JPH0319220Y2 - - Google Patents

Info

Publication number
JPH0319220Y2
JPH0319220Y2 JP17698286U JP17698286U JPH0319220Y2 JP H0319220 Y2 JPH0319220 Y2 JP H0319220Y2 JP 17698286 U JP17698286 U JP 17698286U JP 17698286 U JP17698286 U JP 17698286U JP H0319220 Y2 JPH0319220 Y2 JP H0319220Y2
Authority
JP
Japan
Prior art keywords
lead
electrolytic capacitor
solid electrolytic
anode body
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17698286U
Other languages
Japanese (ja)
Other versions
JPS63145319U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17698286U priority Critical patent/JPH0319220Y2/ja
Publication of JPS63145319U publication Critical patent/JPS63145319U/ja
Application granted granted Critical
Publication of JPH0319220Y2 publication Critical patent/JPH0319220Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

産業上の利用分野 本考案は、樹脂外装した固体電解コンデンサに
関するものである。 従来の技術 一般にタンタル、アルミニウムなどの粉末状弁
金属を成形、焼結した多孔質陽極体を用いた固体
電解コンデンサにおいては、上記多孔質陽極体
は、円筒状または平角状のものが多く使用されて
いる。 しかし上述のような多孔質陽極体は、円筒状の
場合、上下平面の周囲のエツジ部平角状の場合、
各々平面の端のエツジ部においては、二酸化マン
ガンなどの固体電解質層が局部的に薄く形成され
るので、エツジ部の耐電圧が低くなりやすい。そ
のため多孔質陽極体のエツジ部を曲面状にしたも
のが考案されている。(実開昭51−118948号公報
など) 考案が解決しようとする問題点 しかしながら、上述の円筒状または平角状の多
孔質陽極体において、そのエツジ部を曲面状にし
て樹脂外装した固体電解コンデンサを温度変化の
多い環境で使用したり、高温、低温の温度サイク
ル試験を繰返したりすると、漏れ電流が増大する
といつた問題があつた。また多孔質陽極体を完全
な球状に成形しようとすると金型から取り出す際
に上半球と下半球が分離したりして形くずれを生
ずるといつた問題があつた。 問題点を解決するための手段 本考案は上述の問題を解消するため、粉末状弁
金属を成形、焼結し、かつ導出リードを有する多
孔質陽極体の表面に酸化皮膜層、固体電解質層お
よび陰極導電層を順次形成し、該陰極導電層上に
陰極リードを接続し、これを樹脂外装してなる固
体電解コンデンサにおいて、上記多孔質陽極体は
ほぼ球体状であつて、下半分の球半径r1を上半分
の球半径r2より大きく形成したことを特徴とする
固体電解コンデンサである。 作 用 粉末状弁金属をほぼ球体状に圧縮成形する際、
下半分の球半径r1が上半分の球半径r2と同一でな
く、上半分の球半径r2より大きいため、形くずれ
が生ぜず、圧縮成形、取出しの工程が極めて能率
よく生産できる。陽極体がほぼ球体状に形成され
ているので、二酸化マンガンなどの固定電解質層
が局部的に薄く形成されることはなく、均一に形
成され急激な温度変化においても外装樹脂の熱収
縮応力に耐え、漏れ電流が安定し、信頼性の高い
固体電解コンデンサが得られる。 実施例 以下、本考案を第1図〜第3図に示す実施例に
より説明する。 第2図は陰極体の成形過程における要部断面図
で、上パンチ1、下パンチ2および外型3からな
る成形用金型からなり、下パンチ2の球半径r1
上パンチ1の球半径r2より大きく、凹球面状に形
成され、かつ上パンチ1には中央部に導出リード
5を誘導する貫通孔6が設けられている。4は粉
末状のタンタル弁金属で、上パンチ1と下パンチ
2によつて圧縮成形された後、第3図のように上
パンチ1および下パンチ2が矢印の方向に移動
し、成形されたタンタル弁金属は太矢印で示す方
向から取り出される。次に該タンタル弁金属4を
公知の方法で焼結して多孔質陽極体7を形成し、
その表面に酸化皮膜層(図示せず)、二酸化マン
ガンからなる固体電解質層8、カーボン、銀電極
などから陰極導電層9を形成し、該陰極導電層9
上に陰極リード10をはんだで接続し、洗浄工程
を経て外装樹脂12を塗布硬化し完成する。 11は導出リード5に接続された陽極リードで
ある。なお、導出リード5は多孔質陽極体7を形
成(焼結)した後、溶接してもよく第4図はその
場合の圧縮成形の実施例である。 表は、従来のエツジ部のある円筒状陽極体(試
料群A)、エツジ部を曲面状にした円筒状陽極体
(試料群B)および本考案のほぼ半球状の陽極体
(試料群C,D)を用いて定格35V、2.2μFのコン
デンサを製作し各々低温−65℃、高温+125℃の
米軍用規格に基づく温度サイクル試験を行つた結
Industrial Application Field The present invention relates to a resin-clad solid electrolytic capacitor. Conventional Technology Generally speaking, in solid electrolytic capacitors that use porous anode bodies made by molding and sintering powdered valve metals such as tantalum or aluminum, the porous anode bodies are often cylindrical or rectangular. ing. However, when the above-mentioned porous anode body is cylindrical, when the edges around the upper and lower planes are rectangular,
At the edge portions of each plane, a solid electrolyte layer such as manganese dioxide is locally formed thinly, so the withstand voltage at the edge portions tends to be low. For this reason, a porous anode body with curved edges has been devised. (Utility Model Application Publication No. 51-118948, etc.) Problems to be Solved by the Invention However, in the above-mentioned cylindrical or rectangular porous anode body, a solid electrolytic capacitor with curved edges and a resin exterior is used. There was a problem that leakage current increased when used in an environment with many temperature changes or when subjected to repeated temperature cycle tests at high and low temperatures. Furthermore, when attempting to mold a porous anode body into a perfect spherical shape, there was a problem in that the upper hemisphere and lower hemisphere would separate when taken out from the mold, resulting in deformation. Means for Solving the Problems In order to solve the above-mentioned problems, the present invention is made by molding and sintering powdered valve metal, and forming an oxide film layer, a solid electrolyte layer and In a solid electrolytic capacitor in which a cathode conductive layer is sequentially formed, a cathode lead is connected to the cathode conductive layer, and this is sheathed with resin, the porous anode body is approximately spherical, and the radius of the lower half of the sphere is This solid electrolytic capacitor is characterized in that r 1 is larger than the radius r 2 of the upper half of the sphere. Function When compression molding powdered valve metal into a nearly spherical shape,
Since the radius r 1 of the lower half sphere is not the same as the radius r 2 of the upper half sphere, but is larger than the radius r 2 of the upper half sphere, deformation does not occur and the compression molding and extraction processes can be extremely efficiently produced. Since the anode body is formed into a nearly spherical shape, the fixed electrolyte layer such as manganese dioxide does not form locally thinly, and is uniformly formed to withstand the heat shrinkage stress of the exterior resin even during sudden temperature changes. , a solid electrolytic capacitor with stable leakage current and high reliability can be obtained. Embodiments The present invention will be explained below with reference to embodiments shown in FIGS. 1 to 3. Figure 2 is a sectional view of the main parts in the process of molding the cathode body, which consists of a molding die consisting of an upper punch 1, a lower punch 2, and an outer mold 3. The ball radius r 1 of the lower punch 2 is the ball radius of the upper punch 1. The upper punch 1 is formed in a concave spherical shape with a radius larger than r 2 and is provided with a through hole 6 in the center thereof for guiding the lead-out lead 5 . 4 is powdered tantalum valve metal, which is compressed and molded by the upper punch 1 and lower punch 2, and then the upper punch 1 and the lower punch 2 move in the direction of the arrow as shown in Fig. 3, and the molding is performed. Tantalum valve metal is taken out from the direction indicated by the thick arrow. Next, the tantalum valve metal 4 is sintered by a known method to form a porous anode body 7,
A cathode conductive layer 9 is formed on the surface thereof from an oxide film layer (not shown), a solid electrolyte layer 8 made of manganese dioxide, carbon, a silver electrode, etc.
A cathode lead 10 is connected to the top with solder, and after a cleaning process, an exterior resin 12 is applied and hardened to complete the process. Reference numeral 11 denotes an anode lead connected to the lead-out lead 5. Note that the lead-out leads 5 may be welded after forming (sintering) the porous anode body 7, and FIG. 4 shows an example of compression molding in that case. The table shows a conventional cylindrical anode body with edges (sample group A), a cylindrical anode body with curved edges (sample group B), and an almost hemispherical anode body of the present invention (sample group C, D) was used to fabricate capacitors with a rating of 35V and 2.2μF, and each was subjected to temperature cycle tests based on US military standards at low temperatures of -65℃ and high temperatures of +125℃.

【表】 表中の数字は温度サイクル試験後の漏れ電流が
0.8μAの規格値を超過した試料数で、本考案は耐
熱サイクル性が著しく改善されることが実証され
た。 なお、上述の実施例において陰極導電層上にニ
ツケルなどの無電解金属メツキ層を形成して陰極
リード10にはんだ付けしてもよい。また陽極リ
ード11および陰極リード10に金属フレームを
用い、外装樹脂12をトランスフアーモールド法
によりモールド成型したチツプ形固体電解コンデ
ンサにも適用でき、同様な効果を奏する。 考案の効果 本考案の固体電解コンデンサは、以上のように
高温、低温の急激な温度変化に耐え、かつ成型工
程における生産性の面においても極めて有利とな
り、実用的価値の大なるものである。
[Table] The numbers in the table indicate the leakage current after the temperature cycle test.
The number of samples that exceeded the standard value of 0.8 μA demonstrated that the present invention significantly improved thermal cycle resistance. In the above embodiment, an electroless metal plating layer such as nickel may be formed on the cathode conductive layer and soldered to the cathode lead 10. The present invention can also be applied to a chip-type solid electrolytic capacitor in which a metal frame is used for the anode lead 11 and the cathode lead 10 and the outer resin 12 is molded by the transfer molding method, and similar effects can be obtained. Effects of the Invention As described above, the solid electrolytic capacitor of the present invention can withstand rapid temperature changes between high and low temperatures, and is extremely advantageous in terms of productivity in the molding process, so it has great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の固体電解コンデンサの一実施
例の断面図、第2図、第3図および第4図は本考
案の固体電解コンデンサの製造過程における要部
の説明図である。 4……粉末状弁金属、5……導出リード、7…
…多孔質陽極体、8……固体電解質層、9……陰
極導電層、10……陰極リード、12……外装樹
脂。
FIG. 1 is a cross-sectional view of one embodiment of the solid electrolytic capacitor of the present invention, and FIGS. 2, 3, and 4 are explanatory diagrams of essential parts in the manufacturing process of the solid electrolytic capacitor of the present invention. 4... Powdered valve metal, 5... Lead-out lead, 7...
... Porous anode body, 8 ... Solid electrolyte layer, 9 ... Cathode conductive layer, 10 ... Cathode lead, 12 ... Exterior resin.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 粉末状弁金属を成形、焼結し、かつ導出リード
を有する多孔質陽極体の表面に酸化皮膜層、固体
電解質層および陰極導電層を順次形成し、該陰極
導電層上に陰極リードを接続し、これを樹脂外装
してなる固体電解コンデンサにおいて、上記多孔
質陽極体はほぼ球体状であつて、下半分の球半径
r1を上半分の球半径r2より大きく形成したことを
特徴とする固体電解コンデンサ。
Powdered valve metal is molded and sintered, and an oxide film layer, a solid electrolyte layer, and a cathode conductive layer are sequentially formed on the surface of a porous anode body having a lead-out lead, and a cathode lead is connected to the cathode conductive layer. In a solid electrolytic capacitor made of a resin-sheathed solid electrolytic capacitor, the porous anode body is approximately spherical, and the radius of the lower half of the sphere is
A solid electrolytic capacitor characterized in that r 1 is larger than the sphere radius r 2 of the upper half.
JP17698286U 1986-11-18 1986-11-18 Expired JPH0319220Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17698286U JPH0319220Y2 (en) 1986-11-18 1986-11-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17698286U JPH0319220Y2 (en) 1986-11-18 1986-11-18

Publications (2)

Publication Number Publication Date
JPS63145319U JPS63145319U (en) 1988-09-26
JPH0319220Y2 true JPH0319220Y2 (en) 1991-04-23

Family

ID=31117752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17698286U Expired JPH0319220Y2 (en) 1986-11-18 1986-11-18

Country Status (1)

Country Link
JP (1) JPH0319220Y2 (en)

Also Published As

Publication number Publication date
JPS63145319U (en) 1988-09-26

Similar Documents

Publication Publication Date Title
US6791822B2 (en) Solid electrolytic capacitor
JP4961096B2 (en) Manufacturing method of solid capacity parts
US6985353B2 (en) Anode body for solid electrolytic capacitor and solid electrolytic capacitor using the same
JPH07320982A (en) Manufacture of capacitor element for tantalum solid electrolytic capacitor
US4494299A (en) Method of manufacturing solid electrolytic capacitors
JPH0319220Y2 (en)
US4068291A (en) Solid electrolyte capacitor with improved cathode lead
JP2004014667A (en) Solid electrolytic capacitor
JP3168584B2 (en) Solid electrolytic capacitors
JPS63124511A (en) Aluminum solid electrolytic capacitor
JPH0590094A (en) Chip type solid electrolytic capacitor
CN112927939B (en) End cap type tantalum capacitor and cathode leading-out method thereof
JPS5930530Y2 (en) solid electrolytic capacitor
JPH06252001A (en) Solid electrolytic capacitor and its manufacture
JPH06816Y2 (en) Chip tantalum solid electrolytic capacitor
JPH0751789Y2 (en) Solid electrolytic capacitor
JP3067900B2 (en) Chip type tantalum solid electrolytic capacitor
JPS6314458Y2 (en)
KR900004257B1 (en) Electrolytic capacitor
JPH0338010A (en) Electric double layer capacitor
JPH0216569B2 (en)
JPH04123525U (en) solid electrolytic capacitor
JP2005039043A (en) Chip electrolytic capacitor
JPS622517A (en) Manufacture of solid electrolytic capacitor
JPH04167511A (en) Solid electrolytic capacitor