JP2621616B2 - Method for manufacturing thin-film magnetic recording medium - Google Patents

Method for manufacturing thin-film magnetic recording medium

Info

Publication number
JP2621616B2
JP2621616B2 JP23078890A JP23078890A JP2621616B2 JP 2621616 B2 JP2621616 B2 JP 2621616B2 JP 23078890 A JP23078890 A JP 23078890A JP 23078890 A JP23078890 A JP 23078890A JP 2621616 B2 JP2621616 B2 JP 2621616B2
Authority
JP
Japan
Prior art keywords
pure water
magnetic
substrate
medium
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23078890A
Other languages
Japanese (ja)
Other versions
JPH041927A (en
Inventor
学 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPH041927A publication Critical patent/JPH041927A/en
Application granted granted Critical
Publication of JP2621616B2 publication Critical patent/JP2621616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、コンピュータなどの情報処理装置の外部
記憶装置の一つである固定磁気ディスク装置に使用され
る薄膜磁気記録媒体の製造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin-film magnetic recording medium used in a fixed magnetic disk device which is one of external storage devices of an information processing device such as a computer.

〔従来の技術〕[Conventional technology]

薄膜磁気記録媒体(以下、単に媒体とも称する)は、
一般に、Al合金などからなる非磁性板を所要の平行度,
平面度,表面粗度に仕上げ、その表面にアルマイト処理
あるいはNi−P合金無電解めっき処理を施して表面層を
形成し、その表面を所要の粗度に研磨仕上げし洗浄をし
て非磁性基板とし、この非磁性基板を静止純水中に浸漬
保管しておき、順次取り出して精密洗浄を施し、引き続
いてこの非磁性基板上に、スパッタ成膜法により、磁性
を高めるための例えばCrからなる非磁性金属下地層,Co
合金などの強磁性金属からなる連続薄膜磁性層を順次形
成し、さらにその上に硬質保護膜としてC,SiO2などの薄
膜をスパッタ成膜法,スピンコート法などにより形成
し、かつ、必要に応じて潤滑・耐磨耗特性を改善させる
ための液体潤滑剤の塗布などを行って作製される。
Thin-film magnetic recording media (hereinafter, also simply referred to as media)
Generally, a non-magnetic plate made of an Al alloy or the like is provided with a required parallelism,
Finish to flatness and surface roughness, apply alumite treatment or Ni-P alloy electroless plating treatment to the surface to form a surface layer, polish the surface to the required roughness, wash and clean the non-magnetic substrate Then, this non-magnetic substrate is immersed and stored in still pure water, sequentially taken out and subjected to precision cleaning, and subsequently, on this non-magnetic substrate, is made of, for example, Cr for enhancing magnetism by a sputtering film forming method. Nonmagnetic metal underlayer, Co
A continuous thin-film magnetic layer consisting of a ferromagnetic metal such as an alloy is sequentially formed, and a thin film of C, SiO 2 or the like is formed thereon as a hard protective film by a sputtering film forming method, a spin coating method, etc. It is manufactured by applying a liquid lubricant for improving the lubrication and wear resistance properties.

固定磁気ディスク装置においては、このような媒体に
対して磁気ヘッドを介して情報のRead/Writeが行われ
る。磁気ヘッドは、媒体に対し、Read/Writeが行われる
駆動時には、回転する媒体との間に生じる空気流の作用
により磁低浮上走行状態にあるが、駆動の開始,停止時
点では両者は接触し摺動する。そのため、媒体表面の摩
擦係数が大きい場合、磁気ヘッドと媒体との間に一種の
焼き付き状態が発生するという不具合が生じる。
In the fixed magnetic disk drive, information read / write is performed on such a medium via a magnetic head. When the magnetic head is driven to perform read / write on the medium, the magnetic head is in a magnetically levitating traveling state due to the action of the airflow generated between the medium and the rotating medium. Slide. Therefore, when the coefficient of friction of the medium surface is large, there occurs a problem that a kind of burn-in state occurs between the magnetic head and the medium.

このような欠点をなくすために、媒体の表面状態は、
できるかぎり、同一媒体面内において、また、媒体間に
おいて、ばらつきのない均一な微小突起を有する表面粗
度であることが必要である。このような均一な表面粗度
の媒体を得るために、基板表面を機械加工により所要の
均一な粗度に精密に加工し、その後静止純水中に浸漬保
管しておき、成膜直前に取り出して精密洗浄して、でき
るだけ洗浄にした基板表面に成膜する製造方法が行われ
てきた。
In order to eliminate such defects, the surface condition of the medium is
As far as possible, it is necessary for the surface roughness to have uniform fine projections without variation within the same medium surface and between media. In order to obtain a medium with such a uniform surface roughness, the substrate surface is precisely machined to the required uniform roughness by machining, then immersed and stored in static pure water, and taken out immediately before film formation A manufacturing method has been performed in which the substrate is precisely cleaned and a film is formed on the surface of the substrate which has been cleaned as much as possible.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、上述の従来の方法においては、精密洗浄前
の静止純水中での基板の浸漬保管中に、特に保管が長期
間(例えば12時間以上)にわたった場合に、基板を固定
支持するステンレス鋼などの材質からなる治具などに微
量に吸着されている研磨液,洗剤などの残渣が純水を介
して基板表面に強固に再付着し、精密洗浄を行っても完
全には除去できない場合が生じ、一定条件で精密洗浄を
行っても基板表面の清浄度にばらつきが生じる。また、
このような付着物が精密洗浄後の基板乾燥時,さらに続
いて行われるスパッタリング時に基板表面の酸化(Niの
酸化)を誘発する。このように表面状態にばらつきのあ
る基板表面に非磁性金属下地層,例えばCr下地層をスパ
ッタ成膜すると結晶成長による表面微小突起の均一な形
成が阻害され、その上に磁性層,保護層を成膜積層して
媒体を作製しても、同一媒体内あるいは媒体間において
ばらつきのない均一な微小突起の形成された一定の表面
粗度が得られないという問題が生じ、かつ、磁性層の均
一な結晶成長が阻害されて高保磁力角形比,高角形比を
得ることができないという問題があった。
However, in the above-mentioned conventional method, during the immersion storage of the substrate in still pure water before precision cleaning, particularly when the storage is performed for a long period (for example, 12 hours or more), the stainless steel for fixing and supporting the substrate is used. Residues such as polishing liquid and detergent adsorbed in trace amounts on jigs made of steel and other materials strongly adhere to the substrate surface via pure water and cannot be completely removed even after precision cleaning. This causes variations in the cleanliness of the substrate surface even when precision cleaning is performed under certain conditions. Also,
Such deposits induce oxidation of the substrate surface (oxidation of Ni) at the time of drying the substrate after precision cleaning and at the time of the subsequent sputtering. When a nonmagnetic metal underlayer, for example, a Cr underlayer is formed by sputtering on a substrate surface having a variation in surface state, uniform formation of surface microprojections due to crystal growth is hindered, and a magnetic layer and a protective layer are formed thereon. Even if the medium is manufactured by film deposition and lamination, there arises a problem that a constant surface roughness in which uniform fine projections are formed without variation within the same medium or between the media cannot be obtained, and the uniformity of the magnetic layer There is a problem that a high coercive force squareness ratio and a high squareness ratio cannot be obtained due to hindered crystal growth.

この発明は、上述の問題点を解消して、同一媒体内お
よび媒体間でばらつきのない均一な表面微小突起を有す
る表面粗度で、かつ、高保磁力角形比,高角形比の薄膜
磁気記録媒体の製造方法を提供することを解決しようと
する課題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a thin film magnetic recording medium having a high surface roughness and a high coercivity squareness ratio and a high squareness ratio having uniform surface minute projections within the same medium and between media. An object of the present invention is to provide a manufacturing method of the present invention.

〔課題を解決するための手段〕 上記の課題は、この発明によれば、非磁性基板表面に
微細粗面化加工を施し、その非磁性基板表面上にスパッ
タ法により非磁性金属下地層,連続薄膜磁性層,保護層
を順次形成する薄膜磁気記録媒体の製造方法において、
前記微細粗面化加工後の非磁性基板をスパッタ成膜前の
精密洗浄工程まで純水流水中に前記基板表面に対して純
水が激しく流動していて常に清浄な純水が接触する状態
で保管する工程を含む製造方法とすることによって解決
される。
[Means for Solving the Problems] According to the present invention, according to the present invention, a non-magnetic substrate surface is finely roughened and a non-magnetic metal base layer is formed on the non-magnetic substrate surface by sputtering. In a method of manufacturing a thin film magnetic recording medium in which a thin film magnetic layer and a protective layer are sequentially formed,
In a state where pure water is flowing violently against the substrate surface in pure water running water until the precision cleaning step before sputter film formation on the non-magnetic substrate after the fine surface roughening processing, and pure pure water is always in contact therewith. The problem is solved by a manufacturing method including a step of storing.

純水流水中に保管している非磁性基板表面に対して純
水を激しく流動していて常に清浄な純水が接触する状態
を実現するためには、純水を流しながら基板表面近傍で
不活性ガスによるバブリングを行うことが好適である。
また、基板表面近傍で純水を攪拌してもよい。
In order to realize a state in which pure water is flowing violently against the surface of the non-magnetic substrate stored in running pure water and clean pure water is always in contact with the surface, it is necessary to use pure water near the surface of the substrate while flowing pure water. It is preferable to perform bubbling with an active gas.
Further, pure water may be stirred near the substrate surface.

バブリングを行う不活性ガスとしては窒素(N2)ガス
が好適に用いられる。
Nitrogen (N 2 ) gas is preferably used as the inert gas for bubbling.

〔作用〕[Action]

上述のように、非磁性基板を純水流水中に、その表面
に対して純水が激しく流動していて常に清浄な純水が接
触する状態で浸漬保管することにより、保管中に基板表
面が汚染されるのを防ぐことができ、スパッタ成膜直前
に所要の一定条件での精密洗浄を行うことにより、基板
表面は均一に極めて高い清浄度に洗浄されることにな
り、また、基板表面が局部的に異常に酸化されることも
なくなる。従って、引き続いてその基板表面に非磁性金
属下地層をスパッタ成膜すると結晶成長による表面微小
突起が均一に形成されることになり、その上に磁性層,
保護膜を形成して得られる媒体は、同一媒体内はもちろ
ん媒体間でもばらつきのない均一な表面微小突起の形成
された一定の表面粗度を有することになる。
As described above, the nonmagnetic substrate is immersed in pure water under flowing water, and the surface of the substrate is immersed and kept in contact with pure water, which is intensely flowing on the surface, so that the substrate surface can be stored during storage. It is possible to prevent contamination, and by performing precise cleaning under the required constant conditions immediately before film formation by sputtering, the substrate surface will be uniformly and extremely cleanly cleaned, and No local abnormal oxidation occurs. Therefore, when a nonmagnetic metal base layer is subsequently formed by sputtering on the substrate surface, fine surface projections due to crystal growth are formed uniformly, and the magnetic layer and
The medium obtained by forming the protective film has a constant surface roughness on which uniform surface minute projections are formed without variation within the same medium or between media.

また、磁性層成膜時の結晶成長も均一となり、所要の
一定の結晶状態を得ることができ、高保磁力角形比,高
角形比の媒体を得ることが可能となる。
Further, the crystal growth during the formation of the magnetic layer becomes uniform, a required constant crystal state can be obtained, and a medium having a high coercive force square ratio and a high square shape ratio can be obtained.

〔実施例〕〔Example〕

第1図は、この発明の製造方法に用いる純水浸漬保管
装置の一実施例の概念図で、第1図(a)は保管される
基板を側面からみる断面図であり、第1図(b)は第1
図(a)のX−X断面図である。第1図において、浸漬
される基板1はステンレス製の治具2に保持され保管槽
3内に浸漬保管される。純水は純水供給管4より矢印A,
矢印Bに示すように保管槽3内に流入し、オーバーフロ
ー部6より矢印Cに示すように流出する。また、N2ガス
供給管5より矢印D,矢印Eに示すようにN2ガスが送り込
まれ保管槽3内の純水中に噴出する。このN2ガスにより
バブル状態が生じ、基板2の表面に接する純水が激しく
流動し常に清浄な新しい純水が接する状態が実現でき
る。
FIG. 1 is a conceptual diagram of one embodiment of a pure water immersion storage device used in the manufacturing method of the present invention. FIG. 1 (a) is a cross-sectional view of a substrate to be stored viewed from a side. b) is the first
It is XX sectional drawing of figure (a). In FIG. 1, a substrate 1 to be immersed is held by a jig 2 made of stainless steel and immersed and stored in a storage tank 3. Pure water is supplied from pure water supply pipe 4 by arrows A,
It flows into the storage tank 3 as shown by the arrow B, and flows out from the overflow part 6 as shown by the arrow C. An arrow D from N 2 gas supply pipe 5 is fed the N 2 gas as indicated by the arrow E ejected in the pure water in the storage tank 3. A bubble state is generated by the N 2 gas, and pure water in contact with the surface of the substrate 2 flows violently, so that a state where pure new pure water always contacts can be realized.

上述のような、純水が流れオーバーフローしている保
管装置中にN2ガスでバブリングを行いながら12時間浸漬
保管した基板に精密洗浄を施し、続いて、スパッタ成膜
法によりCr下地層,Co合金磁性層,a−C保護層を積層形
成して実施例の媒体を作製した。
As described above, the substrate that has been immersed and stored for 12 hours while performing bubbling with N 2 gas in a storage device in which pure water is overflowing is subjected to precision cleaning, and then a Cr underlayer, Co The medium of the example was manufactured by laminating an alloy magnetic layer and an aC protective layer.

比較のために、従来の静止純水中浸漬保管方法で12時
間保管した基板を用い、その他は実施例と同様にして比
較例の媒体を作製した。
For comparison, a medium of a comparative example was prepared in the same manner as in the example, except that a substrate stored for 12 hours by the conventional method of immersion in still pure water was used.

このようにして得られた媒体について、それぞれの表
面粗度プロファイルを調べた結果を第2図に示す。第2
図(a)は実施例の媒体,第2図(b)は比較例の媒体
についてのプロファイルを示す。第2図より比較例に比
べて実施例の媒体表面の方が表面微小突起が均一に形成
されていることが判る。
FIG. 2 shows the results of examining the surface roughness profiles of the media thus obtained. Second
FIG. 2A shows the profile of the medium of the embodiment, and FIG. 2B shows the profile of the medium of the comparative example. From FIG. 2, it can be seen that the surface microprojections are formed more uniformly on the medium surface of the example than in the comparative example.

また、これらの媒体について、表面粗度パラメータΔ
Cv(10%−1%)を測定した結果を第3図に示す。第3
図より、実施例はΔCv(10%−1%)の平均値は166μ
mと大きく、そのばらつきは28μmと少なく、均一な表
面微小突起を有する表面粗度を呈するが、比較例はΔCv
(10%−1%)の平均値は107μmと小さく、そのばら
つきが86μmと大きく均一な表面微小突起が形成されて
いないことが判る。
For these media, the surface roughness parameter Δ
The results of measuring Cv (10% -1%) are shown in FIG. Third
From the figure, the average value of ΔCv (10% -1%) is 166 μm in the example.
m, the variation is as small as 28 μm, and the surface exhibits a uniform surface roughness with fine projections.
The average value of (10% -1%) is as small as 107 μm, and the variation is as large as 86 μm. Thus, it can be seen that uniform fine surface projections are not formed.

第2図および第3図より、実施例の保管方法が優れて
いることは明らかである。
2 and 3, it is clear that the storage method of the embodiment is excellent.

次に、これらの媒体について、磁気特性を測定した。
その結果を第1表に示す。
Next, the magnetic properties of these media were measured.
Table 1 shows the results.

第1表に見られるとおり、実施例の媒体が比較例の媒
体よりも角形比S,保磁力角形比Sが高く、磁気特性の
面でも実施例の保管方法が優れていることが判る。
As can be seen from Table 1, the medium of the example has a higher squareness ratio S and coercive force squareness ratio S * than the medium of the comparative example, and it can be seen that the storage method of the example is excellent also in terms of magnetic properties.

〔発明の効果〕〔The invention's effect〕

この発明によれば、薄膜磁気記録媒体の製造方法にお
いて、表面微細加工後の非磁性基板を精密洗浄工程直前
まで純水流水中にその表面に対して純水が激しく流動し
て常に清浄な純水が接触する状態で浸漬保管する。
According to the present invention, in the method for manufacturing a thin-film magnetic recording medium, pure water flows violently against the surface of pure non-magnetic substrate having been subjected to surface microfabrication in running pure water until immediately before the precision cleaning step, so that pure non-magnetic substrate is always cleaned. Store immersed in water.

このような方法で保管された非磁性基板を用いて媒体
を製造することにより、同一媒体内ではもちろん媒体間
においてもばらつきの小さい均一な表面微小突起を有す
る表面粗度で、かつ、高保磁力角形比,高角形比の媒体
が得られることになる。
By manufacturing a medium using a non-magnetic substrate stored in such a manner, the surface roughness has uniform surface minute projections with small variations within the same medium and between media, and a high coercive force square. A medium having a high ratio and a high squareness ratio can be obtained.

特に、精密洗浄前の基板の保管期間が長時間(例えば
12時間以上)にわたる場合にも、上述のような良好な表
面粗度および優れた磁気特性の媒体を得ることが可能
で、媒体製造上、基板の保管期間による制約が少なくな
るという大きな効果も得られる。
In particular, the storage period of the substrate before precision cleaning is long (for example,
In the case of over 12 hours), it is possible to obtain a medium having the above-mentioned good surface roughness and excellent magnetic properties, and to obtain a great effect that the restrictions imposed by the storage period of the substrate are reduced in manufacturing the medium. Can be

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の製造方法に用いる純水浸漬保管装置
の一実施例の概念図、第2図は媒体の表面粗度のプロフ
ァイルを示す線図で、第2図(a)は実施例の媒体に関
する線図、第2図(b)は比較例の媒体に関する線図、
第3図は実施例および比較例の媒体の表面粗度パラメー
タΔCv(10%−1%)の平均値およびばらつきをそれぞ
れ示す線図である。 1……基板、2……治具、3……保管槽、4……純水供
給管、5……N2ガス供給管、6……オーバーフロー部。
FIG. 1 is a conceptual diagram of one embodiment of a pure water immersion storage device used in the manufacturing method of the present invention, FIG. 2 is a diagram showing a profile of a surface roughness of a medium, and FIG. FIG. 2 (b) is a diagram relating to a medium of a comparative example,
FIG. 3 is a diagram showing the average value and variation of the surface roughness parameter ΔCv (10% -1%) of the media of the example and the comparative example, respectively. 1 ...... substrate, 2 ...... jig, 3 ...... storage tank, 4 ...... pure water supply pipe, 5 ...... N 2 gas feed pipe, 6 ...... overflow part.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非磁性基板表面に微細粗面化加工を施し、
その非磁性基板表面上にスパッタ法により非磁性金属下
地層,連続薄膜磁性層,保護層を順次形成する薄膜磁気
記録媒体の製造方法において、前記微細粗面化加工後の
非磁性基板をスパッタ成膜前の精密洗浄工程まで純水流
水中に前記基板表面に対して純水が激しく流動していて
常に清浄な純水が接触する状態で保管する工程を含むこ
とを特徴とする薄膜磁気記録媒体の製造方法。
1. A non-magnetic substrate surface is subjected to a fine roughening process,
In a method of manufacturing a thin-film magnetic recording medium in which a non-magnetic metal base layer, a continuous thin-film magnetic layer, and a protective layer are sequentially formed on the non-magnetic substrate surface by a sputtering method, the non-magnetic substrate after the micro-roughening is sputtered. A thin film magnetic recording medium comprising a step of storing pure water in a state where pure water is flowing violently with respect to the substrate surface in pure water running water until a precise cleaning step before the film is kept in contact with pure water. Manufacturing method.
【請求項2】純水流水中に保管している非磁性基板表面
に対して純水を激しく流動させ常に清浄な純水を接触さ
せるために、前記基板表面近傍で不活性ガスによるバブ
リングを行いながら保管することを特徴とする請求項1
記載の薄膜磁気記録媒体の製造方法。
2. Bubbling with an inert gas in the vicinity of the substrate surface in order to vigorously flow the pure water on the surface of the non-magnetic substrate stored in the running pure water so as to always contact the pure water. 2. The method according to claim 1, wherein:
The manufacturing method of the thin film magnetic recording medium according to the above.
【請求項3】バブリングを行う不活性ガスとして窒素
(N2)ガスを用いることを特徴とする請求項2記載の薄
膜磁気記録媒体の製造方法。
3. The method according to claim 2 , wherein a nitrogen (N 2 ) gas is used as an inert gas for bubbling.
JP23078890A 1990-04-04 1990-09-01 Method for manufacturing thin-film magnetic recording medium Expired - Lifetime JP2621616B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-89424 1990-04-04
JP8942490 1990-04-04

Publications (2)

Publication Number Publication Date
JPH041927A JPH041927A (en) 1992-01-07
JP2621616B2 true JP2621616B2 (en) 1997-06-18

Family

ID=13970281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23078890A Expired - Lifetime JP2621616B2 (en) 1990-04-04 1990-09-01 Method for manufacturing thin-film magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2621616B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5071784B2 (en) * 2007-07-12 2012-11-14 富士電機株式会社 Method of cleaning substrate for magnetic recording medium and method of manufacturing magnetic recording medium
JP2010225240A (en) * 2009-03-24 2010-10-07 Showa Denko Kk Method for manufacturing disk-shaped substrate, and housing fixture for disk-shaped substrate

Also Published As

Publication number Publication date
JPH041927A (en) 1992-01-07

Similar Documents

Publication Publication Date Title
US7238384B2 (en) Substrate for perpendicular magnetic recording hard disk medium and method for producing the same
JP2000048347A (en) Memory disk, manufacture of memory disk and driving device of memory disk
Johnson et al. Thin-film media—current and future technology
US6316097B1 (en) Electroless plating process for alternative memory disk substrates
TW200534246A (en) Substrate for a perpendicular magnetic recording medium and a perpendicular magnetic recording medium using the substrate
JP2621616B2 (en) Method for manufacturing thin-film magnetic recording medium
US7361419B2 (en) Substrate for a perpendicular magnetic recording medium, perpendicular magnetic recording medium, and manufacturing methods thereof
JP2005044488A (en) Substrate for magnetic recording medium, method for manufacturing magnetic recording medium, and substrate cleaning device
JPH05143972A (en) Metal thin film magnetic recording medium and its production
US8101049B2 (en) Method for producing low cost media
JP5115854B2 (en) Manufacturing method of magnetic disk
JP2009064524A (en) Substrate for magnetic disk, and magnetic disk
JP2007091478A (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JPH05342532A (en) Production of thin-film magnetic disk
JP3010599B2 (en) Method for manufacturing thin-film magnetic recording medium
JP2006099813A (en) Method for manufacturing magnetic recording medium substrate, and method for manufacturing magnetic recording medium using the same
JP3156314B2 (en) Method of manufacturing thin film magnetic recording medium
JP2010086606A (en) Magnetic transfer method and magnetic recording medium
JP2004342155A (en) Perpendicular magnetic recording medium
JPH11353647A (en) Disk processor
JP3606106B2 (en) Magnetic recording medium and method for manufacturing the same
JPH07272263A (en) Magnetic disk
JP2005092924A (en) Perpendicular magnetic recording medium and device
JP2007184099A (en) Magnetic disk
JP2004127493A (en) Magnetic disk