JPH01147262A - Helium refrigerator - Google Patents

Helium refrigerator

Info

Publication number
JPH01147262A
JPH01147262A JP30714287A JP30714287A JPH01147262A JP H01147262 A JPH01147262 A JP H01147262A JP 30714287 A JP30714287 A JP 30714287A JP 30714287 A JP30714287 A JP 30714287A JP H01147262 A JPH01147262 A JP H01147262A
Authority
JP
Japan
Prior art keywords
compressor
helium
cooled
refrigerant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30714287A
Other languages
Japanese (ja)
Inventor
Hirobumi Odaka
小高 博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Seiki KK
Original Assignee
Seiko Seiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Seiki KK filed Critical Seiko Seiki KK
Priority to JP30714287A priority Critical patent/JPH01147262A/en
Publication of JPH01147262A publication Critical patent/JPH01147262A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To enhance durability of a compressor by causing a low pressure helium gas to be cooled and then sucked by the compressor. CONSTITUTION: A high pressure CFC discharged from a small compressor 13 of an auxiliary refrigerating machine 12 is cooled to be turned into a high pressure refrigerant by a fan 16 in a capacitor 14. This high pressure refrigerant is sent through a piping 17 into the direction of arrow to pass through a pressure reducing valve 15 thereby to be turned into a refrigerant of low pressure and low temperature. The high pressure refrigerant is further sent to remove heat of helium in a piping 1 of a helium refrigerating device 10 in a heat exchanger 8, and returned to the small compressor 13. In this manner, since the helium of the helium refrigerating device 10 in the heat exchanger 8 is removed of heat and cooled close to approximately 0 deg.C, a compressor 2 is cooled by the helium by sucking it into this cooled helium compressor 2. The helium directly cools a heat generating cylinder and a rotor in the compressor 2, and therefore, cooling efficiency is high, and overheating of the compressor 2 is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はヘリウムガスを冷媒として用い、極低温を発生
させるな−めに使用する冷凍装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigeration system that uses helium gas as a refrigerant to generate extremely low temperatures.

□□    1   − 〔発明の概要〕 本発明は、圧縮機に吸入される低圧のヘリウムガスの温
度を低1させて圧llli機の耐久性を向上させるもの
である。
□□ 1 - [Summary of the Invention] The present invention improves the durability of a compressor by lowering the temperature of low-pressure helium gas taken into a compressor.

〔従来の技術および問題点〕[Conventional technology and problems]

ヘリウムはその比熱比Kが1.660であり、室内の空
調、冷蔵庫等に使用されている冷凍装置に用いられてい
るフロン12 (K=1.136 > ヤフロン22 
(K=1.184 )よりも比熱比が大きいなめ、クラ
イオポンプ(低温真空ポンプ)等の極低温を発生させる
装置に用いられる場合、圧縮による発熱がフロン12等
の場合よりも非常に高くなる。
Helium has a specific heat ratio K of 1.660, and is used in refrigeration equipment used in indoor air conditioners and refrigerators.
(K = 1.184), and when used in equipment that generates extremely low temperatures such as cryopumps (low-temperature vacuum pumps), the heat generated by compression will be much higher than in the case of Freon 12, etc. .

すなわち、圧縮による発熱は次式で表わされる。That is, heat generation due to compression is expressed by the following equation.

但し、T =圧縮前の温度、T2−圧縮発熱後の温度、
Pl−圧縮前の圧力、P2−圧縮後の圧力、K−比熱比
とする。
However, T = temperature before compression, T2 - temperature after compression heat generation,
Let Pl be the pressure before compression, P2 be the pressure after compression, and K be the specific heat ratio.

たとえば、’r1=298°に、P1=5kg/cda
bs 、 P2= 20 kq /ciabsとして計
算すると、フロンガスの場合は’r 2’ = 352
°K (−54℃)となるのに対し、ヘリウムガスの場
合はT2 −517°K(=219℃)と非常に高くな
る。このため、ヘリウムガスを圧縮する圧縮機はその高
温によってやはり高温となる。
For example, for 'r1=298°, P1=5kg/cda
bs, P2 = 20 kq / ciabs, in case of fluorocarbon gas, 'r 2' = 352
°K (-54 °C), whereas in the case of helium gas, T2 is extremely high at -517 °K (=219 °C). Therefore, the compressor that compresses helium gas becomes hot due to its high temperature.

また、ヘリウムガスは熱伝導性が良いので、冷凍装置の
膨張機で断熱膨脂して極低温(10〜100°K)とな
っても、循環経路を移動中に周囲から熱を吸収して温度
上昇し、圧縮機の吸入口直前ではほぼ室温となってしま
うために圧縮機を冷却する能力は非常に小さい。
In addition, helium gas has good thermal conductivity, so even if it is adiabatically expanded in the expander of a refrigeration equipment and reaches extremely low temperatures (10 to 100°K), it absorbs heat from the surroundings while moving through the circulation path. The temperature rises and reaches almost room temperature just before the compressor suction port, so the ability to cool the compressor is very small.

このようなことから従来のヘリウム冷凍装置においては
、圧縮機の耐久性を向上させるなめに圧縮機の冷却を行
なっている。その一つの方法は、圧縮機の周囲に水冷パ
イプを巻付けて水冷する方法である。しかしながらこの
方法は水冷パイプを圧縮機に密着させて巻付けることが
難しく、熱伝導効率が低いために冷却効率か低い。空冷
を用いてもその冷却効果には限界がある。
For this reason, in conventional helium refrigeration systems, the compressor is cooled in order to improve the durability of the compressor. One method is to wrap a water-cooled pipe around the compressor and cool it with water. However, in this method, it is difficult to tightly wrap the water cooling pipe around the compressor, and the cooling efficiency is low because the heat conduction efficiency is low. Even when air cooling is used, there are limits to its cooling effect.

他の方法としては、圧縮機内の潤滑冷却油を外部に引出
し、油を冷却した後圧縮機の吸入口に戻すことにより圧
縮機を冷却する方法がある。しかしながらこの方法はJ
圧縮機に追加工か必要でこれが難しく、さらに冷媒カス
中に油が混じって体積効率が低下するという問題点があ
る。
Another method is to cool the compressor by drawing the lubricating cooling oil inside the compressor to the outside, cooling the oil, and then returning it to the suction port of the compressor. However, this method
This is difficult as it requires additional work on the compressor, and there is also the problem that oil gets mixed into the refrigerant scum, reducing volumetric efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明は上記問題点を解決するため、ヘリウム
ガスを冷媒として用い、冷却作用を終えて循環により戻
ってきた低圧のヘリウムガスを圧縮により高圧にして再
び送り出す圧縮機を備えた冷凍装置において、前記戻っ
てきた低圧のヘリウムガスを前記圧縮機に圧縮させる前
にヘリウムガスを冷却する補助冷凍機を設ける構成とし
たものである。
Therefore, in order to solve the above-mentioned problems, the present invention provides a refrigeration system that uses helium gas as a refrigerant and is equipped with a compressor that compresses the low-pressure helium gas returned by circulation after the cooling effect to high pressure and sends it out again. , an auxiliary refrigerator is provided for cooling the returned low-pressure helium gas before it is compressed by the compressor.

〔作用〕[Effect]

このような構成のヘリウム冷凍装置によれば、低圧、の
ヘリウムガスを冷却してから圧縮機に吸入させることに
より、ヘリウムガスの低温で圧縮機を冷却することがて
きるため、aSSの耐久性を向上させることができる。
According to a helium refrigeration system with such a configuration, by cooling the low-pressure helium gas and then inhaling it into the compressor, the compressor can be cooled with the low temperature of the helium gas, which improves the durability of the aSS. can be improved.

〔実施例〕〔Example〕

以下、本発明の実施例について図面に基づいて説明する
。図面は本発明によるヘリウム冷凍装置の一実施例を示
す図である。
Embodiments of the present invention will be described below based on the drawings. The drawing shows an embodiment of a helium refrigeration system according to the present invention.

図において、実線で示す配管1で連結された循環系統は
ヘリウム冷凍装W’ 1.0を示す。すなわち、ヘリウ
ム冷凍装置10において、2は圧縮機、3はコンデンサ
、5は油分離器、6は膨張機である。
In the figure, the circulation system connected by piping 1 shown by a solid line indicates a helium refrigeration system W' 1.0. That is, in the helium refrigeration system 10, 2 is a compressor, 3 is a condenser, 5 is an oil separator, and 6 is an expander.

冷媒としてはヘリウムガスが用いられ、配管1中を矢印
方向に循環して膨張機6において冷却作用を行なうよう
になっている。すなわち膨張機6には極低温発生部7が
設けられており、この極低温発生部7を極低温にするこ
とによりたとえば前記クライオポンプを作動させること
かできる。
Helium gas is used as the refrigerant, and is circulated in the direction of the arrow in the pipe 1 to perform a cooling action in the expander 6. That is, the expander 6 is provided with a cryogenic temperature generating section 7, and by making the cryogenic temperature generating section 7 extremely low temperature, for example, the cryopump can be operated.

ヘリウム冷凍装Ml 10の圧縮機2と膨張機6との間
の配管1の圧縮機2寄りの途中には、コンデンサあるい
は2重管等の熱交換器8が設けられている。一方、ヘリ
ウム冷凍装置10の隣接部には破線で示された補助冷凍
[12が設けられており、コノ補助冷凍812は、小型
圧wA813、ヘリウム冷凍装置10のコンデンサ3と
近接するコンデンサ14、減圧弁15、ヘリウム冷凍装
置10と共用する熱交換器8、配管17とを備えている
。補助冷凍機12は冷媒としてフロンカスを用いており
、この冷媒が配管17中を矢印方向に循環する。
A heat exchanger 8 such as a condenser or a double pipe is provided in the pipe 1 between the compressor 2 and the expander 6 of the helium refrigeration system Ml 10 near the compressor 2. On the other hand, an auxiliary refrigeration unit 12 is provided adjacent to the helium refrigeration system 10, which is indicated by a broken line. It includes a valve 15, a heat exchanger 8 shared with the helium refrigeration device 10, and piping 17. The auxiliary refrigerator 12 uses freon gas as a refrigerant, and this refrigerant circulates in the pipe 17 in the direction of the arrow.

補助冷凍機12の小型圧縮vA13から吐出された高圧
のフロンカスは、コンデンサ14においてファン16に
より冷却されて高圧冷媒となる。
The high-pressure freon gas discharged from the small compressor vA13 of the auxiliary refrigerator 12 is cooled by the fan 16 in the condenser 14 and becomes high-pressure refrigerant.

この高圧冷媒は配管17中を矢印方向にに送られて減圧
弁15を通過することにより低圧、低温の−6= 冷媒となり、さらに送られて熱交換器8においてヘリウ
ム冷凍装置10の配管1内のヘリウムガスから熱を奪っ
て小型圧縮機13に戻される。
This high-pressure refrigerant is sent in the direction of the arrow through the pipe 17, passes through the pressure reducing valve 15, becomes a low-pressure, low-temperature refrigerant, and is further sent to the heat exchanger 8 in the pipe 1 of the helium refrigeration system 10. Heat is removed from the helium gas and returned to the small compressor 13.

このように、熱交換器8においてヘリウム冷凍装置10
のヘリウムガスは熱を奪われて約0°C付近まで冷却さ
れるため、この冷却・されたヘリウムガスが圧縮機2に
吸入されることにより圧縮機2は冷却される。ヘリウム
ガスは圧縮機2内の発熱するシリングやロータを直接冷
却するために冷却効率が良く、圧縮機2の過熱を有効に
防止することによりその耐久性を向上させることかでき
る。
In this way, the helium refrigeration device 10 in the heat exchanger 8
The helium gas is deprived of heat and cooled to around 0°C, so the compressor 2 is cooled by sucking this cooled helium gas into the compressor 2. Helium gas has good cooling efficiency because it directly cools the heat-generating ring and rotor in the compressor 2, and can effectively prevent the compressor 2 from overheating, thereby improving its durability.

なお、ヘリウム冷凍装fioの極低温発生部7はクライ
オポンプのほか、X線センサ、赤外線センサ、あるいは
超電導装置等に用いることもできる。
Note that the cryogenic temperature generation section 7 of the helium refrigeration system fio can be used not only for a cryopump but also for an X-ray sensor, an infrared sensor, a superconducting device, or the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれは、ヘリウム冷凍装置
の圧縮機の追加工を必要とせす、また同圧縮機の体積効
率を低下させることもなく、効率的に同圧縮機を冷却す
ることができるため、ヘリウム冷凍装置の圧m機の耐久
性を向上させることかできる。
As explained above, according to the present invention, it is possible to efficiently cool the compressor of a helium refrigeration system without requiring additional work on the compressor or reducing the volumetric efficiency of the compressor. Therefore, the durability of the compressor of the helium refrigeration system can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明によるヘリウム冷凍装置の一実施例を示す
全体構成図である。 1.17・・・配管 2・・・・・・圧縮機 3.14・・・コンデンサ 5・・・・・・油分離器 6・・・・・・膨張機 7・・・・・・極低温発生部 8・・・・・・熱交換器 10・・・ヘリウム冷凍装置 12・・・補助冷凍機 15・・・減圧弁 16・・・ファン
The drawing is an overall configuration diagram showing an embodiment of a helium refrigeration apparatus according to the present invention. 1.17... Piping 2... Compressor 3.14... Condenser 5... Oil separator 6... Expander 7... Pole Low temperature generation unit 8... Heat exchanger 10... Helium refrigerator 12... Auxiliary refrigerator 15... Pressure reducing valve 16... Fan

Claims (1)

【特許請求の範囲】[Claims] ヘリウムガスを冷媒として用い、冷却作用を終えて循環
により戻ってきた低圧のヘリウムガスを圧縮により高圧
にして再び送り出す圧縮機を備えた冷凍装置において、
前記戻ってきた低圧のヘリウムガスを前記圧縮機に圧縮
させる前にヘリウムガスを冷却する補助冷凍機を設ける
ことを特徴とするヘリウム冷凍装置。
In a refrigeration system that uses helium gas as a refrigerant and is equipped with a compressor that compresses the low-pressure helium gas that has returned through circulation after the cooling effect to high pressure and sends it out again,
A helium refrigeration system characterized in that an auxiliary refrigerator is provided for cooling the returned low-pressure helium gas before the compressor compresses the helium gas.
JP30714287A 1987-12-04 1987-12-04 Helium refrigerator Pending JPH01147262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30714287A JPH01147262A (en) 1987-12-04 1987-12-04 Helium refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30714287A JPH01147262A (en) 1987-12-04 1987-12-04 Helium refrigerator

Publications (1)

Publication Number Publication Date
JPH01147262A true JPH01147262A (en) 1989-06-08

Family

ID=17965536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30714287A Pending JPH01147262A (en) 1987-12-04 1987-12-04 Helium refrigerator

Country Status (1)

Country Link
JP (1) JPH01147262A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461263U (en) * 1990-10-01 1992-05-26
JP2010230308A (en) * 2010-07-19 2010-10-14 Aisin Seiki Co Ltd Pulse tube refrigerating machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461263U (en) * 1990-10-01 1992-05-26
JP2010230308A (en) * 2010-07-19 2010-10-14 Aisin Seiki Co Ltd Pulse tube refrigerating machine

Similar Documents

Publication Publication Date Title
RU94030805A (en) Method of control of pressure at delivery side in device with transcriptional cycle of steam compression
US5555745A (en) Refrigeration system
WO2016058365A1 (en) Air conditioning unit and operation method
US5540061A (en) Refrigerator
US6385995B1 (en) Apparatus having a refrigeration circuit
JPH01147262A (en) Helium refrigerator
JP2007051788A (en) Refrigerating device
JPH0429115Y2 (en)
JP2001091066A (en) Power-saving noise-proof refrigerating machine
CN219139306U (en) Cooling system for self-cooling of industrial air conditioner compressor
US20170045273A1 (en) Cryogenic refrigeration system
JPH08145496A (en) Refrigerator
RU2447377C1 (en) Refrigerating plant
KR970009803B1 (en) Refrigerating cycle apparatus
JPH06272992A (en) Air conditioner
JPH11257817A (en) Cooling system
WO2020084725A1 (en) Air-refrigerant type refrigeration system
CN116066920A (en) Refrigerating system and method
JPS6158745B2 (en)
SU1277441A1 (en) Device for cooling electronic equipment
JP3242143B2 (en) Ammonia refrigerator
JPS6026259A (en) Heat pump device
JPH0339864A (en) Refrigerating compressor cryostatic
JPH06273008A (en) Air conditioning apparatus
KR200204568Y1 (en) Air compression turborefrigerator operating as an open cycle, ACTR