JPH03191678A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPH03191678A
JPH03191678A JP1331971A JP33197189A JPH03191678A JP H03191678 A JPH03191678 A JP H03191678A JP 1331971 A JP1331971 A JP 1331971A JP 33197189 A JP33197189 A JP 33197189A JP H03191678 A JPH03191678 A JP H03191678A
Authority
JP
Japan
Prior art keywords
solid
image pickup
imaging
state
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1331971A
Other languages
Japanese (ja)
Inventor
Yutaka Kaneko
豊 金子
Masanori Saito
政範 斉藤
Iwao Hamaguchi
浜口 巖
Kazutake Kamihira
員丈 上平
Kazumi Komiya
小宮 一三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Ricoh Co Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Ricoh Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1331971A priority Critical patent/JPH03191678A/en
Priority to US07/628,860 priority patent/US5194959A/en
Publication of JPH03191678A publication Critical patent/JPH03191678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To read the images with image resolution higher as much as the number of single solid state image pickup elements by dividing an optical image to reflect them and reading these divided optical images via plural solid state image pickup elements in s state where the optically different areas are set contiguous to each other. CONSTITUTION:An image pickup area is optically divided into four pieces in terms of a single screen area, and these divided image pickup areas are allocated to the read valid picture element parts of four solid state image pickup elements 2A-2D respectively and then read in a state where they are optically contiguous to each other. Then the elements 2A-2D are positioned at the reflected image forming positions secured via the reflecting surfaces 7A-7D. The sloping angles of surfaces 7A-7D are defined at 45 deg. to an optical axis, and a reflecting optical axis is orthogonal to the optical axis of an image pickup lens 5. Thus the photodetecting surfaces of the elements 2A-2D are set parallel to the optical axis of the lens 5 and arranged around a pyramidical prism mirror 6. As a result, the complicated image processing can be omitted.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、例えば電子カメラやTVカメラなどに用いら
れる撮像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an imaging device used in, for example, an electronic camera or a TV camera.

従来の技術 近年、この種の撮像装置では高品位化の研究開発が進め
られており、例えば日本放送協会を中心とした高品位T
V規格による撮像方式等として実用化の段階にある。こ
れによれば、使用周波数帯域が20〜30MHz帯域の
ように非常に高くなる特徴を持つ。
Conventional technology In recent years, research and development has been progressing to improve the quality of this type of imaging device.
It is at the stage of practical application as an imaging method based on the V standard. According to this, the frequency band used is very high, such as a 20 to 30 MHz band.

一カ、このような撮像方式の高精細化と並んで、撮像素
子の固体化も推し進められている。しかし、上記の高精
細な撮像方式に対応可能な固体撮像素子を考えると、画
素数で100万個以上、クロック周波数で30MHz以
上が必要となる。このような固体撮像素子は現状では困
難である(ちなみに、”NIKKEI ELECTRO
NICS” (1988,2,22,N1441p96
)によれば、200万画素のCCD型固体撮像素子の試
作が発表されているが、まだ、実用段階とはなっていな
い)。
In addition to increasing the resolution of such imaging methods, solid-state imaging devices are also being promoted. However, when considering a solid-state imaging device that can support the above-mentioned high-definition imaging method, it requires a number of pixels of 1 million or more and a clock frequency of 30 MHz or more. It is currently difficult to develop such a solid-state image sensor (by the way, the NIKKEI ELECTRO
NICS” (1988, 2, 22, N1441p96
), a prototype CCD type solid-state image sensor with 2 million pixels has been announced, but it has not yet reached the practical stage).

しかして、現状の固体撮像素子、駆動方式にて高精細化
を実現する方式が検討されており、例えば特開昭60−
212178号公報に示されるようなものがある。これ
は、撮像レンズを通して得られた光像を光学系の瞳位置
に配置させた反射体、例えば四角錐体の4つの反射面に
より分割反射させ、分割反射される各光像が各受光面上
の互いに光学的に所定ピッチ分ずれた位置に結像するよ
うに例えば4個の固体撮像素子を配置させたものである
。第10図は、同公報方式による、第1〜第4の4つの
固体撮像素子IA〜IDの光学的配置関係を示す図であ
る。第1の撮像素子IAを基準に考えると、第2の撮像
素子IBは水平方向に所定ピッチPNずれており、第3
の撮像素子ICは垂直方向に所定ピッチPMずれており
、第4の撮像素子IDは水平、垂直両方向に所定ピッチ
PN。
Therefore, methods to achieve higher definition using current solid-state image sensors and drive methods are being considered.
There is one as shown in Japanese Patent No. 212178. In this method, the light image obtained through the imaging lens is divided and reflected by a reflector placed at the pupil position of the optical system, for example, four reflective surfaces of a quadrangular pyramid, and each of the divided and reflected light images is reflected on each light-receiving surface. For example, four solid-state imaging devices are arranged so that images are formed at positions optically shifted from each other by a predetermined pitch. FIG. 10 is a diagram showing the optical arrangement relationship of the first to fourth four solid-state image sensors IA to ID according to the publication method. Considering the first image sensor IA as a reference, the second image sensor IB is shifted by a predetermined pitch PN in the horizontal direction, and the third image sensor IB is shifted by a predetermined pitch PN in the horizontal direction.
The fourth image sensor IC is shifted by a predetermined pitch PM in the vertical direction, and the fourth image sensor ID is shifted by a predetermined pitch PN in both the horizontal and vertical directions.

PMずれている。この場合のピッチのずれPN。PM is off. Pitch deviation PN in this case.

PMは特公昭56−40546号公報等に示される画素
ずらし方式と同様に、第1〜第4の撮像素子IA〜10
の各水平方向並びに垂直方向の画素配列ピッチの整数分
の1とされる。このような光学的配置をとることにより
、水平、垂直方向の解像度が向上するというものである
PM is the same as the pixel shifting method shown in Japanese Patent Publication No. 56-40546, etc., in which the first to fourth image sensors IA to 10
The pixel arrangement pitch in the horizontal and vertical directions is an integer fraction of each pixel array pitch. By adopting such an optical arrangement, resolution in the horizontal and vertical directions is improved.

第11図は、水平、垂直方向ともにl/2画素ピッチ分
だけずらした場合の、第1〜第4の撮像素子IA〜ID
の各画素の配置関係を画素オーダに拡大して示すもので
ある。図中、Aは第1の撮像素子IAの各画素、〜、D
は第4の撮像素子IDの各画素を示す。
FIG. 11 shows the first to fourth image sensors IA to ID when shifted by l/2 pixel pitch in both the horizontal and vertical directions.
The arrangement relationship of each pixel in the figure is shown enlarged to the pixel order. In the figure, A represents each pixel of the first image sensor IA, ~, D
indicates each pixel of the fourth image sensor ID.

これにより、4枚の撮像素子の水平方向の画素数をH2
O2とし、垂直方向の画素数をV2O3とすれば、全画
素数が150万個のオーダ、水平解像度が1000本オ
ーダの撮像素子と等価な性能が発揮されるというもので
ある。
As a result, the number of pixels in the horizontal direction of the four image sensors is reduced to H2.
O2 and the number of pixels in the vertical direction is V2O3, the performance is equivalent to that of an image sensor with a total number of pixels on the order of 1.5 million and a horizontal resolution on the order of 1000 lines.

発明が解決しようとする課題 ところが、固体撮像素子の構造を見た場合、第12図に
示すように、各々の画素ピッチPに対する受光部の大き
さにより、各撮像素子IA〜IDの各画素が光学的に分
離されておらず(第11図のような状態とはならず)、
全ての画素で部分的に重なっているため、実質的な解像
度を高くとれないものである。
Problems to be Solved by the Invention However, when looking at the structure of a solid-state image sensor, as shown in FIG. 12, each pixel of each image sensor IA to ID is Not optically separated (not in the state shown in Figure 11),
Since all pixels partially overlap, it is not possible to obtain a high actual resolution.

特に、受光部と転送用CODの面積を大きくするため、
アモーファスSi光電変換股を積層したタイプ(前述し
た文献参照)においては、その受光部の大きさにより、
さらに実質的な解像度の向上を期待できない。
In particular, in order to increase the area of the light receiving part and the transfer COD,
In the type with laminated amorphous Si photoelectric conversion strips (see the above-mentioned literature), depending on the size of the light receiving part,
Moreover, no substantial improvement in resolution can be expected.

また、反射体を光学系の瞳位置に正確に配置させるのも
容易ではない。
Furthermore, it is not easy to accurately arrange the reflector at the pupil position of the optical system.

課題を解決するための手段 撮像レンズと、この撮像レンズの光軸上に配置されて前
記撮像レンズを透過した光像を分割反射させる複数の反
射面を有する反射体とを設けるとともに、この反射体に
より分割反射された各光像に対して複数の固体撮像素子
を各々光学的に異なる撮像領域を相対的に隣接状態で受
光する光学的位置に配置させて設けた。
Means for Solving the Problems An imaging lens and a reflector having a plurality of reflective surfaces disposed on the optical axis of the imaging lens to divide and reflect a light image transmitted through the imaging lens are provided, and the reflector A plurality of solid-state imaging devices were arranged at optical positions where optically different imaging regions received light in a relatively adjacent state for each light image divided and reflected by the solid-state imaging device.

作用 反射体の各反射面により分割反射される光像を各々の固
体撮像素子により受光するが、各光像に対して各固体撮
像素子が、各々光学的に異なる一部の撮像領域の光像を
相対的に隣接状態で受光する光学的位置とされているの
で、読取り後に各々の固体撮像素子の読取領域の読取り
画像信号を合成することにより、1画面分の画像が再現
される。
Each solid-state image sensor receives the light image that is divided and reflected by each reflecting surface of the action reflector. are optical positions that receive light in a relatively adjacent state, so by combining the read image signals of the reading area of each solid-state image sensor after reading, an image for one screen is reproduced.

よって、固体撮像素子の受光部の大きさに拘らず、単一
の固体撮像素子で読取る場合の、固体撮像素子の個数倍
の高解像度で読取ることができる。
Therefore, regardless of the size of the light-receiving section of the solid-state image sensor, it is possible to read with a resolution that is twice as high as the number of solid-state image sensors when reading with a single solid-state image sensor.

実施例 本発明の第一の実施例を第1図ないし第7図に基づいて
説明する。
Embodiment A first embodiment of the present invention will be described with reference to FIGS. 1 to 7.

まず、本実施例は4つの固体撮像素子2A〜2Dを用い
て1画面分の画像を読取るようにした例であり、第2図
にこれらの固体撮像素子2A〜2Dの相対的な光学的配
置関係を示す。ここに、何れの固体撮像素子2A〜2D
も読取有効画素数は水平力向(H)が512、垂直方向
(V)が490のものであり、第2図では各々の固体撮
像素子2A〜2Dとして読取有効画素部のみを矩形状に
示す。
First, this embodiment is an example in which four solid-state image sensors 2A to 2D are used to read an image for one screen, and FIG. 2 shows the relative optical arrangement of these solid-state image sensors 2A to 2D. Show relationships. Here, which solid-state image sensor 2A to 2D
The number of effective pixels for reading is 512 in the horizontal force direction (H) and 490 in the vertical direction (V), and in FIG. .

また、第2図中の矢印Sは各々の固体撮像素子2A〜2
Dの読取走査方向を示す。しかして、本実施例では1画
面領域についての撮像領域を光学的に4分割し、各々の
撮像領域を4つの固体撮像素子2A〜2Dの読取有効画
素部に各々割当て、光学的に見゛て互いに隣接した状態
で読取るように配置させたものである。
Moreover, arrow S in FIG. 2 indicates each solid-state image sensor 2A to 2.
The reading scanning direction of D is shown. Therefore, in this embodiment, the imaging area for one screen area is optically divided into four parts, and each imaging area is assigned to the effective reading pixel portion of the four solid-state image sensors 2A to 2D. They are arranged so that they can be read adjacent to each other.

第3図は各画素(A〜Dで示す)の配置関係を画素オー
ダに拡大した接続部3付近の部分拡大図である。第1の
撮像素子2Aの有効画素部に対し、第2の撮像素子2B
の有効画素部は水平方向に隣接し、互いの端部画素は固
体撮像素子2の水平画素ピッチP、Iに相当する間隔で
配置されている。
FIG. 3 is a partially enlarged view of the vicinity of the connection portion 3 in which the arrangement relationship of each pixel (indicated by A to D) is expanded to the pixel order. For the effective pixel portion of the first image sensor 2A, the second image sensor 2B
The effective pixel portions of are adjacent to each other in the horizontal direction, and the end pixels are arranged at intervals corresponding to the horizontal pixel pitches P and I of the solid-state image sensor 2.

第3の撮像素子2Cの有効画素部は第1の撮像素子2A
の有効画素部に対し垂直方向に隣接し、互いの端部画素
は固体撮像素子2の垂直画素ピッチPvに相当する間隔
で配置されている。第4の撮像素子2Dの有効画素部は
第2,3の撮像素子2B、2Gの有効画素部に対し水平
、垂直方向に隣接し、互いの端部画素は固体撮像素子2
の水平、垂直画素ピッチPM、Pvに相当する間隔で配
置されている。
The effective pixel portion of the third image sensor 2C is the same as that of the first image sensor 2A.
The pixels are adjacent to each other in the vertical direction with respect to the effective pixel portion of the solid-state image sensor 2, and the end pixels are arranged at intervals corresponding to the vertical pixel pitch Pv of the solid-state image sensor 2. The effective pixel portion of the fourth image sensor 2D is horizontally and vertically adjacent to the effective pixel portions of the second and third image sensors 2B and 2G, and the end pixels of each other are adjacent to the effective pixel portions of the second and third image sensors 2B and 2G.
They are arranged at intervals corresponding to horizontal and vertical pixel pitches PM and Pv.

従って、例えばEIA方式の固体撮像素子2を用いた時
、上記のように垂直方向の読取有効画素数を490とす
ると、一つの固体撮像素子によす読取る場合に比し、垂
直方向の有効画素数980なる2倍の高解像度の読取り
が可能となる。水平方向についても同様に2倍(=10
24画素)の高解像度読取りが可能となる。この際、固
体撮像素子2としてワンチップカラーイメージセンサを
用いれば高解像度のカラー画像読取りが可能となる。
Therefore, for example, when using an EIA type solid-state image sensor 2, if the number of effective pixels to be read in the vertical direction is 490 as described above, the number of effective pixels in the vertical direction It is possible to read with twice as high resolution as several 980. Similarly, in the horizontal direction, it is doubled (=10
24 pixels) high resolution reading is possible. At this time, if a one-chip color image sensor is used as the solid-state image sensor 2, high-resolution color image reading becomes possible.

なお、接続部3が目立たないレベルに設定すればよいの
で、必ずしも隣接ピッチ間隔を第3図のように画素ピッ
チPM、PVに正確に合わせなくても実用的レベルの解
像度は得られる(従来方式によると、各固体撮像素子間
の光学的なピッチずれを画素ピッチ以下に設定する必要
がある)。
Note that since the connection part 3 only needs to be set at a level where it is not noticeable, a practical level of resolution can be obtained even if the adjacent pitch interval does not necessarily match the pixel pitches PM and PV exactly as shown in Fig. 3 (conventional method According to the above, it is necessary to set the optical pitch deviation between each solid-state image sensor to be less than the pixel pitch).

しかして、このような4つの固体撮像素子2A〜2Dの
光学的配置関係を実現する撮像光学系は、例えば第1図
に示すように構成される。まず、被写体(原稿)4から
の反射光による光像を結像させる撮像レンズ(ズームレ
ンズ)5が設けられている。この撮像レンズ5の後段に
は撮像レンズ5の光軸上に頂点を配置させた反射体とし
ての四角錐プリズムミラー6が設けられている。即ち、
四角錐プリズムミラー6は三角形状の4つの錐面による
反射面7A〜7Dを持ち、前記被写体4対応の光像を各
々の反射面7A〜7Dで頂点部を中心として4分割反射
させるものである。ここに、四角錐プリズムミラー6の
各反射面7A〜7Dは第1図に例示するように被写体4
に対して光軸層りに45″回転した状態で配置されてい
る。また、各反射面7八〜7Dの傾斜角も光軸に対し4
5@に形成されている。これらの反射面7八〜7Dによ
る反射結像位置に位置させて各々前記固体撮像素子2A
〜2Dが設けられている。この時、各反射面7A〜7D
の傾斜角が光軸に対して45″であるため、反射光軸は
撮像レンズ5の光軸に直交し、固体撮像素子2A〜2D
の受光面が撮像レンズ5の光軸に平行となり、四角錐プ
リズムミラー6周りに対する配置が容易となる。また、
四角錐プリズムミラー6による分割光像の受光であり矩
形状の領域画像となるため、長方形の有効画素部を持つ
通常の固体撮像素子で読取り可能であり、複雑な画像処
理を必要としない。この時、各固体撮像素子2A〜2D
は各々の反射面7A〜7Dによる反射光像、即ち、各々
第2図で説明したように1画面領域をl/4に分割させ
た異なる撮像領域のみの光像を受光する位置に配置され
ている。
An imaging optical system that realizes such an optical arrangement of the four solid-state imaging devices 2A to 2D is configured, for example, as shown in FIG. 1. First, an imaging lens (zoom lens) 5 is provided that forms an optical image of light reflected from a subject (original) 4. A quadrangular pyramidal prism mirror 6 as a reflector whose apex is placed on the optical axis of the imaging lens 5 is provided downstream of the imaging lens 5 . That is,
The quadrangular pyramidal prism mirror 6 has reflective surfaces 7A to 7D formed of four triangular pyramidal surfaces, and reflects the light image corresponding to the subject 4 into four parts centered at the apex on each of the reflective surfaces 7A to 7D. . Here, each of the reflecting surfaces 7A to 7D of the quadrangular pyramid prism mirror 6 is connected to the subject 4 as illustrated in FIG.
The reflective surfaces 78 to 7D are arranged at an inclination angle of 45 inches relative to the optical axis.
It is formed as 5@. Each of the solid-state image sensors 2A is positioned at a reflection imaging position formed by these reflecting surfaces 78 to 7D.
~2D is provided. At this time, each reflective surface 7A to 7D
Since the inclination angle is 45'' with respect to the optical axis, the reflected optical axis is perpendicular to the optical axis of the imaging lens 5, and the solid-state imaging devices 2A to 2D
The light-receiving surface of the lens is parallel to the optical axis of the imaging lens 5, and the arrangement around the square pyramidal prism mirror 6 is facilitated. Also,
Since the divided light image is received by the quadrangular pyramid prism mirror 6 and becomes a rectangular area image, it can be read with a normal solid-state image sensor having a rectangular effective pixel portion, and no complicated image processing is required. At this time, each solid-state image sensor 2A to 2D
are arranged at positions where they receive only the light images reflected by the respective reflecting surfaces 7A to 7D, that is, the light images of different imaging areas obtained by dividing one screen area into 1/4 as explained in FIG. There is.

第4図にこの様子を模式的に示す。いま、1画面を4分
割した撮像領域を各々EA−E、とする。
FIG. 4 schematically shows this situation. Now, it is assumed that the imaging areas obtained by dividing one screen into four are respectively EA-E.

すると、四角錐プリズムミラー6の各反射面7A〜7D
はほぼ各々の撮像領域EA−EDに相当する光像を反射
させることになる。そこで、第1の固体撮像素子2Aは
反射面7Aから反射光像中、撮像領域EAのものを受光
する位置に配置される。
Then, each of the reflecting surfaces 7A to 7D of the square pyramid prism mirror 6
reflects a light image corresponding to approximately each imaging area EA-ED. Therefore, the first solid-state image sensor 2A is arranged at a position where it receives light from the imaging area EA in the reflected light image from the reflecting surface 7A.

また、第2の固体撮像素子2Bは反射面7Bから反射光
像中、撮像領域E、のちのを受光する位置に配置される
。第3,4の固体撮像素子2c、2、Dも同様に各々反
射面7C,7Dの撮像領域EC9EDの光像受光位置に
配置される。
Further, the second solid-state image sensor 2B is arranged at a position where it receives light from the reflected light image in the imaging area E and later from the reflecting surface 7B. The third and fourth solid-state image sensors 2c, 2, and D are similarly arranged at the light image receiving positions of the imaging areas EC9ED of the reflective surfaces 7C and 7D, respectively.

第5図は、例えば第1の固体撮像素子2Aに着目してそ
の配置をより具体的に示すものである。
FIG. 5 shows the arrangement of the first solid-state image sensor 2A more specifically, for example.

今、被写体4の中心を0、撮像領域EAのコーナ点をP
とし、撮像領域本邦であって対角隣接する撮像領域E0
中の任意の点をQとすると、撮像レンズ5の特性により
Q点からの反射光の一部も反射面7Aで反射されQ’点
に結像される。即ち、反射面7A上では被写体4がらの
反射光像が結像されておらず、各点の光情報が混在して
いる。しかるに、結像面上において、四角錐プリズムミ
ラー6の頂点1(に対応する位置に固体撮像素子2人の
有効画素部のコーナ点Sが一致するように配置させれば
よい。他の固体撮像素子2B〜2Dについても同様であ
る。
Now, the center of subject 4 is 0, and the corner point of imaging area EA is P.
and the diagonally adjacent imaging area E0 in the imaging area Japan
Assuming that an arbitrary point therein is Q, a part of the reflected light from the Q point is also reflected by the reflective surface 7A due to the characteristics of the imaging lens 5, and an image is formed on the Q' point. That is, the reflected light image of the subject 4 is not formed on the reflective surface 7A, and the optical information of each point is mixed. However, it is only necessary to arrange the corner points S of the effective pixel portions of the two solid-state imaging devices so that they coincide with the position corresponding to the apex 1 of the quadrangular pyramidal prism mirror 6 on the imaging plane. The same applies to elements 2B to 2D.

これらの各固体撮像素子2A〜2Dにより分割読取りさ
れた画像信号は、アナログ信号処理部を経て画像合成回
路で接続合成処理することにより、全体の1画面分の読
取りとなる。
The image signals divided and read by each of these solid-state image sensors 2A to 2D pass through an analog signal processing section and are subjected to connection and synthesis processing in an image synthesis circuit, so that the entire image for one screen is read.

つまり、被写体4=1画面を1つの固体撮像素子2で受
光する場合に対し、同一性能の4つの固体撮像素子2A
〜2Dを用い各々に4分割された撮像領域EA−Eoを
受は持たせることにより、l撮像領域を1画面領域と等
価的な4倍に拡大した状態で受光することになり、結局
、4倍の解像度で読取れるものである。この際、各々の
撮像領域には1画素レベルでの重複がないため、各固体
撮像素子2A〜2Dの受光部の大きさの影響を受けない
ものとなる。
In other words, compared to the case where one screen of subject 4 is received by one solid-state image sensor 2, four solid-state image sensors 2A with the same performance are used.
By using ~2D and having an imaging area EA-Eo divided into four, the light is received while the imaging area is expanded four times, which is equivalent to one screen area. It can be read at twice the resolution. At this time, since each imaging area does not overlap at the pixel level, it is not affected by the size of the light receiving portion of each solid-state imaging device 2A to 2D.

第6図及び第7図はこのような撮像装置を用いた画像読
取装置の構成例を示す。原稿台8上にセットされた原稿
(被写体)4は、原稿台8端部に設けた支柱9に取付け
られた照明装置lOの蛍光灯11により照明される。こ
の照明装置10は支柱9をガイドとして上下移動可能で
ある。また、照明装置10の腕部に取付けた反射板12
の端部の取付は部を照明装置10の腕部に対して左右及
び取付は部を支点として回転可能とし、原稿面の照度分
布を調整できるようにされている。撮像レンズ5、四角
錐プリズムミラー6、アナログ信号処理部13等からな
るカメラ本体(カメラ)14は、カメラ取付は部15を
介して支柱9に上下移動自在に支持され、結像倍率調整
可とされている。
FIGS. 6 and 7 show an example of the configuration of an image reading device using such an imaging device. A document (subject) 4 set on the document table 8 is illuminated by a fluorescent lamp 11 of an illumination device 1O attached to a support 9 provided at the end of the document table 8. This illumination device 10 can be moved up and down using the support 9 as a guide. In addition, a reflector 12 attached to the arm of the lighting device 10
The end portion of the illumination device 10 is rotatable with respect to the arm portion of the illumination device 10, and the end portion thereof is a fulcrum, so that the illuminance distribution on the document surface can be adjusted. A camera body (camera) 14 consisting of an imaging lens 5, a quadrangular pyramid prism mirror 6, an analog signal processing section 13, etc. is supported by a column 9 via a camera mounting section 15 so as to be movable up and down, and the imaging magnification can be adjusted. has been done.

つづいて、本発明の第二の実施例を第8図に基づいて説
明する。前記実施例で示した部分と同一部分は同一符号
を用いて示す。本実施例は、4つの固体撮像素子2A〜
2Dの読取有効画素部を互いの接続部3でその一部を重
ねた光学的配置としたものである。図中、Δが重なり部
を示す。
Next, a second embodiment of the present invention will be described based on FIG. 8. The same parts as those shown in the previous embodiment are indicated using the same reference numerals. In this embodiment, four solid-state image sensors 2A to 2A are used.
This is an optical arrangement in which 2D effective reading pixel parts are partially overlapped at each other's connecting parts 3. In the figure, Δ indicates an overlapping part.

この場合、読取時に重なり部Δでの画像の重複を避ける
ため、画像信号を合成する際に重なり部Δの一方の全て
、又は両方の一部ずつ(図示例は−点鎖線で示す部分を
本当の接続部とするものであり、これに相当する)を切
り捨てるとともに、その切り捨て画素部を画像信号とし
て相対的にシフト補正させることにより、接続部3での
幾何学的連続性を確保できる。
In this case, in order to avoid overlapping images at the overlapping area Δ during reading, when combining image signals, either all of one side of the overlapping area Δ or a part of both (in the illustrated example, the part indicated by the dashed line is the real one). The geometric continuity at the connection part 3 can be ensured by cutting off the pixel part (corresponding to the connection part 3) and relatively shifting and correcting the pixel part to be cut off as an image signal.

つまり、本実施例のように固体撮像素子2A〜2Dの光
学的配置の接続部3を一部重複して読取ることにより、
固体撮ftJ!素子2A〜2Dの読取有効画素部の端部
同士を正確に合わせなくても、読取り後での画素単位で
の補正で済むものである。
In other words, by partially overlappingly reading the connecting portions 3 of the optical arrangement of the solid-state image sensors 2A to 2D as in this embodiment,
Solid-state photography ftJ! Even if the edges of the effective reading pixel portions of the elements 2A to 2D are not precisely aligned, correction can be made pixel by pixel after reading.

この場合も四角錐プリズムミラー6の各反射面7A〜7
Dからの分割光像の受光であり、矩形状の領域画像とな
るため長方形の有効画素部を持つ通常の固体撮像素子で
読取り可能であり、複雑な画像処理を必要としない。
In this case as well, each reflective surface 7A to 7 of the quadrangular pyramid prism mirror 6
This is the reception of a divided light image from D, and since it becomes a rectangular area image, it can be read with a normal solid-state image sensor having a rectangular effective pixel portion, and does not require complicated image processing.

また、本発明の第三の実施例を第9図により説明する。Further, a third embodiment of the present invention will be explained with reference to FIG.

本実施例は反射体として2つの反射面16A、16Bを
持つ屋根型プリズムミラー17を用い、撮像領域を2分
割して各々の領域の反射光像を各々の固体撮像素子18
A、18Bに結像させるようにしたものである。図にお
いて、屋根型プリズムミラー15の頂角90°の稜線は
撮像レンズ5の光軸上に配置され、各反射面16A、1
6Bはこの先軸に対して45°とされている。また、2
つの固体撮像素子18A、18Bの受光面はこの光軸及
び前記稜線に平行に配置されている。
In this embodiment, a roof-type prism mirror 17 having two reflective surfaces 16A and 16B is used as a reflector, and the imaging area is divided into two, and the reflected light image of each area is transmitted to each solid-state image sensor 18.
The images are focused on A and 18B. In the figure, the ridge line with the apex angle of 90° of the roof-type prism mirror 15 is arranged on the optical axis of the imaging lens 5, and each reflective surface 16A, 1
6B is set at 45° with respect to this front axis. Also, 2
The light receiving surfaces of the two solid-state image sensors 18A and 18B are arranged parallel to the optical axis and the ridgeline.

発明の効果 本発明は、上述したように光像を分割反射し、分割され
た光像を複数の固体撮像素子を用い、光学的に異なった
撮像領域を各々隣接状態で読取るようにしたので、読取
り後に各々の固体撮像素子の読取領域の読取り画像信号
を合成すれば1画面分の画像を再現できるものであり、
よって、固体撮像素子の受光部の大きさに拘らず、単一
の固体撮像素子で読取る場合の、固体撮像素子の個数倍
の高解像度で読取ることができ、また、各固体撮像素子
の読取有効画素部の配置を、各々の光学的位置関係の接
続部で部分的に重ならせたので、各固体撮像素子の読取
有効端部同士の光学的位置関係を正確に合わせなくても
簡単な補正処理で済むものとなり、さらに、反射体を四
角錐プリズムミラーとしたので、分割光像の読取りが長
方形の読取有効画素部を持つ一般的な固体撮像素子で済
み、特に複雑な画像処理を要しないものである。
Effects of the Invention The present invention divides and reflects a light image as described above, and uses a plurality of solid-state imaging devices to read optically different imaging areas in adjacent states. After reading, if the read image signals of the reading area of each solid-state image sensor are combined, an image for one screen can be reproduced.
Therefore, regardless of the size of the light-receiving part of the solid-state image sensor, it is possible to read with a resolution that is twice as high as the number of solid-state image sensors when reading with a single solid-state image sensor, and the reading effectiveness of each solid-state image sensor is Since the pixel parts are arranged so that they partially overlap at the connecting parts of their optical positions, easy correction can be made without having to precisely align the optical positions of the effective reading ends of each solid-state image sensor. Furthermore, since the reflector is a square pyramidal prism mirror, the split light image can be read using a general solid-state image sensor with a rectangular effective pixel area, and no particularly complex image processing is required. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一の実施例を示す概略斜視図、第2
図は固体撮像素子の相対的な光学的配置関係を示す配置
図、第3図はその一部を拡大して示す配置図、第4図は
四角錐プリズムミラーによる反射以後の様子を模式的に
示す斜視図、第5図は反射の様子を模式的に示す説明図
、第6図は本実施例を適用した画像読取装置の正面図、
第7図はその側面図、第8図は本発明の第二の実施例を
示す固体撮像素子の相対的な光学的配置関係を示す配置
図、第9図は本発明の第三の実施例を示す概略斜視図、
第10図は従来例を示す固体撮像素子の相対的な光学的
配置関係を示す配置図、第11図はその一部を拡大して
示す配置図、第12図はさらに拡大して示す実際的な配
置図である。 2A〜2D・・・固体撮像素子、3・・・接続部、5・
・・撮像レンズ、6・・・四角錐プリズムミラー(反射
体)、7A〜7D・・・反射面、16A、16B・・・
反射面、17・・・反射体、18A、18B・・・固体
撮像素子量 願 人    株式会社  リ コ日本電
信電話株式会社 」不 U図 り −軍 図 、% 、JO図 yD、72図 囚l囚l囚園囚 回回回回回回回 囚園囚四囚図囚 ロ回回ロ回回回 囚圓囚l囚圓囚 回回回回回圓口 囚圓囚圓囚(3)囚 681−
FIG. 1 is a schematic perspective view showing a first embodiment of the present invention, and FIG.
The figure is a layout diagram showing the relative optical arrangement of the solid-state image sensor, Figure 3 is a layout diagram showing a part of it enlarged, and Figure 4 is a schematic diagram showing the state after reflection by a square pyramid prism mirror. 5 is an explanatory diagram schematically showing the state of reflection, and FIG. 6 is a front view of an image reading device to which this embodiment is applied.
FIG. 7 is a side view thereof, FIG. 8 is a layout diagram showing the relative optical arrangement of solid-state imaging devices showing a second embodiment of the present invention, and FIG. 9 is a third embodiment of the present invention. A schematic perspective view showing
Fig. 10 is a layout diagram showing the relative optical arrangement relationship of solid-state image pickup devices showing a conventional example, Fig. 11 is a layout diagram showing a part of the layout enlarged, and Fig. 12 is a practical layout diagram showing a further enlarged view. This is a layout diagram. 2A to 2D...solid-state image sensor, 3...connection section, 5.
...Imaging lens, 6... Square pyramid prism mirror (reflector), 7A to 7D... Reflective surface, 16A, 16B...
Reflective surface, 17...Reflector, 18A, 18B...Amount of solid-state image sensor Applicant: Ricoh Co., Ltd. Nippon Telegraph and Telephone Corporation "UnU planning - military map, %, JO diagram yD, 72 diagram prisoner l prisoner round round round round round round round prisoner round prisoner round round prisoner round round round prisoner round prisoner

Claims (1)

【特許請求の範囲】 1、撮像レンズと、この撮像レンズの光軸上に配置され
て前記撮像レンズを透過した光像を分割反射させる複数
の反射面を有する反射体と、この反射体により分割反射
された各光像に対して各々光学的に異なる撮像領域を相
対的に隣接状態で受光する光学的位置に配置させた複数
の固体撮像素子とよりなることを特徴とする撮像装置。 2、各固体撮像素子の読取有効画素部の配置を、各々の
光学的位置関係の接続部で部分的に重ならせたことを特
徴とする請求項1記載の撮像装置。 3、反射体を四角錐プリズムミラーとしたことを特徴と
する請求項1又は2記載の撮像装置。
[Scope of Claims] 1. An imaging lens, a reflector disposed on the optical axis of the imaging lens and having a plurality of reflective surfaces that divide and reflect the light image transmitted through the imaging lens, and a reflector that divides the light image by the reflector. 1. An imaging device comprising a plurality of solid-state imaging devices arranged at optical positions where optically different imaging areas are relatively adjacent to each other and receive reflected light images. 2. The image pickup device according to claim 1, wherein the effective reading pixel portions of the solid-state image pickup devices are arranged so as to partially overlap each other at the connection portions in their respective optical positions. 3. The imaging device according to claim 1 or 2, wherein the reflector is a square pyramidal prism mirror.
JP1331971A 1989-12-21 1989-12-21 Image pickup device Pending JPH03191678A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1331971A JPH03191678A (en) 1989-12-21 1989-12-21 Image pickup device
US07/628,860 US5194959A (en) 1989-12-21 1990-12-18 Image forming apparatus for forming image corresponding to subject, by dividing optical image corresponding to the subject into plural adjacent optical image parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1331971A JPH03191678A (en) 1989-12-21 1989-12-21 Image pickup device

Publications (1)

Publication Number Publication Date
JPH03191678A true JPH03191678A (en) 1991-08-21

Family

ID=18249697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1331971A Pending JPH03191678A (en) 1989-12-21 1989-12-21 Image pickup device

Country Status (1)

Country Link
JP (1) JPH03191678A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001037551A1 (en) * 1999-11-15 2001-05-25 Choi Hyo Seung Single camera multiple scene observing device
JP2003234968A (en) * 1992-04-09 2003-08-22 Olympus Optical Co Ltd Image processor and imaging apparatus
US7142725B2 (en) 1992-04-09 2006-11-28 Olympus Optical Co., Ltd. Image processing apparatus
JP2007158395A (en) * 2005-11-30 2007-06-21 Shiseido Co Ltd Face-imaging apparatus
JP2019037798A (en) * 2013-06-20 2019-03-14 エウレカEurekam Imaging method and apparatus for safe medicinal preparation and object positioning stand relating thereto

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234968A (en) * 1992-04-09 2003-08-22 Olympus Optical Co Ltd Image processor and imaging apparatus
US7142725B2 (en) 1992-04-09 2006-11-28 Olympus Optical Co., Ltd. Image processing apparatus
US7415167B2 (en) 1992-04-09 2008-08-19 Olympus Optical Co., Ltd. Image processing apparatus
WO2001037551A1 (en) * 1999-11-15 2001-05-25 Choi Hyo Seung Single camera multiple scene observing device
JP2007158395A (en) * 2005-11-30 2007-06-21 Shiseido Co Ltd Face-imaging apparatus
JP4646788B2 (en) * 2005-11-30 2011-03-09 株式会社資生堂 Facial imaging device
JP2019037798A (en) * 2013-06-20 2019-03-14 エウレカEurekam Imaging method and apparatus for safe medicinal preparation and object positioning stand relating thereto

Similar Documents

Publication Publication Date Title
US5194959A (en) Image forming apparatus for forming image corresponding to subject, by dividing optical image corresponding to the subject into plural adjacent optical image parts
EP1895345B1 (en) Panoramic imaging device
JP2003029357A (en) High resolution viewing system
JPS60213178A (en) Image pickup device
JPH0614658B2 (en) Image reader
JPH03191678A (en) Image pickup device
WO2002035285A1 (en) Wide-angle imaging device
US6593559B2 (en) Image readout apparatus and image readout method using the same
JP2002314888A (en) Digital still camera
JPH04114574A (en) Image pickup device
CN201550179U (en) Plane image acquisition device with rotatable lens
JPH07193690A (en) Image reader
JP3129809B2 (en) Document illumination device in document reading device
JPH11220664A (en) Method for inputting image and device therefor and electronic camera
JPH066686A (en) Image pickup device
JP3057818U (en) Cost-effective optical device
RU2319187C2 (en) Image production device (variants)
JP2728441B2 (en) Image shift type image sensor
JP2587861B2 (en) Image shift type imaging device
JPS61193117A (en) Pattern image pickup device
KR100247778B1 (en) Video photographing device using a low resolving power element and method thereof
JPH0376463A (en) Facsimile equipment
JPH0530436A (en) Image pickup device
JPS62176281A (en) Image input device
JPS6110357A (en) Read system of picture