以下のヘッド浮上量が要求されるようになってきた。従来は、上述のように、基板表面に形成されたNi−P膜表面は機械的テクスチャリング加工によるテクスチャー(以下、機械的テクスチャーと称する)が形成されてきたが、機械的テクスチャリング加工では異常突起の発生は避けられず、この媒体表面の異常突起の高さがヘッド浮上量を制約していた。このような問題点を解消するために、媒体のデータ記録領域では、機械的テクスチャリング加工による凹凸は磁気異方性向上効果が得られる範囲内でできるだけ小さくして発生する異常突起の高さを低くしてヘッド浮上量の低減を図り、CSS領域では、この機械的テクスチャー上にレーザー加工によりバンプを多数形成するLZT(Laser Zone Texture)を形成して媒体表面と磁気ヘッドとの吸着を防ぎ,摺動特性を向上させる方法が開発されてきた(例えば、特開平10−64055号公報)。
【0006】
【発明が解決しようとする課題】
前述のようなレーザー加工においては、Ni−P膜表面の機械的テクスチャー上にパルスレーザーを照射して、上面から見ればほぼ円形で、側断面は図2(a)または図2(b)の模式的断面図に示すような形状のバンプを多数形成する。バンプの形状はレーザー周波数およびレーザーパワーにより異なる。レーザー周波数をパラメーターとしてレーザーパワーによるバンプ形状,バンプ径およびバンプハイト(バンプの高さ)の間には図3の説明図に示すような関係がある。図3において、縦軸はバンプハイト,横軸はレーザーパワーを示し、周波数の異なるa,b.c3種のレーザーについて示す。ここで、レーザー周波数の高低はa<b<cの順である。図3に示すように、同一周波数ではレーザーパワーが増すにつれて初期にはバンプ径およびバンプハイトは急激に高くなる領域Iがあり、続いてパワーが増してもバンプハイトがほとんど増加しない領域IIが存在する。領域Iで形成されるバンプは図2(a)に示すように断面がV形状でありバンプ周縁の盛り上がりは先端が丸みを帯びており、レーザーパワーの僅かな増減によりバンプハイトが大きく変わる。領域IIで形成されるバンプは図2(b)に示すように断面がW形状でバンプ周縁の盛り上がりは先端が尖っており、バンプハイトはレーザーパワーが増してもあまり増加しない。また、図3に見られるように、バンプハイトはレーザー周波数に依存し、周波数が高くなれば形成されるバンプハイトは高くなる。
【0007】
従来、通常形成されていたバンプは、バンプハイトが20nm〜25nm程度のとき、バンプ径はV形状の場合10μm程度,W形状の場合15μm程度であった。
【0008】
上述のようにレーザー加工でバンプを形成する場合、レーザーパワーの領域Iではパワーを変えることによりバンプ径およびバンプハイトは種々変えられるが、パワーの僅かな変動によりバンプ径およびバンプハイトが変動する。レーザーパワーの領域IIではパワーの変動によるバンプ径およびバンプハイトの変動はほとんどない。従って、量産に際しては領域IIでバンプを形成する方がバンプ形状を均一に形成し易くて望ましい。また、領域Iで形成されるV形状バンプよりも領域IIで形成されるW形状バンプのほうかバンプ上部周縁の盛り上がりの先端が尖っており、媒体表面と磁気ヘッドとの摺動に際してW形状バンプの方がV形状バンプよりも摺動特性が安定しているので好適でる。
【0009】
しかし、低ヘッド浮上量を実現するために、バンプハイトの低いW形状バンプを形成するためには、図3に見られるように、レーザーの周波数を小さくすることが必要となり、量産性が劣るという問題がある。例えば、バンプハイトが20nm程度以下のバンプは、V形状では周波数70kHz〜90kHzのレーザーで形成することができるが、W形状では周波数10kHz〜30kHzの低周波のレーザーでなければならなくなり、加工性が大幅に低下して実用的でなくなる。
【0010】
この発明は、上述の点に鑑みてなされたものであって、ヘッド浮上量を低くでき、同時に磁気ヘッドと媒体表面との摺動特性が良好で,かつ,磁気ヘッドの吸着を防止できる媒体およびその製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記の課題は、この発明によれば、ディスク状非磁性部材板上にNi−P膜を形成した基板上に、非磁性金属下地層,磁性層,保護層,潤滑層が順次形成されてなる磁気記録媒体において、前記Ni−P膜のP濃度が表面から少なくとも数nm以上の深さまで膜内部より高い磁気記録媒体とすることによって解決される。
【0012】
このような媒体は、ディスク状非磁性部材板上にNi−P膜を形成して基板とし、この基板のNi−P膜表面に円周方向に沿って機械的に微細な凹凸を形成した後、この凹凸面上にレーザー加工により微細なバンプを多数形成し、このように粗面化加工された基板表面上に、非磁性金属下地層,磁性層,保護層,潤滑層を順次積層形成する磁気記録媒体の製造方法において、前記Ni−P膜表面に機械的に微細な凹凸を多数形成された基板を水中に浸漬した後、レーザー加工により微細なバンプを多数形成する工程を含む磁気記録媒体の製造方法を採ることによって得られる。
【0013】
または、前記Ni−P膜表面に機械的に微細な凹凸を形成された基板を弱酸溶液中に浸漬した後レーザー加工により微細なバンプを多数形成する工程を含む製造方法を採ることによって解決される。
【0014】
Ni−P膜は通常NiPであり、Ni濃度が60%,P濃度が40%の組成である。基板表面に形成されたNi−P膜は、清浄化のための水洗などにより、通常、図1の説明図に点線で示すように、膜表面からある深さまでNi濃度が60%より減少し相対的にP濃度が増して、極く浅くではあるが(数nm程度以下)P濃度が40%以上と高い領域が生じているが、Ni−P膜を積極的に水中または弱酸溶液中に浸漬することにより、図1に実線で示すように、Ni−P膜の表面のP濃度がさらに高くなり、P濃度が40%以上と高い領域(以下、Pリッチ層と称する)の表面からの深さ(以下、Pリッチ層膜厚と称する)が増加する。このPリッチ層のP濃度および膜厚の増加量は、Ni−P膜が浸漬される液の種類,温度,浸漬時間により異なるが、形成されるPリッチ層のP濃度および膜厚により、レーザー加工により形成されるNi−P膜表面のバンプハイトが制御できることが判った。
【0015】
Ni−P膜表面に極めて微細な機械的テクスチャーが形成された基板を水中または弱酸溶液中に浸漬してNi−P膜表面のPリッチ層の膜厚を増大させた後レーザーを照射すると、バンプハイトの低いW形状のバンプを形成することができ、バンプハイトが20nm以下の微細なLZTを形成することができる。このように粗面化された基板上に、非磁性金属下地層,磁性層,保護層,潤滑層を順次積層することにより、ヘッド浮上量を低くでき、同時に磁気ヘッドと媒体表面との摺動特性が良好で,かつ,磁気ヘッドの吸着を防止できる媒体が得られる。
【0016】
【発明の実施の形態】
図4は、この発明に係わる媒体の模式的断面図であり、ディスク状の非磁性部材板11上にNi−P膜12が形成されてなる基板1上に、下地層2,磁性層3,保護層4,潤滑層5が順次形成されてなる。
非磁性部材板としてはアルミニウム合金板または硬質のガラス板やセラミック板が用いられる。
【0017】
非磁性部材板表面を平滑に加工し、洗浄した後、表面に無電解めっき法またはスパッタリング法などでNi−P膜を形成して基板とする。Ni−P膜の膜厚は、通常、10μm程度とされる。このNi−P膜表面を平滑に加工し洗浄した後、基板を回転させながら、Ni−P膜表面に、円周方向に沿った微細な凹凸からなる機械的テクスチャーを形成し、洗浄して清浄にする。
【0018】
この機械的テクスチャーが形成され清浄化された基板を水中または弱酸溶液中に浸漬する。水中また弱酸溶液中に浸漬することにより、基板のNi−P膜表面のPリッチ層のP濃度および膜厚が増大する。増加量は水に比して弱酸溶液における方が大きく、また、液温が高く,浸漬時間が長いほど大きくなる。弱酸溶液においては弱酸濃度が高い方が大きい。浸漬液の種類,液温および浸漬時間を選択することより、Pリッチ層のP濃度および膜厚の増加量を制御することができる。水浸漬の場合Pリッチ層の膜厚を約100nm以上とすることにより、また弱酸溶液浸漬の場合Pリッチ層の膜厚を約10nm以上とすることにより、レーザーテクスチャリング加工でW形状でバンプハイトが20nm以下と低いバンプからなるLZTを形成することが可能となる。
【0019】
Ni−P膜表面に極微細な機械的テクスチャーが形成され、さらにその上にバンプハイトが20nm以下と低いW形状バンプからなるLZTが形成された基板を用いることにより、ヘッド浮上量を20nm以下と低くでき、同時に磁気ヘッドと媒体表面との摺動特性が良好で,かつ,磁気ヘッドの吸着を防止できる媒体を得ることができる。
【0020】
【実施例】
以下、この発明の実施例について具体的に説明する。
実施例1
アルミニウム合金からなるディスク状部材板の表面を平滑に加工した後、無電解めっき法でNi−P膜を約10μmの厚さに形成し、表面を平滑に研磨,洗浄して基板とする。この基板を回転させながら、Ni−P膜表面に、研磨テープをローラーで押し当てて走行させて粗面化して、円周方向に沿った極微細な凹凸を有する機械的テクスチャーを形成して洗浄する。
【0021】
この機械的テクスチャーを形成された基板を66℃の温純水中に20時間浸漬したところ、水浸漬を行わなかったときよりもPリッチ層膜厚は約130nm増加した。その後、基板表面に周波数60kHz,パワー250μWの半導体レーザーを用いてレーザーテクスチャリングを行ったところ、W形状のバンプが形成できバンプハイトは約12nm低下して約13nmとなった。
【0022】
水浸漬の時間を変化させ、そのときのNi−P膜表面に形成されたPリッチ層膜厚と浸漬時間,形成されたバンプハイトとの関係を調べた。バンプハイトは光学式のMicro−XAM(PHASE SHIFT社製)で測定した。その結果を図5の線図に示す。
【0023】
図5に見られるように、浸漬時間が増すにつれてNi−P膜表面のPリッチ層の膜厚は増加し、形成されるバンプハイトはPリッチ層膜厚が厚くなるにつれて低くなってくる。
【0024】
実施例2
実施例1と同様にして機械的テクスチャーを形成し清浄化した基板を、液温27℃,濃度0.1%のリンゴ酸溶液に浸漬したところ、浸漬時間450秒でPリッチ層膜厚は4nm増加した。続いて、周波数60kHz,パワー250μWの半導体レーザーによりバンプを形成したところ、W形状のバンプが形成でき、バンプハイトは約3nm低下して約17nmとなった。
【0025】
浸漬時間を変化させ、浸漬時間とNi−P膜表面のPリッチ層膜厚,形成されたバンプハイトとの関係を調べた。その結果を図6の線図に示す。
図6に見られるように、浸漬時間,Pリッチ層膜厚,バンプハイトの間には実施例1の水浸漬のときと同様の傾向が見られるが、水浸漬のときよりもリンゴ酸溶液浸漬の方が短い浸漬時間でPリッチ層膜厚の増加が見られ、バンプハイトの低いバンプが得られることが判る。
【0026】
実施例3
実施例1と同様にしてテクスチャーを形成し清浄化した基板を、液温50℃,濃度0.1%のリンゴ酸溶液に150秒間浸漬したところ、Pリッチ層膜厚は約6nm増加した。続いて、実施例2と同様に、周波数60kHz,パワー250μWの半導体レーザーによりバンプを形成したところ、バンプハイトは約6nm低下して約14nmとなった。
【0027】
液温を変化させ、Pリッチ層膜厚,形成されたバンプハイトとの関係を調べた。その結果を図7の線図に示す。形成されたバンプは、実施例2と同様に、すべてW形状であった。
図7に見られるように、液温が高くなるにつれてPリッチ層膜厚は増加し、バンプハイトは低くなることが判る。
【0028】
上述の実施例2および実施例3において、基板をリンゴ酸溶液に浸漬したときのPリッチ層膜厚とバンプハイトとの関係を調べたところ、図8の線図に示すような相関があり、Pリッチ層膜厚を厚くすることによりバンプハイトを低下させることが可能であり、W形状のバンプでバンプハイトを20nm以下と低くするためにはPリッチ層膜厚を約10nm以上とすればよいことが判る。
【0029】
実施例4
実施例1と同様にして機械的テクスチャーを形成し清浄化した基板を、濃度1%,液温50℃のリンゴ酸溶液,コハク酸溶液,リン酸溶液にそれぞれ10分間浸漬した。続いて、実施例2と同様に、周波数60kHz,パワー250μWの半導体レーザーによりバンプを形成したところ、図9のグラフ図に示すようなバンプハイトのバンプが形成された。図9には、比較のために、酸溶液に浸漬しなかった基板に形成されたバンプのバンプハイトも示す。
【0030】
図9に見られるように、酸溶液に浸漬しない場合には形成されるバンプのバンプハイトは20.5nmと高いが、リンゴ酸やコハク酸など弱酸の有機酸あるいは弱リン酸に浸漬することにより、Ni−P膜表面のPリッチ層膜厚が厚くなり、バンプハイトの低いバンプを形成することが可能となることが判る。
【0031】
【発明の効果】
この発明によれば、ディスク状非磁性部材板上にNi−P膜が形成された基板上に下地層,磁性層,保護層,潤滑層を順次積層形成されてなる磁気記録媒体において、ディスク状非磁性部材板上に形成されたNi−P膜の膜表面から少なくとも数nm以上の深さまでP濃度が膜内部より高いPリッチ領域が形成されている媒体とすることにより、ヘッド浮上量を20nm以下と低くでき、同時に磁気ヘッドと媒体表面との摺動特性が良好で,かつ,磁気ヘッドの吸着を防止できる媒体を得ることができる。
【0032】
このようにNi−P膜の表面のPリッチ領域の厚さを厚くすることは、表面にNi−P膜の形成された基板を水中または弱酸溶液中に浸漬することによって可能となる。
【図面の簡単な説明】
【図1】液浸漬によるNi−P膜のP濃度の変化を説明する説明図
【図2】レーザーテクスチャリングにより形成されるバンプ形状の模式的断面図
【図3】レーザーの周波数およびパワーとバンプ形状の関係を示す説明図
【図4】この発明に係わる媒体の模式的断面図
【図5】水浸漬時間,Pリッチ層膜厚,形成されるバンプハイトとの関係を示す線図
【図6】リンゴ酸溶液浸漬時間,Pリッチ層膜厚,形成されるバンプハイトとの関係を示す線図
【図7】リンゴ酸溶液温度,Pリッチ層膜厚,形成されるバンプハイトとの関係を示す線図
【図8】リンゴ酸溶液浸漬により形成されるPリッチ層膜厚と形成されるバンプハイトとの関係を示す線図
【図9】各種弱酸に浸漬したときに形成されるバンプのバンプハイトの一例を示すグラフ図
【符号の説明】
1 基板
11 非磁性部材板
12 Ni−P膜
2 下地層
3 磁性層
4 保護層
5 潤滑層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic recording medium mounted on a hard disk drive device used as an external storage device of an information processing apparatus such as a computer, and a manufacturing method thereof.
[0002]
[Prior art]
A hard disk drive device (hereinafter referred to as HDD) includes a magnetic recording medium (hereinafter simply referred to as medium) and a magnetic head disposed so as to face the magnetic recording medium, and information signals can be written to or read from the medium via the magnetic head. Done.
[0003]
The HDD usually employs a CSS (contact start / stop) system, and the magnetic head is driven by the air flow generated by the rotation of the medium on the medium that rotates at high speed when the information signal is written and read. It flies slightly and stops contacting the surface of the medium that is stopped when driving is stopped, and the magnetic head slides in contact with the surface of the medium transiently when starting and stopping driving. In order to write and read information signals satisfactorily, the surface of the medium is smooth, there is no abnormal protrusion that prevents stable and smooth flying when the device is driven, and when the drive is stopped, It is necessary that the surface of the medium is appropriately finely roughened so that the magnetic head is not attracted to the surface of the medium, and the contact and sliding of the magnetic head is smoothly performed at the start and stop of driving.
[0004]
The medium usually has a disk-like non-magnetic member plate surface made of an aluminum alloy or the like smoothed, and then a Ni-P film is formed on the surface to prevent the magnetic head from adhering to the medium surface. In order to improve the magnetic anisotropy of the medium and increase the coercive force, the unevenness of the Ni-P film is mechanically finely uneven along the circumferential direction. A rough alloy surface (mechanical texturing) is applied, and a Cr alloy underlayer, a Co alloy magnetic layer, a carbon-based protective layer, and liquid lubrication are formed on the nonmagnetic substrate on which such a texture is formed. A lubricant layer of the agent is sequentially formed and laminated. Since each layer formed on the substrate is a thin layer, the shape of the Ni-P film surface of the substrate becomes the shape of the medium surface as it is.
[0005]
The recording density of the information signal on the medium greatly depends on the distance between the magnetic layer of the medium and the magnetic head flying above (hereinafter simply referred to as the head flying height), and the recording density increases as the amount decreases. . In recent years, there is a strong demand for higher recording density of HDDs, and the flying height of the magnetic head is required to be further reduced, and the flying height of the head of 20 nm or less has been demanded. Conventionally, as described above, the Ni-P film surface formed on the substrate surface has been textured by mechanical texturing (hereinafter referred to as mechanical texture), but abnormal in mechanical texturing. The occurrence of protrusions is inevitable, and the height of the abnormal protrusions on the surface of the medium restricts the head flying height. In order to eliminate such problems, the unevenness caused by mechanical texturing in the data recording area of the medium is made as small as possible within the range where the effect of improving magnetic anisotropy can be obtained, and the height of the abnormal protrusion generated is reduced. Lowering the flying height of the head by lowering it, in the CSS area, forming a large number of bumps by laser processing on this mechanical texture, forming LZT (Laser Zone Texture) to prevent the medium surface and the magnetic head from being attracted, A method for improving the sliding characteristics has been developed (for example, JP-A-10-64055).
[0006]
[Problems to be solved by the invention]
In the laser processing as described above, the mechanical texture of the Ni-P film surface is irradiated with a pulse laser, and is substantially circular when viewed from above, and the side cross section is as shown in FIG. 2 (a) or FIG. 2 (b). A large number of bumps having a shape as shown in the schematic sectional view are formed. The shape of the bump depends on the laser frequency and the laser power. The relationship shown in the explanatory diagram of FIG. 3 is among the bump shape, bump diameter, and bump height (bump height) by the laser power using the laser frequency as a parameter. In FIG. 3, the vertical axis indicates the bump height, the horizontal axis indicates the laser power, and a, b. c3 types of laser are shown. Here, the level of the laser frequency is in the order of a <b <c. As shown in FIG. 3, at the same frequency, there is a region I where the bump diameter and bump height increase rapidly as the laser power increases, and then there is a region II where the bump height hardly increases even if the power increases. As shown in FIG. 2A, the bump formed in the region I has a V-shaped cross section, and the bump bulge is rounded at the tip, and the bump height changes greatly by slightly increasing or decreasing the laser power. As shown in FIG. 2B, the bump formed in the region II has a W-shaped cross section, the bump periphery has a sharp tip, and the bump height does not increase much even when the laser power increases. Further, as seen in FIG. 3, the bump height depends on the laser frequency, and as the frequency increases, the formed bump height increases.
[0007]
Conventionally, normally formed bumps have a bump diameter of about 10 μm for the V shape and about 15 μm for the W shape when the bump height is about 20 nm to 25 nm.
[0008]
When bumps are formed by laser processing as described above, the bump diameter and the bump height can be variously changed by changing the power in the laser power region I, but the bump diameter and the bump height are changed by a slight change in power. In the laser power region II, there is almost no variation in the bump diameter and bump height due to the variation in power. Therefore, in mass production, it is desirable to form bumps in the region II because it is easy to form bump shapes uniformly. Further, the W-shaped bump formed in the region II or the bulging tip at the upper periphery of the bump is sharper than the V-shaped bump formed in the region I, and the W-shaped bump is slid when the medium surface slides with the magnetic head. This is more preferable because the sliding characteristics are more stable than the V-shaped bump.
[0009]
However, in order to form a W-shaped bump having a low bump height in order to realize a low flying height, as shown in FIG. 3, it is necessary to reduce the frequency of the laser, resulting in inferior mass productivity. There is. For example, a bump with a bump height of about 20 nm or less can be formed with a laser having a frequency of 70 kHz to 90 kHz in the V shape, but must be a low frequency laser with a frequency of 10 kHz to 30 kHz in the W shape, which greatly improves the workability. To become impractical.
[0010]
The present invention has been made in view of the above-described points, and is a medium that can reduce the flying height of the head, at the same time, has good sliding characteristics between the magnetic head and the medium surface, and can prevent the magnetic head from being attracted. It aims at providing the manufacturing method.
[0011]
[Means for Solving the Problems]
According to the present invention, the above-described problem is that a nonmagnetic metal underlayer, a magnetic layer, a protective layer, and a lubricating layer are sequentially formed on a substrate in which a Ni-P film is formed on a disk-shaped nonmagnetic member plate. In the magnetic recording medium, the problem is solved by making the P concentration of the Ni-P film higher than that in the film from the surface to a depth of at least several nanometers.
[0012]
In such a medium, a Ni-P film is formed on a disk-shaped nonmagnetic member plate to form a substrate, and mechanically fine irregularities are formed along the circumferential direction on the surface of the Ni-P film of the substrate. A large number of fine bumps are formed on the uneven surface by laser processing, and a nonmagnetic metal underlayer, a magnetic layer, a protective layer, and a lubricating layer are sequentially laminated on the roughened substrate surface. In a method of manufacturing a magnetic recording medium, the method includes a step of immersing a substrate having a large number of fine irregularities formed on the surface of the Ni-P film in water and then forming a large number of fine bumps by laser processing. It is obtained by adopting the manufacturing method.
[0013]
Alternatively, the problem can be solved by adopting a manufacturing method including a step of forming a large number of fine bumps by laser processing after immersing a substrate having mechanically fine irregularities formed on the Ni-P film surface in a weak acid solution. .
[0014]
The Ni—P film is usually Ni 4 P and has a composition with a Ni concentration of 60% and a P concentration of 40%. The Ni—P film formed on the substrate surface is usually washed with water for cleaning and the like, and as shown by the dotted line in the explanatory diagram of FIG. However, although the P concentration is increased and a very shallow region (about several nm or less), a high region of P concentration of 40% or more is generated, but the Ni-P film is actively immersed in water or a weak acid solution. As a result, as shown by the solid line in FIG. 1, the P concentration on the surface of the Ni-P film is further increased, and the depth from the surface of the region where the P concentration is as high as 40% or more (hereinafter referred to as P-rich layer). (Hereinafter referred to as the P-rich layer thickness) increases. The amount of increase in the P concentration and film thickness of the P-rich layer varies depending on the type, temperature, and immersion time of the liquid in which the Ni-P film is immersed, but the laser depends on the P concentration and film thickness of the formed P-rich layer. It was found that the bump height on the surface of the Ni-P film formed by processing can be controlled.
[0015]
When a substrate with a very fine mechanical texture formed on the Ni-P film surface is immersed in water or a weak acid solution to increase the thickness of the P-rich layer on the Ni-P film surface, A low W-shaped bump can be formed, and a fine LZT with a bump height of 20 nm or less can be formed. By sequentially laminating a nonmagnetic metal underlayer, magnetic layer, protective layer, and lubricating layer on the roughened substrate in this way, the head flying height can be reduced, and at the same time, sliding between the magnetic head and the medium surface is possible. A medium having good characteristics and capable of preventing the magnetic head from being attracted can be obtained.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 4 is a schematic cross-sectional view of a medium according to the present invention. On a substrate 1 in which a Ni-P film 12 is formed on a disk-like nonmagnetic member plate 11, an underlayer 2, a magnetic layer 3, A protective layer 4 and a lubricating layer 5 are sequentially formed.
As the nonmagnetic member plate, an aluminum alloy plate, a hard glass plate or a ceramic plate is used.
[0017]
The surface of the nonmagnetic member plate is processed smoothly and washed, and then a Ni-P film is formed on the surface by an electroless plating method or a sputtering method to obtain a substrate. The film thickness of the Ni—P film is usually about 10 μm. After this Ni-P film surface is processed and washed smoothly, a mechanical texture composed of fine irregularities along the circumferential direction is formed on the Ni-P film surface while rotating the substrate, and then washed and cleaned. To.
[0018]
The substrate having the mechanical texture formed and cleaned is immersed in water or a weak acid solution. By immersing in water or a weak acid solution, the P concentration and film thickness of the P-rich layer on the Ni-P film surface of the substrate increase. The amount of increase is greater in the weak acid solution than in water, and increases as the liquid temperature is higher and the immersion time is longer. In the weak acid solution, the higher the weak acid concentration, the greater. By selecting the type of immersion liquid, the liquid temperature, and the immersion time, it is possible to control the amount of increase in P concentration and film thickness of the P-rich layer. In the case of water immersion, the thickness of the P-rich layer is about 100 nm or more. In the case of the weak acid solution immersion, the thickness of the P-rich layer is about 10 nm or more. It becomes possible to form LZT composed of bumps as low as 20 nm or less.
[0019]
By using a substrate on which an extremely fine mechanical texture is formed on the surface of the Ni-P film, and on which a LZT made of W-shaped bumps having a bump height of 20 nm or less is formed, the head flying height is lowered to 20 nm or less. At the same time, it is possible to obtain a medium that has good sliding characteristics between the magnetic head and the medium surface and that can prevent the magnetic head from being attracted.
[0020]
【Example】
Examples of the present invention will be specifically described below.
Example 1
After the surface of the disk-shaped member plate made of an aluminum alloy is processed smoothly, a Ni—P film is formed to a thickness of about 10 μm by an electroless plating method, and the surface is polished and washed smoothly to obtain a substrate. While rotating this substrate, the surface of the Ni-P film is pressed by a polishing roller with a roller and roughened to form a mechanical texture having extremely fine irregularities along the circumferential direction. To do.
[0021]
When the substrate on which the mechanical texture was formed was immersed in warm pure water at 66 ° C. for 20 hours, the P-rich layer thickness increased by about 130 nm compared to when no water immersion was performed. Thereafter, laser texturing was performed on the substrate surface using a semiconductor laser having a frequency of 60 kHz and a power of 250 μW. As a result, a W-shaped bump was formed, and the bump height was reduced by about 12 nm to about 13 nm.
[0022]
The water immersion time was changed, and the relationship between the film thickness of the P-rich layer formed on the Ni-P film surface at that time, the immersion time, and the formed bump height was examined. The bump height was measured with an optical Micro-XAM (manufactured by PHASE SHIFT). The results are shown in the diagram of FIG.
[0023]
As can be seen from FIG. 5, the film thickness of the P-rich layer on the surface of the Ni-P film increases as the immersion time increases, and the bump height formed decreases as the film thickness of the P-rich layer increases.
[0024]
Example 2
A substrate having a mechanical texture formed and cleaned in the same manner as in Example 1 was immersed in a malic acid solution having a liquid temperature of 27 ° C. and a concentration of 0.1%. The immersion time was 450 seconds and the P-rich layer thickness was 4 nm. Increased. Subsequently, when a bump was formed by a semiconductor laser having a frequency of 60 kHz and a power of 250 μW, a W-shaped bump could be formed, and the bump height decreased by about 3 nm to about 17 nm.
[0025]
The immersion time was changed, and the relationship between the immersion time, the P-rich layer thickness on the Ni-P film surface, and the bump height formed was examined. The results are shown in the diagram of FIG.
As seen in FIG. 6, the same tendency as in the water immersion of Example 1 is observed between the immersion time, the P-rich layer thickness, and the bump height, but the malic acid solution immersion is more than in the water immersion. It can be seen that an increase in the film thickness of the P-rich layer is observed with a shorter immersion time, and a bump with a low bump height can be obtained.
[0026]
Example 3
When a substrate having a texture formed and cleaned in the same manner as in Example 1 was immersed in a malic acid solution having a liquid temperature of 50 ° C. and a concentration of 0.1% for 150 seconds, the P-rich layer thickness increased by about 6 nm. Subsequently, as in Example 2, when bumps were formed by a semiconductor laser having a frequency of 60 kHz and a power of 250 μW, the bump height was reduced by about 6 nm to about 14 nm.
[0027]
The liquid temperature was changed, and the relationship between the P-rich layer thickness and the formed bump height was examined. The results are shown in the diagram of FIG. The formed bumps were all W-shaped as in Example 2.
As can be seen from FIG. 7, as the liquid temperature increases, the P-rich layer thickness increases and the bump height decreases.
[0028]
In Example 2 and Example 3 described above, when the relationship between the P-rich layer thickness and the bump height when the substrate was immersed in the malic acid solution was examined, there was a correlation as shown in the diagram of FIG. It is understood that the bump height can be lowered by increasing the rich layer thickness, and in order to reduce the bump height to 20 nm or less with a W-shaped bump, the P rich layer thickness should be about 10 nm or more. .
[0029]
Example 4
A substrate having a mechanical texture formed and cleaned in the same manner as in Example 1 was immersed in a malic acid solution, a succinic acid solution, and a phosphoric acid solution having a concentration of 1% and a liquid temperature of 50 ° C. for 10 minutes. Subsequently, as in Example 2, when bumps were formed by a semiconductor laser having a frequency of 60 kHz and a power of 250 μW, bump height bumps as shown in the graph of FIG. 9 were formed. FIG. 9 also shows the bump height of the bump formed on the substrate that was not immersed in the acid solution for comparison.
[0030]
As seen in FIG. 9, the bump height of the bump formed when not immersed in an acid solution is as high as 20.5 nm, but by immersing in a weak acid organic acid such as malic acid or succinic acid or weak phosphoric acid, It can be seen that the thickness of the P-rich layer on the surface of the Ni-P film is increased, and a bump having a low bump height can be formed.
[0031]
【The invention's effect】
According to the present invention, in a magnetic recording medium in which an underlayer, a magnetic layer, a protective layer, and a lubricating layer are sequentially laminated on a substrate having a Ni-P film formed on a disk-shaped nonmagnetic member plate, By using a medium in which a P-rich region having a P concentration higher than the inside of the film is formed from the surface of the Ni-P film formed on the nonmagnetic member plate to a depth of at least several nm or more, the head flying height is 20 nm. It is possible to obtain a medium that can be reduced to the following, and at the same time, has good sliding characteristics between the magnetic head and the medium surface and can prevent the magnetic head from being attracted.
[0032]
Thus, it is possible to increase the thickness of the P-rich region on the surface of the Ni-P film by immersing the substrate on which the Ni-P film is formed in water or a weak acid solution.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram for explaining changes in the P concentration of a Ni—P film due to liquid immersion. FIG. 2 is a schematic cross-sectional view of a bump shape formed by laser texturing. FIG. FIG. 4 is a schematic cross-sectional view of the medium according to the present invention. FIG. 5 is a diagram showing the relationship between the water immersion time, the P-rich layer thickness, and the bump height to be formed. Diagram showing the relationship between malic acid solution immersion time, P-rich layer thickness, and formed bump height [Fig. 7] Diagram showing the relationship between malic acid solution temperature, P-rich layer thickness, and formed bump height [ FIG. 8 is a diagram showing the relationship between the P-rich layer thickness formed by dipping malic acid solution and the bump height to be formed. FIG. 9 is a graph showing an example of bump height of bumps formed when dipped in various weak acids. Figure Description of]
DESCRIPTION OF SYMBOLS 1 Substrate 11 Nonmagnetic member plate 12 Ni-P film 2 Underlayer 3 Magnetic layer 4 Protective layer 5 Lubrication layer

Claims (3)

ディスク状非磁性部材板上にNi−P膜が形成された基板上に非磁性金属下地層,磁性層,保護層,潤滑層を順次積層形成されてなる磁気記録媒体において、ディスク状非磁性部材板上に形成されたNi−P膜の膜表面から少なくとも数nm以上の深さまでP濃度が膜内部より高いPリッチ領域が形成されていることを特徴とする磁気記録媒体。In a magnetic recording medium in which a nonmagnetic metal underlayer, a magnetic layer, a protective layer, and a lubricating layer are sequentially laminated on a substrate having a Ni-P film formed on a disk-shaped nonmagnetic member plate, the disk-shaped nonmagnetic member A magnetic recording medium, wherein a P-rich region having a P concentration higher than the inside of the film is formed from the surface of the Ni-P film formed on the plate to a depth of at least several nm or more. ディスク状非磁性部材板上にNi−P膜を形成して基板とし、この基板のNi−P膜表面に円周方向に沿って機械的に微細な凹凸を形成し、その凹凸面上にレーザー加工により微細なバンプを多数形成した後、この粗面化加工された基板表面上に、非磁性金属下地層,磁性層,保護層,潤滑層を順次積層形成する磁気記録媒体の製造方法において、前記Ni−P膜表面に機械的に微細な凹凸を形成された基板を水中に浸漬した後レーザー加工により微細なバンプを形成することを特徴とする磁気記録媒体の製造方法。A Ni-P film is formed on a disk-like non-magnetic member plate to form a substrate, mechanically fine irregularities are formed along the circumferential direction on the Ni-P film surface of the substrate, and a laser is formed on the irregular surface. In a method of manufacturing a magnetic recording medium, after forming a large number of fine bumps by processing, a nonmagnetic metal underlayer, a magnetic layer, a protective layer, and a lubricating layer are sequentially stacked on the roughened substrate surface. A method for producing a magnetic recording medium, comprising: immersing a substrate having fine irregularities mechanically formed on the Ni-P film surface in water and then forming fine bumps by laser processing. ディスク状非磁性部材板上にNi−P膜を形成して基板とし、この基板のNi−P膜表面に円周方向に沿って機械的に微細な凹凸を形成し、その凹凸面上にレーザー加工により微細なバンプを形成した後、この粗面化加工された基板表面上に、非磁性金属下地層,磁性層,保護層,潤滑層を順次積層形成する磁気記録媒体の製造方法において、前記Ni−P膜表面に機械的に微細な凹凸を形成された基板を弱酸溶液中に浸漬した後レーザー加工により微細なバンプを形成するすることを特徴とする磁気記録媒体の製造方法。A Ni-P film is formed on a disk-like non-magnetic member plate to form a substrate, mechanically fine irregularities are formed along the circumferential direction on the Ni-P film surface of the substrate, and a laser is formed on the irregular surface. In the method of manufacturing a magnetic recording medium, after forming fine bumps by processing, a nonmagnetic metal underlayer, a magnetic layer, a protective layer, and a lubricating layer are sequentially laminated on the roughened substrate surface. A method for producing a magnetic recording medium, comprising: immersing a substrate having mechanically fine irregularities formed on a Ni-P film surface in a weak acid solution and then forming fine bumps by laser processing.
JP13394099A 1999-05-14 1999-05-14 Magnetic recording medium and method for manufacturing the same Expired - Lifetime JP3606106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13394099A JP3606106B2 (en) 1999-05-14 1999-05-14 Magnetic recording medium and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13394099A JP3606106B2 (en) 1999-05-14 1999-05-14 Magnetic recording medium and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000322727A JP2000322727A (en) 2000-11-24
JP3606106B2 true JP3606106B2 (en) 2005-01-05

Family

ID=15116639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13394099A Expired - Lifetime JP3606106B2 (en) 1999-05-14 1999-05-14 Magnetic recording medium and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3606106B2 (en)

Also Published As

Publication number Publication date
JP2000322727A (en) 2000-11-24

Similar Documents

Publication Publication Date Title
JP3965277B2 (en) Magnetic recording medium and magnetic storage device
US8124257B2 (en) Substrate for recording medium, and magnetic recording medium using same
JP4023408B2 (en) Substrate for perpendicular magnetic recording medium, perpendicular magnetic recording medium, and method for producing them
JP3606106B2 (en) Magnetic recording medium and method for manufacturing the same
JP4258150B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic disk drive
JP4983500B2 (en) Information recording medium substrate and information magnetic recording medium using the same
JP2698086B2 (en) Magnetic disk substrate and method of manufacturing the same
JP2613947B2 (en) Magnetic recording media
JP2000057564A (en) Manufacture of magnetic recording medium
JP3629275B2 (en) Method for forming texture in magnetic recording medium by laser irradiation using multiple lens focusing
JP4019561B2 (en) Evaluation method and design method of magnetic recording medium
JP2621616B2 (en) Method for manufacturing thin-film magnetic recording medium
JP3010599B2 (en) Method for manufacturing thin-film magnetic recording medium
JP2001297430A (en) Laser zone texture machining method of substrate for magnetic recording medium, substrate for magnetic recording medium manufactured by using the method and magnetic recording medium using the board
JP3156314B2 (en) Method of manufacturing thin film magnetic recording medium
JPH07244845A (en) Manufacture of magnetic recording medium
JPH0869620A (en) Production of magnetic recording medium
JPH1064055A (en) Magnetic recording medium
JPH09180177A (en) Magnetic recording medium and magnetic disk device
JP2006018996A (en) Substrate for magnetic recording medium, magnetic recording medium and magnetic recording/reproducing device
JP2764829B2 (en) Magnetic disk
JP2002503009A (en) Magnetic recording medium having pattern substrate
JPH05298686A (en) Production of magnetic disk
JP2001134931A (en) Magnetic recording medium and its manufacturing method
JPH06325342A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term