JPH03191262A - Very low temperature rotary machinery and apparatus - Google Patents

Very low temperature rotary machinery and apparatus

Info

Publication number
JPH03191262A
JPH03191262A JP32598389A JP32598389A JPH03191262A JP H03191262 A JPH03191262 A JP H03191262A JP 32598389 A JP32598389 A JP 32598389A JP 32598389 A JP32598389 A JP 32598389A JP H03191262 A JPH03191262 A JP H03191262A
Authority
JP
Japan
Prior art keywords
heat insulating
heat
insulating member
vacuum
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32598389A
Other languages
Japanese (ja)
Inventor
Susumu Harada
進 原田
Norimoto Matsuda
松田 紀元
Hironobu Ueda
博信 上田
Kazuo Okamoto
和夫 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32598389A priority Critical patent/JPH03191262A/en
Publication of JPH03191262A publication Critical patent/JPH03191262A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the heat insulating efficiency of a very low temperature device and to enable improvement of the efficiency of a refrigeration system by a method wherein the interior of a heat insulating member located between the blade of a low temperature part and the bearing part of an ordinary temperature part forms vacuum structure. CONSTITUTION:A heat insulating member 6 effects heat insulation of, for example, a low temperature part (approximate 80K) having an inner part 7 made of Bakelite sealed in vacuum and an ordinary temperature part (approximate 300K) to reduce an entering heat, and is provided to suppress the increase of the temperature of helium gas, heat-insulated and compressed by means of an impeller 1, as much as possible. The heat insulating member is formed of an upper plate and a lower plate 22 made of, for example, stainless having low thermal conductivity and inner and outer peripheral rings 23 and 24 made of Bakelite. The members are adhered, in an airtight manner, to each other to form airtight structure, puff polishing is applied on an inner surface, and the coefficient of radiation is decreased. Further, after the heat insulating member 6 is drawn into vacuum through, for example, a silver-soldered copper pipe 25, it is forced into a pressure contact state and held in an airtight state. This constitution reduces heat entering the low temperature part and enables maintenance of determined heat insulating efficiency without the increase of the outlet fluid temperature of a rotary device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は極低温回転機器に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to cryogenic rotating equipment.

〔従来の技術〕[Conventional technology]

従来の極低温回転機器の構造例としては、例えば、小形
ヘリウム冷凍システム、日立評論、68゜43(198
6−3)に記載のように、侵入熱を低減させるために熱
伝導率の小さい断熱板を設けた例が示されている。
As an example of the structure of conventional cryogenic rotating equipment, for example, a small helium refrigeration system, Hitachi Hyoron, 68°43 (198
As described in 6-3), an example is shown in which a heat insulating plate with low thermal conductivity is provided in order to reduce the intrusion heat.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は常温から極低温部への侵入熱の低減方法
について十分配慮されておらず、極低温回転機器の効率
な低下させるという問題があった。
The above-mentioned conventional technology does not give sufficient consideration to the method of reducing the heat that enters the cryogenic part from room temperature, and there is a problem in that the efficiency of the cryogenic rotating equipment is reduced.

本発明は回転機器の効率を向上させることを目的として
おり、さらには冷凍機システムの効率の向上を提供する
ことを目的とする。
The present invention aims to improve the efficiency of rotating equipment, and further aims to provide improved efficiency of refrigerator systems.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、極低温回転機器の断熱板を
薄肉の中空容器とし、内部を真空にすることにより熱伝
導により侵入熱を極力小さ(するものである。
In order to achieve the above object, the heat insulating plate of the cryogenic rotating equipment is made into a thin-walled hollow container, and by making the inside a vacuum, the intrusion heat is minimized by heat conduction.

また、断熱板の内部に積層断熱材を設けたのは、さらに
ふく射による侵入熱を低減させるためである。
Furthermore, the reason why the laminated heat insulating material is provided inside the heat insulating board is to further reduce the intrusion heat due to radiation.

〔作  用〕[For production]

極低温回転機器の低温部の羽根と常温の軸受部分に設け
られた断熱板は薄肉の中空容器となっており、内部は真
空に保たれているので、熱伝導による常温部からの侵入
熱は通常のベークライト等で製作された断熱板に比べる
と極めて小さい。それによって、低温部への侵入熱は小
さ鳴なり、回転機器の出口流体温度は上昇することな畷
定められた断熱効率を維持できる。
The heat insulating plates installed in the blades of the low-temperature parts of cryogenic rotating equipment and the bearing parts at room temperature are thin-walled hollow containers, and the interior is kept in a vacuum, so no heat can enter from the room-temperature parts due to heat conduction. It is extremely small compared to ordinary insulation boards made of Bakelite etc. As a result, the amount of heat intruding into the low-temperature part is reduced, and the temperature of the outlet fluid of the rotating equipment does not rise, and the specified adiabatic efficiency can be maintained.

〔実 施 例〕〔Example〕

以下本発明の一実施例を、第1図および第2図により説
明する。第1図は例えば低温(釣80K)のヘリウムガ
スを圧縮して循環するヘリウムブロワーセの概略図を示
す。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 shows a schematic diagram of a helium blower that compresses and circulates low-temperature (80K) helium gas, for example.

入口管9により吸込まれた1、 2 aim約80にの
ヘリウムガスは高速回転しているインペラー1により圧
縮されて出口管10を通って被冷却体(図示省略)を送
られて循環している。シャフト8の駆動はモータロータ
゛2とモータステータ3からなる高周波モータにより行
われ、シャフトはジャーナル軸受4およびスラスト軸受
5による気体軸受によって支持されている。またモータ
の発熱は冷却水を水入口管13から水出口管14へ一定
量流すことによって除去されている。断熱部材6は例え
ばベークライト製の内部7が真空に封し込められている
低温部(約80K)と常温部(約300K)の熱的断熱
を行い侵入熱を低減させ、インペラー1によって断熱圧
縮されたヘリウムガスの温度の上昇を極力押えるために
設けである。なお、Hの一点鎖線はヘリウムブロワ−認
を収納する仮想的な真空保冷槽を示す。第2図に断熱部
材6の構造図を示す。材質は熱伝導率が小さい例えばス
テンレス製の、上板ガと下板nとベークライト製の内周
リング器および外周リング冴より構成され、それぞれ接
着され気密構造となっている。また上板nと下板nの内
面は例えばパフ研磨されておりふく耐重を小さくしてい
る。さらに断熱部材6は例えば銀ロウ付された銅管5よ
り真空引した後、圧接され気密を保持されている。
Helium gas at about 1 or 2 Aim 80, which is sucked in through the inlet pipe 9, is compressed by the impeller 1 which rotates at high speed, and is circulated through the outlet pipe 10 and sent to the object to be cooled (not shown). . The shaft 8 is driven by a high frequency motor consisting of a motor rotor 2 and a motor stator 3, and the shaft is supported by a gas bearing including a journal bearing 4 and a thrust bearing 5. Further, the heat generated by the motor is removed by flowing a constant amount of cooling water from the water inlet pipe 13 to the water outlet pipe 14. The heat insulating member 6 has an interior 7 made of Bakelite, for example, which thermally insulates the low temperature part (approximately 80 K) sealed in vacuum and the room temperature part (approximately 300 K) to reduce the intrusion heat, and is adiabatically compressed by the impeller 1. This is provided to suppress the rise in temperature of the helium gas as much as possible. Note that the dashed line H indicates a virtual vacuum cold storage tank that accommodates the helium blower. FIG. 2 shows a structural diagram of the heat insulating member 6. The material is made of an upper plate and a lower plate made of stainless steel having a low thermal conductivity, and an inner ring and an outer ring made of Bakelite, each of which is bonded to form an airtight structure. Further, the inner surfaces of the upper plate n and the lower plate n are, for example, puff-polished to reduce the weight resistance. Further, the heat insulating member 6 is, for example, evacuated from a silver-brazed copper tube 5 and then press-fitted to maintain airtightness.

次に断熱部材を従来例のようにベークライト製の円板で
作つた場合と本発明の真空容器にした場合の300Kか
ら80Kまでの侵入熱蓋の概略計算を行ってみる。まず
断熱部材がベークライト板(直径φIQQIIII、厚
さ10鵡)のときの侵入熱はベークライトの熱伝導率を
0.4 (W/m”K ]とすると 次に本発明の場合、中空であるので熱伝導による侵入熱
は十分小さくできるが、ふく射による侵入熱も検討する
必要がある。パフ研磨したステンレスのふく耐重を0.
2とすると、ふ(射による侵入熱は QA=  (0,1)2X0.2X5.66X10−’
X (300’−80’)=0.72K次に外周リング
必の厚さを5諺とすると、熱伝導による侵入熱は Q[1=0.4XXX0.IXo、005X”’ ”’
=13.8WO101 合計で Q2 =QA +QO= 0.72 + 13.8中1
5Wしたがって本実施例によれば侵入熱を約80−低減
が可能となる。
Next, we will roughly calculate the heat intrusion cover from 300K to 80K when the heat insulating member is made of a Bakelite disk as in the conventional example and when the vacuum container of the present invention is used. First, when the heat insulating member is a Bakelite plate (diameter φIQQIII, thickness 10 mm), the heat intrusion is calculated by assuming that the thermal conductivity of Bakelite is 0.4 (W/m"K). Next, in the case of the present invention, since it is hollow, Although the heat intrusion due to thermal conduction can be sufficiently reduced, it is also necessary to consider the intrusion heat due to radiation.
2, the heat intrusion due to radiation is QA= (0,1)2X0.2X5.66X10-'
X (300'-80') = 0.72K Next, if the thickness of the outer ring is assumed to be 5, the intrusion heat due to thermal conduction is Q[1 = 0.4XXX0. IXo, 005X”'”'
=13.8WO101 Total Q2 =QA +QO= 0.72 + 1 out of 13.8
5W. Therefore, according to this embodiment, it is possible to reduce the intrusion heat by about 80.

以上、詳細に述べたように本実施例によれば、効果的に
常温から極低滋部への侵入熱を低減できる効果があり、
極低温機器の断熱効率を向上できる効果がある。
As described in detail above, according to this embodiment, it is possible to effectively reduce the intrusion of heat from normal temperature to the extremely low temperature part.
It has the effect of improving the insulation efficiency of cryogenic equipment.

第3図に本発明の第2の実施例を示す。繭述の一実施例
と同一の符号のものの説明は省略する。
FIG. 3 shows a second embodiment of the invention. Descriptions of parts with the same reference numerals as those in the embodiment will be omitted.

本実施例では断熱部材6のステンレス製の上板nおよび
下板nはパフ研磨されていないが、真空槽内にはアルミ
蒸着された積層断熱材がか設けられており効果的にふく
射熱を低減できる効果があり。
In this embodiment, the stainless steel upper plate n and lower plate n of the heat insulating member 6 are not puff polished, but a laminated heat insulating material deposited with aluminum is provided inside the vacuum chamber to effectively reduce radiated heat. There is an effect that can be done.

極低iIA機器の断熱効率を向上できる効果がある。This has the effect of improving the insulation efficiency of extremely low iIA equipment.

!4図に本発明の第3の実施例を示す。一実施例を第1
図と同一符号のものの説明は省略する。
! FIG. 4 shows a third embodiment of the present invention. One example is the first
Descriptions of parts with the same reference numerals as those in the figures will be omitted.

断熱部材6の内部は真空封じ切りさ訂ておらすへリウム
ブロワーの上部ケーシングおと下部ケーシング(資)に
設けた連通孔!および(を介して真空槽と通じている。
The inside of the heat insulating member 6 is vacuum-sealed and there are communication holes provided in the upper and lower casings of the helium blower. It communicates with the vacuum chamber through and (.

したがって真空保冷槽11内が所定の真空に達すれば、
断熱部材6内も真空になる構造となっている。従つて、
本実施例によれば断熱部材6は真空封じ切りされていな
いので、真空劣化等の問題を生ずることなく断熱性能の
信頼性を高める効果があり、また、常温から極低温部へ
の侵入熱を低減できる効果があり、極低温機器の断熱効
率を向上できる効果がある。
Therefore, when the inside of the vacuum cold storage tank 11 reaches a predetermined vacuum,
The inside of the heat insulating member 6 is also evacuated. Therefore,
According to this embodiment, since the heat insulating member 6 is not vacuum sealed, it has the effect of increasing the reliability of the heat insulating performance without causing problems such as vacuum deterioration, and also prevents heat from entering from room temperature to the cryogenic part. It has the effect of reducing the amount of carbon dioxide, and it has the effect of improving the insulation efficiency of cryogenic equipment.

第5図に本発明の第4の実施例を示す。断熱部材6の内
部は真空封じ切りされておらずヘリウムブロク−の上部
ケーシング31に設けた連通孔にと通じている。また連
通孔!は外部配管調と接続されており、単独で真空引き
が行えるようになっている。所定の真空引きが終了する
と真空バルブ墨な閉じればよい。従って、本実施例によ
れば断熱部材6を単独で真空引きできるので真空劣化の
間層がなく、断熱性能の信頼性を高める効果があり、常
温から極低温部への侵入熱を低減できる効果があり、極
低温機器の断熱効率を向上できる効果がある。
FIG. 5 shows a fourth embodiment of the present invention. The inside of the heat insulating member 6 is not vacuum sealed and communicates with a communication hole provided in the upper casing 31 of the helium block. Another communication hole! is connected to an external piping control so that vacuuming can be performed independently. When the predetermined evacuation is completed, the vacuum valve may be closed. Therefore, according to this embodiment, since the heat insulating member 6 can be evacuated independently, there is no layer of vacuum deterioration, which has the effect of increasing the reliability of the heat insulating performance, and has the effect of reducing heat intrusion from normal temperature to the cryogenic temperature part. This has the effect of improving the insulation efficiency of cryogenic equipment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、断熱部材の内部が真空になっているの
で極低温111Hの常温からの低温部への侵入熱を低減
できる効果がある。
According to the present invention, since the inside of the heat insulating member is in a vacuum, there is an effect of reducing the intrusion of heat from the normal temperature of the cryogenic temperature 111H into the low temperature part.

また、侵入熱を低減できるので極低温機器の断熱効率を
良鴫する効果があり、冷凍システムの効率を向上できる
効果もある。
Furthermore, since the intrusion heat can be reduced, it has the effect of improving the insulation efficiency of cryogenic equipment, and has the effect of improving the efficiency of the refrigeration system.

【図面の簡単な説明】[Brief explanation of drawings]

!1図は本発明の一実施例のヘリウムブロワ−の縦断面
図、第2図は第1図の断熱部材の構造図、第3図は本発
明のfE2の実施例の断熱部材の構造図、第4図および
115図は本発明の第3および第4の実施例のヘリウム
ブロワ−の縦断面図である。 6・・・・・・断熱部材、4・・・・・・上板、n・・
・・・・下板、ス・・・・・・内周リング、必・・・・
・・外周リング、加・・・・・・積層封1図 イ Z 目 オ 3 囚 」 4 図 第 目
! 1 is a longitudinal sectional view of a helium blower according to an embodiment of the present invention, FIG. 2 is a structural diagram of the heat insulating member of FIG. 1, and FIG. 3 is a structural diagram of the heat insulating member of the fE2 embodiment of the present invention. 4 and 115 are vertical sectional views of helium blowers according to third and fourth embodiments of the present invention. 6...Insulation member, 4...Top plate, n...
...Lower plate, S...Inner ring, required...
...Outer ring, addition...Laminated seal Figure 1 A Z Eye O 3 Figure 4 Figure 4

Claims (1)

【特許請求の範囲】 1、主軸がジャーナル軸受およびスラスト軸受にて支持
され、前記主軸の一端に流体を膨張させるあるいは圧縮
させるための羽根を設けた極低温回転機器において、低
温部の前記羽根と常温部の軸受部の間に設けた断熱部材
の中を真空構造としたことを特徴とする極低温回転機器
。 2、前記断熱部材の中に積層断熱材を設けた第1請求項
に記載の極低温回転機器。 3、極低温回転機器が取り付けられている真空保冷槽と
前記断熱部材が連通する第1請求項に記載の極低温回転
機器。 4、前記断熱部材が大気との間を連通する構造を有し、
強制的に真空引が行える構造を有する第1請求項に記載
の極低温回転機器。
[Claims] 1. In a cryogenic rotating equipment in which a main shaft is supported by a journal bearing and a thrust bearing, and a blade for expanding or compressing fluid is provided at one end of the main shaft, A cryogenic rotating device characterized by having a vacuum structure inside a heat insulating member provided between bearing parts in a normal temperature part. 2. The cryogenic rotating equipment according to claim 1, wherein a laminated heat insulating material is provided in the heat insulating member. 3. The cryogenic rotating equipment according to claim 1, wherein the vacuum cold storage tank to which the cryogenic rotating equipment is attached communicates with the heat insulating member. 4. The heat insulating member has a structure that communicates with the atmosphere,
The cryogenic rotating equipment according to claim 1, having a structure that allows forcible evacuation.
JP32598389A 1989-12-18 1989-12-18 Very low temperature rotary machinery and apparatus Pending JPH03191262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32598389A JPH03191262A (en) 1989-12-18 1989-12-18 Very low temperature rotary machinery and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32598389A JPH03191262A (en) 1989-12-18 1989-12-18 Very low temperature rotary machinery and apparatus

Publications (1)

Publication Number Publication Date
JPH03191262A true JPH03191262A (en) 1991-08-21

Family

ID=18182781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32598389A Pending JPH03191262A (en) 1989-12-18 1989-12-18 Very low temperature rotary machinery and apparatus

Country Status (1)

Country Link
JP (1) JPH03191262A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1273857A1 (en) * 2001-07-06 2003-01-08 Atlas Copco Energas Gmbh Turbo expander for cryogenic uses
EP1975375A3 (en) * 2007-03-29 2013-01-16 IHI Corporation Heat insulating structure for expansion turbine, and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1273857A1 (en) * 2001-07-06 2003-01-08 Atlas Copco Energas Gmbh Turbo expander for cryogenic uses
US6508619B1 (en) 2001-07-06 2003-01-21 Atlas Copco Energas Gmbh Expansion turbine for low-temperature applications
EP1975375A3 (en) * 2007-03-29 2013-01-16 IHI Corporation Heat insulating structure for expansion turbine, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR0145417B1 (en) Evacuation apparatus and evacuation method
US3485054A (en) Rapid pump-down vacuum chambers incorporating cryopumps
US4546613A (en) Cryopump with rapid cooldown and increased pressure
JP3391511B2 (en) Refrigerator or freezer
JPH06174186A (en) Heat-insulating means for refrigerator or freezing chamber
US5345787A (en) Miniature cryosorption vacuum pump
JPH03191262A (en) Very low temperature rotary machinery and apparatus
JP2000121192A (en) Cryogenic chiller
JPH0216377A (en) Cryopump
EP0610666B1 (en) Turbomolecular pump
WO2023226460A1 (en) Closed-loop refrigerant gas cooling device
JP5556414B2 (en) Cryogenic rotating machine
JP4504476B2 (en) Molecular pump
JP2000034905A (en) Heat-insulating structure for rotary machine
JP2795031B2 (en) Vacuum cryopump
JP2000035191A (en) Heat insulating structure of rotating machinery
JPH04116907A (en) Superconductive cooling device
JPH07332829A (en) Freezer
CN108915991B (en) A kind of fast cooling type cryogenic pump with heat bridge
CN219656362U (en) Ultra-low temperature constant temperature tank utilizing Stirling refrigerator
JPH01147262A (en) Helium refrigerator
JP3060036B2 (en) Cryopump
JPH033139B2 (en)
JPH05312423A (en) Double inlet type freezer device
JPS6354567A (en) Superfluid helium refrigerator