JPH03192405A - Digitized data error correcting device for digitizing device - Google Patents

Digitized data error correcting device for digitizing device

Info

Publication number
JPH03192405A
JPH03192405A JP33322189A JP33322189A JPH03192405A JP H03192405 A JPH03192405 A JP H03192405A JP 33322189 A JP33322189 A JP 33322189A JP 33322189 A JP33322189 A JP 33322189A JP H03192405 A JPH03192405 A JP H03192405A
Authority
JP
Japan
Prior art keywords
shape
data
correction
model
processing part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33322189A
Other languages
Japanese (ja)
Inventor
Yasumichi Touno
東野 靖道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP33322189A priority Critical patent/JPH03192405A/en
Publication of JPH03192405A publication Critical patent/JPH03192405A/en
Pending legal-status Critical Current

Links

Landscapes

  • Machine Tool Copy Controls (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To correct the error of digitized data as the displace output of a tracer head at a part, where a shape is abruptly changed, and to enable error correction with high accuracy by providing an abruptly shape changing point decision processing part and a correction amount calculation processing part. CONSTITUTION:An abruptly shape changing point decision processing part 110 reads a displace amount SA from a tracer head 5 and according to the change rate of the read displace amount, it is decided whether the shape is abruptly changed at the that point or not. A correction amount calculation processing part 120 calculates a correction value based on data SC of X, Y and Z axes in the model shape, to which a delay processing is executed by a detection data processing part 100, and the output of the the abruptly shape changing point decision processing part 110, and the correction value is added to the model shape data SC to which the delay processing is executed. At a digitizing data processing part 6, a tolerance processing, etc., is executed to corrected model shape data SD and the data are compressed and transformed to a numerical value control program form. Thus, at the point where the shape is abruptly changed, the correction can be executed with high accuracy corresponding to a characteristic and scanning velocity provided for a stylus.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はモデル表面をスキャニングして得られる各軸の
変位量と各軸の位置検出値とをそれぞれ加算することに
よりモデル形状データとするデジタイジング装置におけ
る改良されたデジタイズデータの誤差補正装置に関する
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a digitizing device that generates model shape data by adding the displacement amount of each axis obtained by scanning the model surface and the detected position value of each axis. This invention relates to an improved digitized data error correction device.

従来の技術 デジタイジング装置におけるトレーサヘッドの動作遅れ
補正装置は出願人が先に堤案じた特開平1−16454
2号が知られている。このものはモデル表面をスキャニ
ングするトレーサヘッドがモデルの形状急変部(第4図
)において物理的な動作遅れに起因して完全に追従でき
ないことから発生゛する誤差(第5図)を補正するよう
になしたものである。すなわちトレーサヘッドがスキャ
ニングして得られる各軸の変位量及び各軸の位置検出値
から前記モデルの形状データを得る際に各軸の変位量及
び各軸の位置検出値に含まれるトレーサヘッドの動作遅
れを補正するために各軸の変位量をそれぞれ遅延処理し
て各軸間の動作遅れの差を補正する遅延手段と、各軸の
位置検出値をそれぞれ遅延処理して各軸の変位量との遅
れ時間を合わせるように補正する遅延手段とを有し、補
正された各軸の変位量及び補正された各軸の位置検出値
をそれぞれ加算する加算手段とさらに加算された各軸の
データのそれぞれの振動成分を除去するフィルタ手段と
で構成されたものであって、−名筆8図のようにほぼ満
足すべき成果を得た。
Conventional technology A tracer head movement delay correction device in a digitizing device is disclosed in Japanese Patent Application Laid-Open No. 1-16454, which was previously proposed by the applicant Tsutsumi.
No. 2 is known. This is designed to correct the error (Fig. 5) that occurs when the tracer head that scans the model surface cannot completely follow the part of the model that suddenly changes shape (Fig. 4) due to physical movement delay. This is what was done. In other words, when obtaining the shape data of the model from the displacement amount of each axis and the detected position value of each axis obtained by scanning the tracer head, the movement of the tracer head included in the displacement amount of each axis and the detected position value of each axis. A delay means for correcting the difference in operation delay between each axis by delay processing the displacement amount of each axis in order to correct the delay, and a delay means for correcting the difference in operation delay between each axis, and delay processing for the position detection value of each axis to calculate the displacement amount of each axis. a delay means for correcting to match the delay time of each axis, an adding means for adding the corrected displacement amount of each axis and the corrected position detection value of each axis, and a delay means for adding the corrected displacement amount of each axis and the corrected position detection value of each axis, and It is composed of filter means for removing each vibration component, and almost satisfactory results were obtained as shown in Fig. 8 of the masterpiece.

発明が解決しようとする課題 しかし形状急変点の振動分が完全に補正されたものでな
いため、小径スタイラス或いは長尺スクイラスのように
大きな誤差が発生し易い場合には残りの振動分が拡大さ
れて誤差が大きくなり、さらにより高い精度が要求され
る場合では微小振動分を補正する必要があり、上記手段
のみでは充分に満足できる迄補正することができないと
いう問題が生じた。
Problem to be Solved by the Invention However, since the vibration component at the point of sudden shape change is not completely corrected, the remaining vibration component is magnified when large errors are likely to occur, such as with a small diameter stylus or a long stylus. When the error becomes large and even higher precision is required, it is necessary to correct the minute vibration component, and a problem arises in that the above-mentioned means alone cannot sufficiently correct the vibration.

本発明は従来の技術の有するこのような問題点に鑑みな
されたものであって、その目的とするところは形状急変
部におけるトレーサヘッドの変位出力の振動によるデジ
タイズデータの誤差をより充分に補正し高精度な誤差補
正装置を徒供しようとするものである。
The present invention has been made in view of the above-mentioned problems of the conventional technology, and its purpose is to more fully correct errors in digitized data caused by vibrations in the displacement output of the tracer head at parts with sudden shape changes. This is an attempt to develop a highly accurate error correction device.

課題を解決するための手段 上述の目的を達成するために本発明はデジタイジング装
置において、トレーサヘッドでモデル表面をスキャニン
グして得られる出力信号から形状急変点を判定する形状
急変点判定処理部と、該形状急変点判定処理部の出力と
前記各軸の変位量及び前記各軸の位置検出値にもとづい
て得た前記モデルの形状データとにより該データに対す
る急変点の誤差補正量を演算し加算処理により補正され
たモデル形状データを作成する補正量演算処理部とを含
んでなるものである。そしてデジタイジング装置の自動
たわみ補正動作によって決定された係数を用いる補正式
によって誤差補正量を演算することか好ましい。
Means for Solving the Problems In order to achieve the above-mentioned object, the present invention provides a digitizing device that includes a shape sudden change point determination processing unit that determines a shape sudden change point from an output signal obtained by scanning a model surface with a tracer head. , calculating and adding an error correction amount of a sudden change point for the data based on the output of the sudden shape change point determination processing unit and the shape data of the model obtained based on the displacement amount of each axis and the detected position value of each axis; and a correction amount calculation processing section that creates model shape data corrected through processing. Preferably, the error correction amount is calculated using a correction formula using coefficients determined by the automatic deflection correction operation of the digitizing device.

作用 トレーサヘッドがスキャニング中のモデル急変点で各軸
の変位量の変動により形状急変点を判定し、その出力と
前記各軸の変位量と位置検出値からのモデル形状データ
とによりモデル形状データに対する誤差補正量を算出し
加算処理によりモデルの補正されたNC加工用データを
得るものである。
The action tracer head determines the sudden shape change point based on the change in the displacement amount of each axis at the sudden change point of the model during scanning, and uses the output and the model shape data from the displacement amount of each axis and the detected position value to determine the model shape data. The error correction amount is calculated and addition processing is performed to obtain corrected data for NC machining of the model.

実施例 以下第1図、第2図にもとづいて説明する。Example The following description will be made based on FIGS. 1 and 2.

公知のデジタイザにおいてヘッド1上でX軸方向に移動
制御n可能に載置されたテーブルにはモデルMが固定さ
れている。ヘッドの両脇に設立されたコラム3のトップ
ビーム4にはトレーサヘッド5がモータ6によって回転
される図示しない送りねじでX軸方向に移動制御され、
モデルM上をスキャニングされその位置は位置検出器7
によって位置検出値SBが出力される。さらにテーブル
2のX軸位置、トレーサヘッド5のZ軸位置の検出を行
うがトレーサヘッド5はモデルM上を倣うスタイラスを
有してX、Y、Z軸方向の変位量SAが出力される。そ
して変位量SA、位置検出値SBにもとづいてモータ6
等を駆動し、またたわみ率演算処理部を有するデジタイ
ジング制御装置9が設けられている。さらにトレーサヘ
ッド5からの変位1isAと位置検出器7等からの位置
検出値SBより、モデル形状データSCを作成する検出
データ処理部100と、トレーサヘッド5の変位量SA
からモデルの形状が急変する位lを判定する形状急変点
判定処理部110と、検出データ処理部100のモデル
形状データSCと形状急変点判定処理部110の出力と
によりSCに対する誤差補正量を演算し加算処理により
補正したモデル形状データSDを作成する補正量演算処
理部120と、補正されたモデル形状データSDをトレ
ランス処理等により圧縮して数値制御プログラム形式に
変換し補助記憶装置11に出力するデジタイズデータ処
理部10とが備えられている。
In a known digitizer, a model M is fixed to a table placed on a head 1 so as to be movable and controllable in the X-axis direction. A tracer head 5 is mounted on the top beam 4 of the column 3 installed on both sides of the head, and is controlled to move in the X-axis direction by a feed screw (not shown) rotated by a motor 6.
The model M is scanned and its position is detected by the position detector 7.
The position detection value SB is output. Furthermore, the X-axis position of the table 2 and the Z-axis position of the tracer head 5 are detected, and the tracer head 5 has a stylus that traces the top of the model M, and the displacement SA in the X, Y, and Z axis directions is output. Then, based on the displacement SA and the detected position value SB, the motor 6
A digitizing control device 9 is provided which drives the components and has a deflection rate calculation processing section. Further, from the displacement 1isA from the tracer head 5 and the position detection value SB from the position detector 7 etc., a detection data processing unit 100 that creates model shape data SC, and a displacement amount SA of the tracer head 5 are provided.
A sudden shape change point determination processing section 110 determines the extent l at which the shape of the model suddenly changes from 1 to 2, and an error correction amount for SC is calculated using the model shape data SC of the detected data processing section 100 and the output of the sudden shape change point determination processing section 110. A correction amount calculation processing unit 120 creates model shape data SD corrected by addition processing, and compresses the corrected model shape data SD by tolerance processing etc., converts it into a numerical control program format, and outputs it to the auxiliary storage device 11. A digitized data processing section 10 is also provided.

検出データ処理部100は特開平1−164542号に
示す遅延回路と加算器とで構成されている。すなわちト
レーサヘッド5からのx、y、z軸の変位量を遅延処理
する第1遅延回路群と位置検出器のX軸Y軸Z軸の位置
検出値を遅延処理する第2遅延回路群と、第1.第2遅
延回路群のデータをそれぞれ加算する加算器とで構成さ
れている。
The detected data processing section 100 is composed of a delay circuit and an adder as disclosed in Japanese Patent Application Laid-Open No. 1-164542. That is, a first delay circuit group that delays the displacement amounts of the x, y, and z axes from the tracer head 5, and a second delay circuit group that delays the position detection values of the X, Y, and Z axes of the position detector; 1st. and an adder that adds the data of the second delay circuit group, respectively.

形状急変判定処理部110はトレーサヘッド5からの変
位IsAを読込む変位N読込部111と、読込んだ変位
量の変化率より形状急変点か否かを判定する形状急変検
出部112と、基準値以上の変化率が発生した場合−時
停止し正しい動作をし直す、形状急変処理部113と形
状急変点の不要データを削除する形状急変データ削除部
114とで構成されている。
The sudden shape change determination processing section 110 includes a displacement N reading section 111 that reads the displacement IsA from the tracer head 5, a sudden shape change detection section 112 that determines whether or not it is a sudden shape change point based on the rate of change of the read displacement amount, and a reference. It is comprised of a sudden shape change processing section 113 that stops when a rate of change greater than the value occurs and restarts the correct operation, and a sudden shape change data deletion section 114 that deletes unnecessary data at sudden shape change points.

補正量演算処理部120は検出データ処理部100で遅
延処理されたモデル形状のX、Y、Z軸のデータSCと
形状急変点判定処理部110の出力とにもとづき補正値
を計算する補正量演算部121と補正量演算部の補正値
を遅延処理されたモデル形状データSCに加算する補正
量加算器122とで構成されている。
The correction amount calculation processing section 120 calculates a correction value based on the data SC of the X, Y, and Z axes of the model shape delayed by the detection data processing section 100 and the output of the sudden shape change point determination processing section 110. 121 and a correction amount adder 122 that adds the correction value of the correction amount calculation section to the delayed model shape data SC.

形状急変部の誤差特性は時間とともに減衰する正弦波で
表現することができる(第7図)ことが実験データより
判明している。そしてスタイラスの形状によって周波数
に対するゲインがスキャニング速度によって異なること
が判明しているが、あらかじめ各種形状のスタイラスで
スキャニング速度を変えて形状急変部の出力特性を測定
することによりスタイラスのたわみ率(剛性)とスキャ
ニング速度をパラメータとする補正式を決定することが
できる。たわみ率はたわみ量をデジタイジング装置のも
つ自動たわみ補正機能(基準ブロックにスタイラスを接
触させ、一定の変位出力分だけ押しつけて、その時の検
出器の変化量とトレーサヘッドの変位出力の変化量比を
補正値とする機能)によって測定することにより決定し
、その時のスキャニング速度はわかっているので以下の
補正式より補正量の算出ができる。 補正式は次式で表
すことができる。
It has been found from experimental data that the error characteristics of a sudden change in shape can be expressed by a sine wave that attenuates over time (Fig. 7). It has been found that the gain with respect to frequency differs depending on the scanning speed depending on the shape of the stylus, but by changing the scanning speed with styli of various shapes and measuring the output characteristics of the part where the shape suddenly changes, we can calculate the deflection rate (rigidity) of the stylus. A correction formula can be determined using the scanning speed and scanning speed as parameters. The deflection rate is determined by the automatic deflection correction function of the digitizing device (the stylus is brought into contact with the reference block and pressed by a certain amount of displacement output, and the ratio of the amount of change in the detector to the amount of change in the displacement output of the tracer head at that time) Since the scanning speed at that time is known, the correction amount can be calculated using the following correction formula. The correction formula can be expressed by the following formula.

Δ−Kl(δ)・Kz(V)拳Ks(t)K4−3in
 (ωt)Kl(δ)ニスタイラスのたわみ率で決定す
る係数 に2(V)ニスキャニング速度で決定する係数に3(t
)  :減衰係数 に、   :モデル形状によって決定する係数(各軸変
位量比率) ω−2πδ、δニスタイラスのたわみ率(剛性によって
決定する係数) なおフィルタ処理の変わりに、出力信号と検出器出力+
変位出力+Δとすることにより補正量を実測データより
算出した係数より演算して応答性を犠牲にすることなく
高精炭な補正が可能となる。
Δ-Kl(δ)・Kz(V)Ks(t)K4-3in
(ωt) Kl (δ) 2 (V) for the coefficient determined by the deflection rate of the Ni stylus; 3 (t) for the coefficient determined by the Niscanning speed.
) : damping coefficient, : coefficient determined by model shape (displacement ratio of each axis) ω-2πδ, δ deflection rate of stylus (coefficient determined by rigidity) Note that instead of filter processing, output signal and detector output +
By setting the displacement output to +Δ, the correction amount is calculated from the coefficient calculated from the actual measurement data, and it becomes possible to perform highly refined correction without sacrificing responsiveness.

次にデジタイズデータ作成のフローチャートの第3図に
もとづき説明する。
Next, a description will be given based on FIG. 3, which is a flowchart for creating digitized data.

ステップS1において自動たわみ補正動作を実行してデ
ジタイジング制御装置5のたわみ率演算処理部でスタイ
ラス8のたわみ率を測定する。
In step S1, an automatic deflection correction operation is executed, and the deflection rate of the stylus 8 is measured by the deflection rate calculation processing section of the digitizing control device 5.

ステップS2においてたわみ補正値に等しいKたわみ補
正値により決定され、あらかじめ測定された経験値であ
るKs、ωを自動たわみ補正実行時にデジタイジング制
御装置9内のたわみ率演算処理部で演算しパラメータと
してデジタイジング制御装置9のメモリに記憶させる。
In step S2, Ks, ω, which is determined by the K deflection correction value which is equal to the deflection correction value, and which is a previously measured empirical value, is calculated by the deflection rate calculation processing section in the digitizing control device 9 when automatic deflection correction is executed, and is used as a parameter. It is stored in the memory of the digitizing control device 9.

ステップS3においてモータ6等を駆動してトレーサヘ
ッド5でモデルM上をスキャニングさせる。
In step S3, the motor 6 and the like are driven to scan the model M with the tracer head 5.

ステップS4において形状急変点判定処理部110に入
力されたモデル形状データSAの変位量の変化率により
形状急変点であるかどうかの判定を行う。ここでYES
であれば ステップS5において形状急変点のデータ削除かを判定
する。NOであればステップS6において経験した出力
信号の変動をもとにパラメータで決定した減衰時間また
は減衰距離の補正範囲内かの判定を行う。 YESであ
れば ステップS7において、スキャニング速度によって左右
される誤差量の大きさを補正する係数であるに2をあら
かじめの測定された経験値にもとづいて補正量演算処理
部120の補正量演算部122においてその時の各軸の
スキャニング速度により算出記憶する。また補正量演算
処理部120においてその時の変位量出力に対する各軸
の変位量出力の比としてに4を算出し記憶する。
In step S4, it is determined whether or not it is a sudden shape change point based on the rate of change in the amount of displacement of the model shape data SA input to the shape sudden change point determination processing section 110. YES here
If so, it is determined in step S5 whether the data at the sudden shape change point is to be deleted. If NO, it is determined in step S6 whether the attenuation time or attenuation distance is within the correction range determined by the parameters based on the fluctuation of the output signal experienced. If YES, in step S7, the correction amount calculation section 122 of the correction amount calculation processing section 120 calculates 2, which is a coefficient for correcting the magnitude of the error amount depending on the scanning speed, based on the previously measured empirical value. The calculation is then stored based on the scanning speed of each axis at that time. Further, the correction amount calculation processing section 120 calculates and stores 4 as the ratio of the displacement amount output of each axis to the displacement amount output at that time.

ステップS8において前記の補正量Δ=に、(δ)・K
g(V)  ・Ks(t) ’ Ka  ・5in(ω
t)により補正量Δを算出記憶する。
In step S8, the correction amount Δ=(δ)・K
g(V) ・Ks(t) ' Ka ・5in(ω
t), the correction amount Δ is calculated and stored.

ステップS9において検出器7の出力とトレーサヘッド
5の出力にもとづいて作成されたモデル形状データに補
正量Δをさらに加算する。
In step S9, a correction amount Δ is further added to the model shape data created based on the output of the detector 7 and the output of the tracer head 5.

ステップ310においてデジタイジングデータ処理部6
において、補正されたモデル形状データSDにトレーラ
ンス処理等を行って圧縮して数値制御プログラム形式に
変換する。
In step 310, the digitizing data processing unit 6
In the step, the corrected model shape data SD is subjected to tolerance processing and the like, compressed, and converted into a numerical control program format.

ステップSllにおいて変換値を補助記憶装置7に記憶
させる。
The converted value is stored in the auxiliary storage device 7 in step Sll.

先のステップS4において形状急変点であるか、どうか
の判定でNoであるか、またステ・ツブS6において補
正範囲内かでNoである場合は補正過程が不要としてス
テップSIOに移行する。またステップS5においてY
ESであればステップS12に移行する。
If the determination in step S4 is "No" in the previous step S4 as to whether the shape is a sudden change point, and if the determination in step S6 is "no" in the correction range, the correction process is deemed unnecessary and the process moves to step SIO. Also, in step S5, Y
If it is ES, the process moves to step S12.

ステップS12においてモデルM上のスキャニングが全
範囲終了かが比較されYESであれば修了となりNoで
あればステップS4に移行して再度補正過程を実行する
In step S12, a comparison is made to see if the scanning on the model M has been completed over the entire range. If YES, it is completed, and if NO, the process moves to step S4 and the correction process is executed again.

効果 上述のように樽成したので本発明は以下の効果を奏する
Effects Since the invention has been achieved as described above, the present invention has the following effects.

形状急変点において、スタイラスのもつ特性及びスキャ
ニング速度に対応した精度の高い補正が可能となり、ス
キャニングの指令速度を高めることでき、NCデータの
精度が向上しろるとともにモデル形状のデータの採取時
間を短縮することができるものである。
At sudden shape change points, highly accurate correction corresponding to the characteristics of the stylus and scanning speed is possible, increasing the scanning command speed, improving the accuracy of NC data, and shortening the time to collect model shape data. It is something that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のデジタイジング装置におけるトレーサ
ヘッド動作遅れ補正装置のブロック図、第2図は補正量
演算処理部、形状急変点判定処理部のブロック図、第3
図はデジタイズデータ作成のフロー図、第4図はモデル
形状急変点を示す図、第5図は第4図におけるデジタイ
ジング出力信号の図、第6図はフイーラが壁衝突時の検
出器出力及び出力時間との関係を示す図、第7図は検出
器出力+変位出力と時間との関係図、第8図は特開平1
−164542号の補正装置で遅れ補正子フィルタ処理
をした出力と時間との関係を示す図、第9図は遅れ補正
子本発明の補正をした出力と時間との関係図である。 5・・トレーサヘッド 100  ・・検出データ処理部110・・形状急変点
判定処理部 120  ・・補正量演算処理部第4図
FIG. 1 is a block diagram of the tracer head movement delay correction device in the digitizing apparatus of the present invention, FIG. 2 is a block diagram of the correction amount calculation processing section and the sudden shape change point determination processing section, and FIG.
The figure is a flowchart of digitizing data creation, Figure 4 is a diagram showing sudden changes in model shape, Figure 5 is a diagram of the digitizing output signal in Figure 4, and Figure 6 is a diagram of the detector output and signal when the filler collides with a wall. A diagram showing the relationship between the output time and Fig. 7 is a diagram of the relationship between the detector output + displacement output and time, and Fig. 8 is a diagram of the relationship between the detector output + displacement output and time.
FIG. 9 is a diagram showing the relationship between the output after the delay corrector filtering process is performed by the correction device of No. 164542 and time, and FIG. 5...Tracer head 100...Detection data processing section 110...Shape abrupt change point determination processing section 120...Correction amount calculation processing section Fig. 4

Claims (2)

【特許請求の範囲】[Claims] (1)デジタイジング装置において、トレーサヘッド(
5)でモデル(M)表面をスキャニングして得られる各
軸の変位出力から形状急変点を判定する形状急変点判定
処理部(110)と、該形状急変点判定処理部の出力と
前記各軸の変位量及び前記各軸の位置検出値にもとづい
て得た前記モデルの形状データとにより該データに対す
る急変点の誤差補正量を演算し加算処理により補正され
たモデル形状データを作成する補正量演算処理部とを含
んでなり、補正されたモデル形状データにもとづきNC
加工用データを作成することを特徴とするデジタイジン
グ装置におけるデジタイズデータの誤差補正装置。
(1) In a digitizing device, the tracer head (
5), a shape sudden change point determination processing unit (110) that determines a shape sudden change point from the displacement output of each axis obtained by scanning the surface of the model (M), and an output of the shape sudden change point determination processing unit and each of the axes. and the shape data of the model obtained based on the displacement amount of the axis and the position detection value of each axis, and calculate the error correction amount of the sudden change point with respect to the data, and create corrected model shape data by addition processing. NC based on the corrected model shape data.
A digitized data error correction device in a digitizing device that creates processing data.
(2)誤差補正量はデジタイジング装置の自動たわみ補
正動作によって決定された係数を用いる補正式で演算さ
れるものである請求項1記載のデジタイジング装置にお
けるデジタイズデータの誤差補正装置。
2. The error correction device for digitized data in a digitizing device according to claim 1, wherein the error correction amount is calculated by a correction formula using a coefficient determined by an automatic deflection correction operation of the digitizing device.
JP33322189A 1989-12-22 1989-12-22 Digitized data error correcting device for digitizing device Pending JPH03192405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33322189A JPH03192405A (en) 1989-12-22 1989-12-22 Digitized data error correcting device for digitizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33322189A JPH03192405A (en) 1989-12-22 1989-12-22 Digitized data error correcting device for digitizing device

Publications (1)

Publication Number Publication Date
JPH03192405A true JPH03192405A (en) 1991-08-22

Family

ID=18263672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33322189A Pending JPH03192405A (en) 1989-12-22 1989-12-22 Digitized data error correcting device for digitizing device

Country Status (1)

Country Link
JP (1) JPH03192405A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549709A (en) * 1978-10-05 1980-04-10 Osaka Kiko Co Ltd Nc data making method for mold working
JPS5672705A (en) * 1979-11-19 1981-06-17 Koyo Seiko Co Ltd Profiling work system
JPS6326706A (en) * 1986-07-19 1988-02-04 Fanuc Ltd Digitizing system
JPH01164542A (en) * 1987-12-22 1989-06-28 Okuma Mach Works Ltd Operation delay correcting device for tracer head in digitizing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549709A (en) * 1978-10-05 1980-04-10 Osaka Kiko Co Ltd Nc data making method for mold working
JPS5672705A (en) * 1979-11-19 1981-06-17 Koyo Seiko Co Ltd Profiling work system
JPS6326706A (en) * 1986-07-19 1988-02-04 Fanuc Ltd Digitizing system
JPH01164542A (en) * 1987-12-22 1989-06-28 Okuma Mach Works Ltd Operation delay correcting device for tracer head in digitizing device

Similar Documents

Publication Publication Date Title
US6568242B2 (en) System for reducing effects of acceleration induced deflections on measurement made by a machine using a probe
US5594668A (en) Method for correcting coordinate measurement on workpieces based on bending characteristics
JP3337245B2 (en) Method and apparatus for measuring the effective instantaneous position of a scanning element or tool supported by a slide
JP5127934B2 (en) Machine motion trajectory measuring device, numerically controlled machine tool, and machine motion trajectory measuring method
JP2008210273A (en) Method of compensating friction, friction compensator, and motor control device
JP6804657B2 (en) Numerical control system and motor control device
EP3289310B1 (en) Active damping of a measuring device
JPS6116568B2 (en)
US4746251A (en) Method of digitizing a profile locus
CN107231115A (en) Servocontrol device and method of servo-controlling
JPH07324928A (en) Method for measuring coordinate of surface of workpiece
JP2007142093A (en) Stage device, electron beam irradiation device and exposure device
Kwon et al. Adjustment of CNC machine tool controller setting values by an experimental method
US5177421A (en) Method of correcting machine position change
Postlethwaite et al. Dynamic calibration of CNC machine tools
JPH03192405A (en) Digitized data error correcting device for digitizing device
JPH02145908A (en) Automatic setting for correcting deflection of stylus in digitizing device
Sato et al. Active vibration suppression of NC machine tools for high-speed contouring motions
JP6363436B2 (en) Shape measuring apparatus and shape measuring method
JP2902005B2 (en) Digitizing method of scanning locus
JP2017068391A (en) Numerical control device and method for compensating for lost motion of numerical control device
US4276792A (en) Method for continuous path control of a machine tool
JP3802692B2 (en) Servo control device
JP2559107B2 (en) Position control method
JP3694173B2 (en) Positioning control device