JPH0319134A - Production of magnetic disk - Google Patents

Production of magnetic disk

Info

Publication number
JPH0319134A
JPH0319134A JP15488989A JP15488989A JPH0319134A JP H0319134 A JPH0319134 A JP H0319134A JP 15488989 A JP15488989 A JP 15488989A JP 15488989 A JP15488989 A JP 15488989A JP H0319134 A JPH0319134 A JP H0319134A
Authority
JP
Japan
Prior art keywords
recording medium
magnetic recording
film
magnetic
medium layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15488989A
Other languages
Japanese (ja)
Inventor
Tomoji Morita
森田 知二
Hisatoshi Hata
久敏 秦
Koji Yabushita
藪下 宏二
Kayoko Kurosai
黒宰 加代子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15488989A priority Critical patent/JPH0319134A/en
Publication of JPH0319134A publication Critical patent/JPH0319134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To surely protect a magnetic recording medium film and to obtain the magnetic disk having high reliability by oxidizing the surface part of the magnetic recording medium layer formed on a substrate by the plasma formed in a gaseous Ar atmosphere contg. oxygen to form an oxide film and coating the oxide film with a lubricating film. CONSTITUTION:The surface part of the magnetic recording medium layer 3 formed on the substrate 1 is oxidized by the plasma formed in the gaseous Ar atmosphere contg. the oxygen, by which the oxide film 4 is formed. This oxide film 4 acts as the protective film of the magnetic recording medium layer 3 and can lessen the spacing loss of a magnetic head and the magnetic recording medium layer 3. The magnetic recording medium film 3 is surely protected in this way and the magnetic disk of the high reliability which obviates the spreading of the effective spacing between the magnetic head and the magnetic recording medium film 3 is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁気記録装置の記録媒体として用いられ、ス
ペーシングロスが著しく改善された磁気ディスクの製造
方法に関するものである.〔従来の技術〕 近年、コンピュータシステムにおける磁気ディスク装置
などの外部記憶装置の重要性が増大し、高記録密度に対
する要求がますます高まっている.磁気ディスク装置は
記録再生ヘッドおよび磁気ディスクの主構威部から構威
され、磁気ディスクは高速で回転し記録再生ヘンドすな
わち、磁気ヘンドは磁気ディスクより微小間隔浮上して
いる.M1気ディスクの高記録密度化、高性能化を図る
ためには、磁気記録媒体の薄層化、均一一様化、磁気特
性の改良(保持力、角形比の向上)、磁気ヘッドの低浮
上化などが挙げられる. これまで磁気ディスクは塗布形といい、バインダーなど
の高分子材料とT−FezJ磁気記録媒体粒子を混合し
て塗布して製作していた.この方法では、磁気記録媒体
の薄層化、均一一様化に限界がある.このため最近では
、磁気記録媒体をスパッタリングなどの方法により連続
薄膜として基村上に設けるようになってきた. 現在、磁気ディスク装直では、起動および停止時に磁気
ディスクと磁気ヘッドが接触するコンタクト・スタート
・ストップ(CSS)方式を採用しており、起動および
停止時には磁気ヘンドと磁気ディスク表面が接触したま
ま回転する.この接触摩擦状態における磁気ヘッドと磁
気ディスクの間に生じる摩擦力は、磁気ヘンドと磁気デ
ィスク表面を摩擦させついには磁気ヘッドおよび磁気記
録媒体膜に傷を作ることがある.磁気記録媒体に連続薄
膜を用いた場合、わずかな傷であっても記録媒体の欠如
となり、記i!信号の消失につながる.このことは、磁
気ディスク装置の外部記憶装置としての信頼性に関わる
重大な問題である.このため、磁気ディスクの表面に、
磁気ヘッドと磁気記録媒体との接触摩擦および接触破壊
から磁気記録媒体を保護するために、SiOxlI!、
カーボン膜、^1zOs lIのような保護膜を設ける
ことが考案されている(例えば田子章男ら、第8回日本
応用磁気学会学術講演概要集(1984) 、222頁
;木町良弘ら、昭和61年度電子通信学会総合全国大会
予稿集(1986)、I−166頁;刈本博保ら、日本
潤滑学会第30期春期研究発表会予稿集(1 9 8 
6)   1 4 1頁などに発表されている.).ま
た、磁気記録媒体が金属の場合、この保護膜は金属膜の
防蝕も兼ねる役目がある.〔発明が解決しようとする課
題〕 このようにして設けられた保m!膜は磁気記録媒体膜上
に数百人の膜厚を有する.一方、磁気ヘンドの低浮上化
における間隔は2000人程度にまで小さくなってきて
おり、これにより再生出力の低下を防ぎ、高記録密度を
達戒している.ところが、磁気記録媒体膜上に保!1膜
を設けると、その存在だけで数百人のスペーシングロス
を生じることになり、磁気ヘッドと磁気記録媒体の間隔
が広がり、再生出力が低下するという問題点がある.こ
の発明は上記のような問題点を解決するためになされた
もので、磁気記録媒体膜の保護を確実に行うことができ
、磁気ヘッドと磁気記録媒体膜の実効的な間隔を広げる
ことのない、信頼性の高い磁気ディスクの製造方法を得
ることを目的とする. 〔課題を解決するための手段〕 この発明者らは、上述のような目的を達戒するために鋭
意研究を重ねた結果酸素を含有するArガス雰囲気中で
生或させたプラズマにより形成された酸化物膜、または
酸素を含むArガス雰囲気中で反応スパッタリングによ
り形成された酸化物膜が有効であることを見出し、この
発明を完或するに至ったものである.すなわち、この第
lの発明は酸素を含有するArガス雰囲気中で生威させ
たプラズマでもって、基板上に處膜された磁気記録媒体
層の表面部を酸化して酸化物膜を形成させるものである
.この第2の発明はArガス雰囲気中でスパッタリング
により基板上に磁気記録媒体層を形成させ、上記Arガ
スに酸素を混入して反応スパッタリングにより上記磁気
記録媒体層の表面に酸化物膜を形成させるものである.
〔作 用〕 この第1の発明によれば、酸素を含むArガス雰囲気中
で生或させたプラズマでもって、基板上の磁気記録媒体
層の表面部が酸化されて、酸化物が形成されるがこの酸
化は上記磁気記録媒体層の表面から深部に向かって進行
する.また、この第2の発明によれば、基板上への磁気
記録媒体層の形戒及び上記磁気記録媒体層への酸化物膜
の形或が、Arガス雰囲気からその雰囲気に酸素を混入
するという一連の作業でできるばかりでなく、反応スパ
ッタリングの条件を変えることにより酸化物の膜厚が簡
単に制御できる. この発明により得られた磁気ディスクは磁気記録媒体層
の表面に極く薄い酸化物膜ができており、この酸化物膜
は磁気記録媒体層の保護膜として作用し、従来の保護膜
に比べて磁気ヘッドと磁気記録媒体層とのスペーシング
ロスを極めて小さくできる. 〔実施例〕 実施例l 以下、この発明の一実施例を図について説明する.第l
図はこの発明の一実施例である磁気ディスクを製造する
工程の一部を順に示す部分拡大断面図であり、図におい
て、《1》はAI−Mg合金基板、(2)は非磁性材下
地層、(3》は磁気記録媒体層、(4)は酸化物膜、《
5》は潤滑膜である.AI−Mg合金基板の表面にNi
 −Pメッキ膜を成膜し鏡面加工してある基板に対して
、テープ研磨機を用い、ランピングテープWA#600
0、押圧1−、基板回転数200rp園、テープ送り速
度20W/sinの条件でテクスチャ加工を行った.こ
れにより、Rmax500人程度のAI−Mg合金基板
(1)を得た.上記基板(1)上にCrをアルゴン圧5
 X I O mTorr ,基板温度100℃、パヮ
ー300W/3インチ4φの条件でスパッタリングによ
り膜厚1000人である非磁性材下地層(2)を形成し
た.次いで、下地層(2)を設けた基板+1)はスパッ
タリング装置の真空ベルジャ(図示せず〉に設置し、C
o−Ni合金ターゲント(重量比70:30)を用いて
、アルゴン圧5 X 1 0 mTorr基板温度70
℃、パワー300W/3インチ4φでスパッタリングに
より膜厚500人である磁気記録媒体層(3)を得た(
第1図(al),成膜後、磁気ディスクを酸素を含有す
るArガス10mTorrのプラズマ中に30秒間入れ
て上記磁気記録媒体層の表面部に酸化物膜(4)を形成
した(第1図(bl).この表面処理後液体潤滑剤(K
RYTOX 1 5 7/M:デュポン社製商品名)の
2%溶液(溶媒:フロン1)3〉をスピンコートして潤
滑剤(5)を形成したく第1図(Cl). 実施例2 実施例1と同様にして、磁気ディスク(第1図山》)を
試作した. このディスク上にシランカソブリング剤(KBM603
:信越化学製商品名、アミノシラン系〉の5%溶液(溶
媒:IPA)をスピンコートし、その後液体潤滑剤(K
RYTOX 1 5 7 FS/M:デュポン社製商品
名〉の2%溶液(溶媒:フロンl13)をスピンコート
した. 実施例3 第2図はこの発明の他の実施例である磁気ディスクを製
造する工程の一部を順に示す部分拡大断面図である.図
において、符号(1)〜(5)は第1図で説明したので
省略する. 実施例lで得た、Rmax500人程度のAtMg合金
基板(1)上にCrをアルゴン圧5X10mTorr 
s基板温度100℃、パワー300W/3インチ4φの
条件で、スパッタリングにより膜厚100人である非磁
性材下地層(2)を形成した(第2図tal).次いで
、下地層(2)を設けた基板(1)はスパッタリング装
置の真空ベルジャ(図示せず〉に設置し、Go−Ni合
金ターゲット(重量比70:30)をアルゴン圧5 X
 1 0mTorr s基板温度70℃、パワー300
W/3インチ4φでスパッタリングにより膜厚500人
である磁気記録媒体層(3)を得た(第2図(b)), この或膜の終了附近において、酸素を導入した.酸素流
量をアルゴン流量の20%に設定し、スパンタ圧力はl
QmTorrにして反応スパッタリングにより上記磁気
記録媒体層《3》の表面に酸化物膜(4》を形成した(
第2図(c)).7i!膜終了後、液体潤滑剤(KRY
TOX 1 5 7 FS/M ;デュポン社製商品名
)の2%溶液(溶媒;フロン1)3)をスピンコートし
て、潤滑lI(51を形成した(第2図(dl). 実施例4 実施例3と同様の方法で磁気ディスク(第2図《C》)
を試作した. このディスク上にシランカンプリング剤(KBM601
信越化学製商品名、アξノシラン系)の5%溶液(溶媒
:IPA)をスピンコートし、その後、液体潤滑剤(K
RYTOX 1 5 7 FS/M:デュポン社製商品
名)の2%溶液(fJ媒:フロン1)3)をスピンコー
トした. 比較例1 実施例1で得た、Rmax500人程度のAtM.合金
基板上に下地Cr膜、磁気記録媒体としてCo  Ni
 をスパッタリングにより成膜した.この磁気記録媒体
層の上に保護膜としてCr とカーボンを既知の方法に
従いスパッタリングにより成膜した. この保護膜は下地Cr膜を含めて600人であった. 比較例2 実施例1で得た、Rmax500人程度のAtMg合金
基板上に下地Cr膜、磁気記録媒体としてCo −Ni
 をスパッタリングにより成膜した.その後液体潤滑剤
(KRYTOX 1 5 7 FS/M:デュポン社製
商品名)の2%溶液(溶媒:フロン1)3)をスピンコ
ートした. 実施例1、2、3、4、比較例l、2による磁気ディス
クの再生出力を調べた.比較例2の再生出力を1とした
規格化出力を表1に示した.表1 以上の結果から明らかなように、磁性媒体膜上に従来の
保護lll(Cr及びカーボン)を設けている場合には
、再生出力の低下が認められる.実施例l、2、3、4
、比較例1、2による磁気ディスクを温度60℃、湿度
90%R.H.の恒温恒湿槽中に20日間放置し、試験
前後のエラーの数をサーティファイアにより嘴ぺた結果
を表2に示した. 表2 以上結果から明らかなように、実施例による磁気ディス
クおよび保!!!膜を設けた比較例1の場合にはエラー
数に変化がなく、磁気記録媒体の腐食などの変質などが
防止できている.一方、保護膜を設けていない比較例2
の場合にはエラー数が非常に増大しており、磁気記録媒
体の腐食の発生に伴う磁気特性の劣化、媒体の欠如が生
したと考えられる. 磁気ディスクの耐久性試験であるCSS試験を行ったが
、実施例l、2、3、4および比較例1による磁気ディ
スクの場合、CSS2万回後においても磁気記録媒体上
に傷発生が認められず、エラーの増加、再生出力の減少
などの現象も認められなかった.なお、比較例2の場合
にはすぐに傷が発生し、CSS試験を行うことができな
かった. また、実施例1、2、3、4による磁気ディスクのCS
S20000回終了後の潤滑剤膜厚をFT−IRによっ
て測定した.試験開始前に比べて実施例1,3は88%
、実施例2、4は94%であった.中間層としてカップ
リング剤を塗布すると、磁気ディスク回転に対する潤滑
剤の保持に効果があったと考えられる.しかし、実用的
には実施例1、3によるディスクであっても差し支えな
い. 上記実施例および比較例では基板の素材として、AI−
Mg合金を用いたが、チタン合金、アル業ナガラス等の
セラξンクス、単結晶シリコン等、公知のものが使用で
きる. 上記非磁性材下地層の材質としては、Ni−P合金、N
i −Cu−P合金、Cu  Cr s Znステンテ
ス、アルマイトがあげられ、慣用の手法により基板表面
に被着する. 上記磁気記録媒体の材質としては、Co −Ni合金に
限定されるものではなく、Co −Ni −P合金、C
o  Ni−Cr合金、Fe−Go合金、Fe−Ni合
金、Fe −Co−Ni合金、FesCo ,Ni な
どの金属があげられ、磁気記録媒体として使用できるも
のであればよい. また、潤滑膜を形成する材料としては、液体潤滑剤のほ
かに固体潤滑剤が使用できる.〔発明の効果〕 以上の説明から明らかなように、この第1の発明は酸素
を含有するArガス雰囲気中で生成させたプラズマによ
り磁気記録媒体層の表面部に酸化物膜を形成させるもの
であり、第2の発明はArガス雰囲気中でスパッタリン
グにより磁気記録媒体層を基板上に形成させ、上記Ar
ガスに酸素を混入して反応スパッタリングにより上記磁
気記録媒体層の表面に酸化物膜を形成させるものである
ので、この第1および第2の発明は共通して磁気記録媒
体材料を用いて酸化物膜を形成させるという点にあり、
磁気記録媒体層と酸化物膜との境界は強固に結合し、か
つ丈夫な極めて薄い酸化物膜が得られる. 従って、これらの発明により、磁気記録媒体膜の保護を
確実に行なうことができ、磁気ヘッドと磁気記録媒体膜
の実効的な間隙を広げることのない、信頼性の高い磁気
ディスクが得られる.なお、この第2の発明においては
、特別な装置を必要とせず、従来の装置を使用して磁気
記録媒体層の成膜から酸化物膜の威形までを一連の作業
でできるので、操作が簡単であり、作業性にすぐれる.
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a magnetic disk that is used as a recording medium in a magnetic recording device and has significantly improved spacing loss. [Background Art] In recent years, the importance of external storage devices such as magnetic disk drives in computer systems has increased, and the demand for high recording densities has been increasing. A magnetic disk drive consists of a main structure of a recording/reproducing head and a magnetic disk.The magnetic disk rotates at high speed, and the recording/reproducing head, that is, the magnetic head, floats a minute distance above the magnetic disk. In order to increase the recording density and performance of M1 disks, it is necessary to make the magnetic recording medium thinner, more uniform, improve the magnetic properties (improvement of coercive force and squareness ratio), and lower the magnetic head. Examples include levitation. Up until now, magnetic disks have been manufactured by coating a mixture of polymeric materials such as binders and T-FezJ magnetic recording media particles. This method has limitations in making the magnetic recording medium thinner and more uniform. For this reason, recently, magnetic recording media have been deposited as a continuous thin film on the substrate using methods such as sputtering. Currently, magnetic disk remounting uses a contact start/stop (CSS) method in which the magnetic disk and magnetic head come into contact with each other when starting and stopping. do. The frictional force generated between the magnetic head and the magnetic disk in this contact friction state causes friction between the magnetic head and the surface of the magnetic disk, and may eventually cause scratches on the magnetic head and the magnetic recording medium film. When a continuous thin film is used as a magnetic recording medium, even a slight scratch will cause the recording medium to become defective. This leads to loss of signal. This is a serious problem concerning the reliability of magnetic disk devices as external storage devices. Therefore, on the surface of the magnetic disk,
In order to protect the magnetic recording medium from contact friction and contact damage between the magnetic head and the magnetic recording medium, SiOxlI! ,
It has been proposed to provide a protective film such as a carbon film or ^1zOslI (for example, Akio Tago et al., Abstracts of the 8th Japanese Society of Applied Magnetics, Academic Lectures (1984), p. 222; Yoshihiro Kimachi et al., 1988). Proceedings of the Annual National Conference of the Institute of Electronics and Communication Engineers (1986), page I-166; Hiroyasu Karimoto et al., Proceedings of the 30th Spring Research Presentation of the Japan Society of Lubrication (1986)
6) Published on pages 1, 4, etc. ). Furthermore, when the magnetic recording medium is metal, this protective film also serves to prevent corrosion of the metal film. [Problem to be solved by the invention] The protection provided in this way! The film has a thickness of several hundred people on the magnetic recording media film. On the other hand, the distance between magnetic heads has been reduced to about 2,000 people due to lower flying heights, which prevents a drop in playback output and achieves high recording density. However, the magnetic recording medium film does not hold! If one film is provided, its mere presence will cause a spacing loss of several hundred, which increases the distance between the magnetic head and the magnetic recording medium, causing a problem in that the reproduction output decreases. This invention was made in order to solve the above-mentioned problems, and it is possible to reliably protect the magnetic recording medium film without increasing the effective distance between the magnetic head and the magnetic recording medium film. The purpose is to obtain a highly reliable manufacturing method for magnetic disks. [Means for Solving the Problem] As a result of extensive research in order to achieve the above-mentioned objectives, the inventors discovered that a plasma formed by a plasma generated in an oxygen-containing Ar gas atmosphere was discovered. The inventors have discovered that an oxide film, or an oxide film formed by reactive sputtering in an oxygen-containing Ar gas atmosphere, is effective, and have completed the present invention. That is, the first invention forms an oxide film by oxidizing the surface portion of a magnetic recording medium layer formed on a substrate using plasma grown in an oxygen-containing Ar gas atmosphere. It is. This second invention forms a magnetic recording medium layer on a substrate by sputtering in an Ar gas atmosphere, mixes oxygen into the Ar gas, and forms an oxide film on the surface of the magnetic recording medium layer by reactive sputtering. It is something.
[Function] According to the first invention, the surface portion of the magnetic recording medium layer on the substrate is oxidized by plasma generated in an oxygen-containing Ar gas atmosphere to form an oxide. However, this oxidation progresses from the surface of the magnetic recording medium layer to the deeper part. Further, according to the second invention, the shape of the magnetic recording medium layer on the substrate and the shape of the oxide film on the magnetic recording medium layer are such that oxygen is mixed into the atmosphere from the Ar gas atmosphere. Not only can this be achieved through a series of operations, but the thickness of the oxide film can also be easily controlled by changing the reactive sputtering conditions. The magnetic disk obtained by this invention has an extremely thin oxide film formed on the surface of the magnetic recording medium layer, and this oxide film acts as a protective film for the magnetic recording medium layer, and is more effective than conventional protective films. Spacing loss between the magnetic head and the magnetic recording medium layer can be extremely reduced. [Example] Example 1 An example of the present invention will be described below with reference to the drawings. No.l
The figures are partially enlarged cross-sectional views sequentially showing a part of the process of manufacturing a magnetic disk according to an embodiment of the present invention. Geological layer, (3) is the magnetic recording medium layer, (4) is the oxide film,
5》 is a lubricating film. Ni on the surface of the AI-Mg alloy substrate
- Using a tape polisher, apply ramping tape WA#600 to a substrate on which a P plating film has been formed and which has been mirror-finished.
Texture processing was performed under the following conditions: 0, pressing force 1-, substrate rotation speed 200 rpm, and tape feed rate 20 W/sin. As a result, an AI-Mg alloy substrate (1) with an Rmax of about 500 was obtained. Cr on the above substrate (1) under 5 argon pressure
A non-magnetic material base layer (2) having a thickness of 1000 mm was formed by sputtering under the following conditions: Next, the substrate +1) provided with the underlayer (2) was placed in a vacuum bell jar (not shown) of a sputtering device, and
Using o-Ni alloy target (weight ratio 70:30), argon pressure 5 x 10 mTorr substrate temperature 70
A magnetic recording medium layer (3) with a film thickness of 500 mm was obtained by sputtering at 300 W/3 inch 4φ at a power of 300 W/4φ.
FIG. 1(al): After film formation, the magnetic disk was placed in a plasma of Ar gas containing oxygen at 10 mTorr for 30 seconds to form an oxide film (4) on the surface of the magnetic recording medium layer (first Figure (bl). Liquid lubricant (K) after this surface treatment
A 2% solution (solvent: Freon 1) of RYTOX 1 5 7/M (trade name manufactured by DuPont) was spin-coated to form a lubricant (5) as shown in Figure 1 (Cl). Example 2 In the same manner as in Example 1, a magnetic disk (mountain in Figure 1) was prototyped. On this disk, apply a silane casing agent (KBM603).
: A 5% solution (solvent: IPA) of Shin-Etsu Chemical's product name, aminosilane type was spin-coated, and then a liquid lubricant (K
A 2% solution of RYTOX 157 FS/M (trade name manufactured by DuPont) (solvent: Freon 113) was spin coated. Embodiment 3 FIG. 2 is a partially enlarged sectional view sequentially showing a part of the process of manufacturing a magnetic disk according to another embodiment of the present invention. In the figure, symbols (1) to (5) have been explained in FIG. 1, so their description will be omitted. Cr was applied to the AtMg alloy substrate (1) obtained in Example 1 with an Rmax of about 500 people under an argon pressure of 5 x 10 mTorr.
A non-magnetic material base layer (2) having a thickness of 100 mm was formed by sputtering at a substrate temperature of 100° C. and a power of 300 W/3 inches 4φ (Fig. 2). Next, the substrate (1) provided with the underlayer (2) was placed in a vacuum bell jar (not shown) of a sputtering device, and a Go-Ni alloy target (weight ratio 70:30) was placed under an argon pressure of 5X.
10mTorr sSubstrate temperature 70℃, power 300
A magnetic recording medium layer (3) having a film thickness of 500 nm was obtained by sputtering with W/3 inches and 4φ (Fig. 2(b)). Oxygen was introduced near the end of this certain film. The oxygen flow rate was set to 20% of the argon flow rate, and the spanner pressure was l.
An oxide film (4) was formed on the surface of the magnetic recording medium layer (3) by reactive sputtering at QmTorr (
Figure 2(c)). 7i! After the film is finished, liquid lubricant (KRY
A 2% solution (solvent: Freon 1) 3) of TOX 1 5 7 FS/M (trade name manufactured by DuPont) was spin-coated to form a lubricant lI (51 (Fig. 2 (dl)). Example 4 A magnetic disk (Fig. 2 <<C>>) was prepared in the same manner as in Example 3.
We made a prototype. A silane camping agent (KBM601) is placed on this disk.
A 5% solution (solvent: IPA) of Shin-Etsu Chemical's product name, ξ-nosilane series) was spin-coated, and then a liquid lubricant (K
A 2% solution of RYTOX 1 5 7 FS/M (trade name manufactured by DuPont) (fJ medium: Freon 1) 3) was spin-coated. Comparative Example 1 AtM. of about Rmax 500 people obtained in Example 1. Base Cr film on alloy substrate, CoNi as magnetic recording medium
was deposited by sputtering. A protective film of Cr and carbon was formed on this magnetic recording medium layer by sputtering according to a known method. This protective film had a thickness of 600 including the underlying Cr film. Comparative Example 2 A base Cr film was formed on the AtMg alloy substrate obtained in Example 1 with an Rmax of about 500, and a Co-Ni film was used as a magnetic recording medium.
was deposited by sputtering. Thereafter, a 2% solution (solvent: Freon 1)3) of a liquid lubricant (KRYTOX 1 5 7 FS/M: trade name manufactured by DuPont)3) was spin coated. The reproduction output of the magnetic disks according to Examples 1, 2, 3, and 4 and Comparative Examples 1 and 2 was investigated. Table 1 shows the normalized output with the playback output of Comparative Example 2 set at 1. Table 1 As is clear from the above results, when the conventional protection layer (Cr and carbon) is provided on the magnetic medium film, a decrease in the reproduction output is observed. Examples 1, 2, 3, 4
, the magnetic disks according to Comparative Examples 1 and 2 were heated at a temperature of 60° C. and a humidity of 90% R. H. Table 2 shows the number of errors before and after the test using a certifier. Table 2 As is clear from the above results, the magnetic disk and storage capacity according to the example are as follows. ! ! In the case of Comparative Example 1 in which a film was provided, there was no change in the number of errors, and deterioration such as corrosion of the magnetic recording medium was prevented. On the other hand, comparative example 2 without a protective film
In the case of , the number of errors increased significantly, and it is thought that the deterioration of the magnetic properties due to corrosion of the magnetic recording medium and the lack of the medium occurred. A CSS test, which is a durability test for magnetic disks, was conducted, and in the case of the magnetic disks of Examples 1, 2, 3, and 4 and Comparative Example 1, scratches were observed on the magnetic recording medium even after 20,000 CSS cycles. Furthermore, no phenomena such as an increase in errors or a decrease in playback output were observed. In addition, in the case of Comparative Example 2, scratches occurred immediately and the CSS test could not be performed. Further, the CS of the magnetic disks according to Examples 1, 2, 3, and 4
The lubricant film thickness after 20,000 S cycles was measured by FT-IR. 88% in Examples 1 and 3 compared to before the start of the test
, Examples 2 and 4 were 94%. It is thought that applying a coupling agent as an intermediate layer was effective in retaining the lubricant against the rotation of the magnetic disk. However, for practical purposes, the disks according to Examples 1 and 3 may be used. In the above Examples and Comparative Examples, AI-
Although Mg alloy was used, other known materials such as titanium alloy, ceramics such as aluminum glass, single crystal silicon, etc. can be used. The material of the non-magnetic underlayer is Ni-P alloy, N
Examples include i-Cu-P alloy, CuCrsZn stents, and alumite, and are deposited on the substrate surface by conventional methods. The material of the magnetic recording medium is not limited to Co-Ni alloy, but includes Co-Ni-P alloy, C
o Examples include metals such as Ni-Cr alloy, Fe-Go alloy, Fe-Ni alloy, Fe-Co-Ni alloy, FesCo, and Ni, as long as they can be used as magnetic recording media. In addition to liquid lubricants, solid lubricants can be used as materials for forming the lubricant film. [Effects of the Invention] As is clear from the above description, the first invention forms an oxide film on the surface of the magnetic recording medium layer by plasma generated in an oxygen-containing Ar gas atmosphere. There is a second invention in which a magnetic recording medium layer is formed on a substrate by sputtering in an Ar gas atmosphere, and the above-mentioned Ar
Since an oxide film is formed on the surface of the magnetic recording medium layer by mixing oxygen into a gas and performing reactive sputtering, the first and second inventions have in common that an oxide film is formed on the surface of the magnetic recording medium layer using a magnetic recording medium material. The point is to form a film,
The boundary between the magnetic recording medium layer and the oxide film is strongly bonded, and a durable, extremely thin oxide film can be obtained. Therefore, these inventions provide a highly reliable magnetic disk in which the magnetic recording medium film can be reliably protected and the effective gap between the magnetic head and the magnetic recording medium film does not increase. In addition, in this second invention, no special equipment is required, and the steps from forming the magnetic recording medium layer to shaping the oxide film can be performed in a series of operations using conventional equipment, so the operation is easy. It is simple and has excellent workability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例である磁気ディスクを製造
する工程の一部を順に示す部分拡大断面図、第2図はこ
の発明の他の実施例である磁気ディスクを製造する工程
の一部を順に示す部分拡大断面図である. 図において、(1)はAI−M8合金基板、(2)は非
磁性材下地層、《3》は磁気記録媒体層、(4)は酸化
物膜、(5)は潤滑膜である. なお、図中、同一符号は同一または相当部分を示す. 第1図
FIG. 1 is a partially enlarged cross-sectional view sequentially showing a part of the process of manufacturing a magnetic disk according to an embodiment of the present invention, and FIG. 2 is a partial enlarged sectional view of a process of manufacturing a magnetic disk according to another embodiment of the invention. FIG. In the figure, (1) is an AI-M8 alloy substrate, (2) is a non-magnetic material underlayer, <<3>> is a magnetic recording medium layer, (4) is an oxide film, and (5) is a lubricant film. In addition, the same symbols in the figures indicate the same or equivalent parts. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に設けられる合金あるいは金属磁気記録媒
体層をスパッタリングにより成膜する磁気ディスクの製
造方法において酸素を含有するArガス雰囲気中で生成
させたプラズマでもって、基板上に成膜された磁気記録
媒体層の表面部を酸化して酸化物膜を形成させ、この酸
化膜上に潤滑膜を被覆することを特徴とする磁気ディス
クの製造方法。
(1) In a magnetic disk manufacturing method in which an alloy or metal magnetic recording medium layer provided on a substrate is formed by sputtering, a film is formed on a substrate using plasma generated in an oxygen-containing Ar gas atmosphere. 1. A method of manufacturing a magnetic disk, comprising: oxidizing a surface portion of a magnetic recording medium layer to form an oxide film; and coating the oxide film with a lubricant film.
(2)基板上に設けられる合金あるいは金属磁気記録媒
体層をスパッタリングにより成膜する磁気ディスクの製
造方法において、Arガス雰囲気中でスパッタリングに
より基板上に磁気記録媒体層を形成させ、上記Arガス
に酸素を混入して反応スパッタリングにより上記磁気記
録媒体層の表面に酸化物膜を形成させ、この酸化膜上に
潤滑膜を被覆することを特徴とする磁気ディスクの製造
方法。
(2) In a method for manufacturing a magnetic disk in which an alloy or metal magnetic recording medium layer provided on a substrate is formed by sputtering, the magnetic recording medium layer is formed on the substrate by sputtering in an Ar gas atmosphere, and the magnetic recording medium layer is formed on the substrate by sputtering in an Ar gas atmosphere. A method of manufacturing a magnetic disk, comprising: forming an oxide film on the surface of the magnetic recording medium layer by mixing oxygen with reactive sputtering, and coating the oxide film with a lubricating film.
JP15488989A 1989-06-16 1989-06-16 Production of magnetic disk Pending JPH0319134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15488989A JPH0319134A (en) 1989-06-16 1989-06-16 Production of magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15488989A JPH0319134A (en) 1989-06-16 1989-06-16 Production of magnetic disk

Publications (1)

Publication Number Publication Date
JPH0319134A true JPH0319134A (en) 1991-01-28

Family

ID=15594174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15488989A Pending JPH0319134A (en) 1989-06-16 1989-06-16 Production of magnetic disk

Country Status (1)

Country Link
JP (1) JPH0319134A (en)

Similar Documents

Publication Publication Date Title
JP2781656B2 (en) recoding media
JPH07105034B2 (en) Magnetic recording body
JP2817502B2 (en) Magnetic storage
US6238780B1 (en) Magnetic recording medium comprising multilayered carbon-containing protective overcoats
JPH0319134A (en) Production of magnetic disk
US7361380B1 (en) Process for improving corrosion resistance of thin-film recording media &amp; media obtained thereby
JPH0322218A (en) Production of magnetic disk
JPH0785461A (en) Magnetic recording medium and manufacture thereof
JPH0424426B2 (en)
JP2001229524A (en) Magnetic recording medium
JPH09265616A (en) Magnetic head and its production
JP3479529B2 (en) Magnetic recording medium, method of manufacturing the same, and magnetic storage device
JPH0416855B2 (en)
JP2924052B2 (en) Magnetic storage body and method of manufacturing the same
JP3069135B2 (en) Method for manufacturing magneto-optical recording medium
JPH10326408A (en) Magnetic recording medium and its production
JP2659016B2 (en) Magnetic recording media
JPH04109427A (en) Magnetic recording medium
JPS6180522A (en) Magnetic recording medium
JPH07254128A (en) Magnetic recording medium
JPS61204831A (en) Magnetic disk
JPH0836744A (en) Magnetic recording medium
JPH02108234A (en) Magnetic disk
JPS63104215A (en) Magnetic recording medium
JPH02118916A (en) Magnetic recording medium