JPH03191549A - Manufacture of compound semiconductor device on si substrate - Google Patents

Manufacture of compound semiconductor device on si substrate

Info

Publication number
JPH03191549A
JPH03191549A JP1332226A JP33222689A JPH03191549A JP H03191549 A JPH03191549 A JP H03191549A JP 1332226 A JP1332226 A JP 1332226A JP 33222689 A JP33222689 A JP 33222689A JP H03191549 A JPH03191549 A JP H03191549A
Authority
JP
Japan
Prior art keywords
substrate
grooves
gaas
compound semiconductor
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1332226A
Other languages
Japanese (ja)
Inventor
Seiji Ochi
越智 誠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1332226A priority Critical patent/JPH03191549A/en
Publication of JPH03191549A publication Critical patent/JPH03191549A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Dicing (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enhance an yield in a crystal growth process and to prevent crystallinity from being deteriorated by a method wherein grooves of a desired depth are formed, in a grid shape, on the surface of an Si substrate, a GaAs layer is grown in parts other than the grooves on the substrate, the Si substrate is then polished or etched from the rear side until the substrate becomes a thickness which is smaller than the depth of the grooves and elements are isolated. CONSTITUTION:Grooves 11 are formed, in a grid shape, on the surface of an Si substrate 1; a chemical treatment is executed. A GaAs buffer layer 2 and a GaAs active layer 3 are epitaxially grown selectively and sequentially on parts where the grooves 11 have not been formed on the substrate which has been formed in this manner. A surface electrode 4 is formed on the GaAs active layer. The Si substrate 1 is polished or etched from the rear side until it becomes a thickness which is smaller than the depth of the grooves 11. Thereby, the GaAs buffer layer 2 and the GaAs active layer 3 can be epitaxially grown continuously on the substrate 1, an yield is enhanced in a crystal growth process and it is possible to prevent crystallinity from being deteriorated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はSi基板上化合物半導体装置の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a compound semiconductor device on a Si substrate.

〔従来の技術〕[Conventional technology]

第3図は例えば従来のSi基板上GaAs太陽電池の製
造方法を示す断面図である0図において、1はSi基板
、2はGaAsバッファ層、3はGaAs能動層、4は
表面電極、5は裏面電極である。
FIG. 3 is a cross-sectional view showing, for example, a conventional method for manufacturing a GaAs solar cell on a Si substrate. In FIG. 0, 1 is a Si substrate, 2 is a GaAs buffer layer, 3 is a GaAs active layer, 4 is a surface electrode, and 5 is a This is the back electrode.

次に製造方法を第3図■〜■に従って説明する。Next, the manufacturing method will be explained according to FIGS.

■ 化学処理されたSi基板1上にGaAsバッファ層
2をMOCVD法等の方法により成長する。
(2) A GaAs buffer layer 2 is grown on the chemically treated Si substrate 1 by a method such as MOCVD.

■ メサエッチングによりGaAsバッファ層2の分離
を行う。
(2) Separate the GaAs buffer layer 2 by mesa etching.

■ 分離されたGaAsバッファ層2上に選択的にGa
As活性層3をエピタキシャル成長させる。
■ Selectively deposit Ga on the separated GaAs buffer layer 2
The As active layer 3 is epitaxially grown.

■ GaAs活性層3上に表面電極4を形成する。(2) A surface electrode 4 is formed on the GaAs active layer 3.

■ Si基板1を裏面研磨又は裏面エツチング工程によ
り薄型化を行う。
(2) The thickness of the Si substrate 1 is reduced by polishing or etching the back surface.

■ Si基板1の裏面に裏面電極5の形成を行う。(2) A back electrode 5 is formed on the back surface of the Si substrate 1.

■ ダイシングにより素子分離を行う。■ Element separation is performed by dicing.

このような製造方法により形成されたデバイスにおいて
、各工程における歩留まりの低下状況を第2図(a)に
示す。
FIG. 2(a) shows how the yield decreases in each step in a device formed by such a manufacturing method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の製造プロセスは以上の様に構成されているため、
第3図■と■の工程で合計2回もエピタキシャル成長を
行う必要がある。また、このような2回のエピタキシャ
ル成長の間のフォトリソグラフィー工程及びエツチング
工程(第3図■)では、素子の表面が汚染されることが
多く、これにより活性層のGaAsの品質が劣化してし
まい、歩留まりの低下が生じていた。さらには第3図■
〜■に示すように基板1を薄型化して機械的強度の弱く
なったウェハに裏面電極形成、ダイシングの工程を行う
必要があるので、ウェハ割れ、チップ欠は等が生じやす
く歩留り低下が避けられない等の問題があった。
Since the conventional manufacturing process is structured as described above,
It is necessary to perform epitaxial growth a total of two times in the steps (■) and (■) in FIG. 3. Furthermore, in the photolithography process and etching process (Fig. 3 ■) between two epitaxial growths, the surface of the device is often contaminated, which deteriorates the quality of the GaAs in the active layer. , a decrease in yield occurred. Furthermore, Figure 3■
As shown in ~■, it is necessary to perform back electrode formation and dicing processes on a wafer whose mechanical strength has been weakened by thinning the substrate 1, so that wafer cracking, chipping, etc. are likely to occur, and a decrease in yield can be avoided. There were problems such as not having one.

この発明は、上記の様な問題点を解消するためになされ
たもので、メサエッチング工程、基板薄型化後のダイシ
ングカット工程をなくすことができるとともに、薄いS
i基板上に形成されたGaAsデバイスチップを容易に
高歩留りで得ることができるSi基板上化合物半導体装
置の製造方法を提供することを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to eliminate the mesa etching process and the dicing cut process after thinning the substrate, and also to
An object of the present invention is to provide a method for manufacturing a compound semiconductor device on a Si substrate, which allows GaAs device chips formed on an i-substrate to be easily obtained at a high yield.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るSi基板上化合物半導体装置の製造方法
は、Si基板の表面に碁盤目状に所望の深さの溝を形成
し、基板上の溝以外の部分にGaAsIIの成長を行い
、次いでSi基板を裏面側から基板が溝の深さ以下の厚
みになる迄、研磨又はエツチングすることにより素子分
離を行うようにしたものである。
In the method for manufacturing a compound semiconductor device on a Si substrate according to the present invention, grooves of a desired depth are formed in a checkerboard pattern on the surface of a Si substrate, GaAsII is grown on a portion of the substrate other than the grooves, and then Si Element isolation is performed by polishing or etching the substrate from the back side until the thickness of the substrate is equal to or less than the depth of the groove.

〔作用〕[Effect]

この発明におけるSi基板上化合物半導体装置の製造方
法では、GaAsバッファ層のメサエッチング工程、及
び基板薄型化後のダイシング工程をなくすことができ、
エピタキシャル成長を連続して行えるとともに、素子分
離と基板の薄膜化が同時に行える。
In the method of manufacturing a compound semiconductor device on a Si substrate according to the present invention, the mesa etching process of the GaAs buffer layer and the dicing process after thinning the substrate can be eliminated,
Epitaxial growth can be performed continuously, and element isolation and substrate thinning can be performed simultaneously.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図■〜■はこの発明の一実施例によるSi基板上半
導体装置の製造方法を示す各主要工程の断面構造を示す
図である0図において、1はSi基板、11はSi基板
1の表面に形成された溝、2はGaAsバフファ層、3
はGaAs能動層、4は表面電極、5は裏面電極である
Figures 1 to 1 are diagrams showing the cross-sectional structure of each main step of a method for manufacturing a semiconductor device on a Si substrate according to an embodiment of the present invention. In Figure 0, 1 is a Si substrate; Grooves formed on the surface, 2 are GaAs buffer layers, 3
is a GaAs active layer, 4 is a front electrode, and 5 is a back electrode.

次に製造方法について図に従って説明する。Next, the manufacturing method will be explained according to the drawings.

■ Si基板1表面に深さが50〜200μm程度の溝
11を碁盤目状に形成し、化学処理を行う。
(2) Grooves 11 having a depth of approximately 50 to 200 μm are formed in a checkerboard pattern on the surface of the Si substrate 1, and chemical treatment is performed.

■ このように形成した基板上の溝11形成部以外のと
ころに選択的に、GaAsバッファN2゜GaAs能動
層3を順次エピタキシャル成長させる。
(2) A GaAs buffer N2°GaAs active layer 3 is sequentially epitaxially grown selectively on the substrate formed in this manner in areas other than the groove 11 forming portion.

■ GaAs能動層上に表面電極4を形成する。(2) A surface electrode 4 is formed on the GaAs active layer.

■ Si基板1を裏面側から溝11の深さ(50〜20
0μm程度)以下の厚みになる迄、研磨又はエツチング
する。この工程により、基板の薄型化と太陽電池セルの
分離が同時に行える。
■ Depth the groove 11 from the back side of the Si substrate 1 (50 to 20
Polish or etch until the thickness is less than 0 μm. This process allows the substrate to be thinned and the solar cells to be separated at the same time.

■ この状態でsi基板の裏面に裏面電極を形成して本
装置を完成する。
(2) In this state, a back electrode is formed on the back surface of the Si substrate to complete the device.

以上、Si基板上化合物半導体装置の各工程における歩
留り状況を第2図(b)に示す。本実施例の製造方法に
よれば、従来のGaAsバッファ層のメサエッチング工
程をなくすようにしたので、基板1上にGaAsバッフ
ァ層2 + G a A s能動層3を連続してエピタ
キシャル成長させることができ、結晶成長工程での歩留
まり及び結晶性の劣化を防止できる。また、さらには基
板薄型化後のダイシング工程を省略できるので、さらに
歩留まりの低下を防止できる。
The yield status in each process of the compound semiconductor device on a Si substrate is shown in FIG. 2(b). According to the manufacturing method of this embodiment, since the conventional mesa etching process for the GaAs buffer layer is eliminated, it is possible to epitaxially grow the GaAs buffer layer 2 + GaAs active layer 3 on the substrate 1 in succession. This makes it possible to prevent deterioration of yield and crystallinity in the crystal growth process. Furthermore, since the dicing step after thinning the substrate can be omitted, it is possible to further prevent a decrease in yield.

なお、上記実施例はSi基板上GaAs太陽電池の製造
工程について示したが、半導体装置としてはフォトダイ
オード、LED、レーザ等の任意の光デバイスであって
もよく、また、これはFETの様な電子デバイスであっ
てもよい。
Although the above embodiment describes the manufacturing process of a GaAs solar cell on a Si substrate, the semiconductor device may be any optical device such as a photodiode, LED, or laser. It may also be an electronic device.

また、S)基板l上に成長される化合物半導体結晶は、
GaAsに限らず、InP、GaPやこれらの混晶であ
ってもよく、これらの場合においても上記実施例と同等
の効果を奏する。
Also, S) the compound semiconductor crystal grown on the substrate l is
The material is not limited to GaAs, but may be InP, GaP, or a mixed crystal thereof, and even in these cases, the same effect as in the above embodiment can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、基板としてSi表面に
碁盤目状に50μm〜200μm程度の深さの溝を形成
し、この溝形成部以外の基板上に選択的に化合物半導体
からなるバッファ層、能動層のエピタキシャル成長を行
い、次いでSi基板を裏面側から基板が溝の深さ以下の
厚みになる迄研磨又はエツチングすることにより基板の
薄型化及び素子分離を行うようにしたので、従来の化合
物半導体層のメサエソチング工程を失くすることができ
、工程が簡略化されると共に、化合物半導体層のエピタ
キシャル成長を連続して行えるため、結晶成長工程での
歩留り及び結晶性の劣化を防止出来る効果がある。また
、従来の基板薄型化後のダイシング工程をなくすことが
できるので、薄い基板上に形成されたSi基板上化合物
半導体装置を高い歩留りで得られる効果がある。
As described above, according to the present invention, grooves having a depth of about 50 μm to 200 μm are formed in a checkerboard pattern on the Si surface as a substrate, and a buffer layer made of a compound semiconductor is selectively formed on the substrate other than the groove forming portions. , the active layer is epitaxially grown, and then the Si substrate is polished or etched from the back side until the thickness of the substrate is less than the depth of the groove, thereby thinning the substrate and separating the elements, which is easier than using conventional compounds. It is possible to eliminate the mesa etching process of the semiconductor layer, which simplifies the process, and allows continuous epitaxial growth of the compound semiconductor layer, which has the effect of preventing deterioration of yield and crystallinity in the crystal growth process. . Furthermore, since the conventional dicing process after thinning the substrate can be eliminated, there is an effect that a compound semiconductor device on a Si substrate formed on a thin substrate can be obtained at a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるSi基板上化合物半
導体装置の製造方法による製造工程の流れを示す断面側
面図、第2図は従来の工程及び本発明による工程の工程
歩留りを示す図、第3図は従来のSi基板上化合物半導
体装置の製造方法の工程の流れを示す断面側面図である
。 1は81基板、2は化合物半導体バッファ層、3は化合
物半導体能動層、4は表面電極、5は裏面電極、11は
Si基板に形成された溝である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional side view showing the flow of the manufacturing process according to the method for manufacturing a compound semiconductor device on a Si substrate according to an embodiment of the present invention, and FIG. 2 is a diagram showing the process yield of the conventional process and the process according to the present invention. FIG. 3 is a cross-sectional side view showing the process flow of a conventional method for manufacturing a compound semiconductor device on a Si substrate. 1 is an 81 substrate, 2 is a compound semiconductor buffer layer, 3 is a compound semiconductor active layer, 4 is a front electrode, 5 is a back electrode, and 11 is a groove formed in the Si substrate. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)Si基板表面に碁盤の目状に配置された所望の深
さを有する溝を形成する工程と、 該Si基板表面の溝形成部以外の部分に化合物半導体層
を形成する工程と、 上記Si基板が溝の深さ以下の厚みになるまで該Si基
板をその裏面側からエッチングあるいは研磨して素子分
離を行う工程とを含むことを特徴とするSi基板上化合
物半導体装置の製造方法。
(1) A step of forming grooves having a desired depth arranged in a checkerboard pattern on the surface of the Si substrate, and a step of forming a compound semiconductor layer on a portion of the surface of the Si substrate other than the groove forming portion; 1. A method for manufacturing a compound semiconductor device on a Si substrate, comprising the step of etching or polishing the Si substrate from the back side until the thickness of the Si substrate becomes equal to or less than the depth of the groove to separate elements.
JP1332226A 1989-12-20 1989-12-20 Manufacture of compound semiconductor device on si substrate Pending JPH03191549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1332226A JPH03191549A (en) 1989-12-20 1989-12-20 Manufacture of compound semiconductor device on si substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1332226A JPH03191549A (en) 1989-12-20 1989-12-20 Manufacture of compound semiconductor device on si substrate

Publications (1)

Publication Number Publication Date
JPH03191549A true JPH03191549A (en) 1991-08-21

Family

ID=18252584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1332226A Pending JPH03191549A (en) 1989-12-20 1989-12-20 Manufacture of compound semiconductor device on si substrate

Country Status (1)

Country Link
JP (1) JPH03191549A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184109B1 (en) 1997-07-23 2001-02-06 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
US6294439B1 (en) 1997-07-23 2001-09-25 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
US6337258B1 (en) 1999-07-22 2002-01-08 Kabushiki Kaisha Toshiba Method of dividing a wafer
JP2004327708A (en) * 2003-04-24 2004-11-18 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP2005166913A (en) * 2003-12-02 2005-06-23 Sharp Corp Manufacturing method of compound semiconductor solar cell element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6184109B1 (en) 1997-07-23 2001-02-06 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
US6294439B1 (en) 1997-07-23 2001-09-25 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
US6337258B1 (en) 1999-07-22 2002-01-08 Kabushiki Kaisha Toshiba Method of dividing a wafer
JP2004327708A (en) * 2003-04-24 2004-11-18 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP2005166913A (en) * 2003-12-02 2005-06-23 Sharp Corp Manufacturing method of compound semiconductor solar cell element
JP4562381B2 (en) * 2003-12-02 2010-10-13 シャープ株式会社 Method for producing compound semiconductor solar cell element

Similar Documents

Publication Publication Date Title
US5882988A (en) Semiconductor chip-making without scribing
US6197609B1 (en) Method for manufacturing semiconductor light emitting device
US8455290B2 (en) Method of fabricating epitaxial structures
US5780320A (en) Method of manufacturing a semiconductor laser including two sets of dicing grooves
EP0182651B1 (en) Semiconductor substrate
KR20150038335A (en) Method for manufacturing composite substrate and method for manufacturing semiconductor crystal layer formation substrate
JPH01179342A (en) Composite semiconductor crystal
CN109686837A (en) A kind of preparation method of high sensitivity Hall element
JP4856350B2 (en) diode
US8330036B1 (en) Method of fabrication and structure for multi-junction solar cell formed upon separable substrate
US7749817B2 (en) Single-crystal layer on a dielectric layer
US20240063013A1 (en) Integrated Method For Low-Cost Wide Band Gap Semiconductor Device Manufacturing
KR930008861B1 (en) Manufacturing method of semicondcutor substrate having composite layer
JP4315744B2 (en) LAMINATE AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JPH03191549A (en) Manufacture of compound semiconductor device on si substrate
KR100353174B1 (en) Method for fabrication of silicon on insulator substrates
US5597410A (en) Method to make a SOI wafer for IC manufacturing
JP4046645B2 (en) Semiconductor device and manufacturing method thereof
JPH09181349A (en) Fabrication of semiconductor device
US20110057295A1 (en) Epitaxial substrate component made therewith and corresponding production method
JPH04165672A (en) Manufacture of buried photoelectronic integrated element
JP2000021778A (en) Method for epitaxial growth
JPS62224946A (en) Manufacture of semiconductor substrate
US20200273702A1 (en) Defect-free heterogeneous substrates
JPS60145625A (en) Manufacture of semiconductor device