JPH0339864A - Refrigerating compressor cryostatic - Google Patents

Refrigerating compressor cryostatic

Info

Publication number
JPH0339864A
JPH0339864A JP17391789A JP17391789A JPH0339864A JP H0339864 A JPH0339864 A JP H0339864A JP 17391789 A JP17391789 A JP 17391789A JP 17391789 A JP17391789 A JP 17391789A JP H0339864 A JPH0339864 A JP H0339864A
Authority
JP
Japan
Prior art keywords
pressure
suction
refrigerant
suction gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17391789A
Other languages
Japanese (ja)
Inventor
Takao Mizuno
隆夫 水野
Naomi Hagita
直巳 萩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17391789A priority Critical patent/JPH0339864A/en
Publication of JPH0339864A publication Critical patent/JPH0339864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Compressor (AREA)

Abstract

PURPOSE:To prevent refrigerating capacity from decreasing due to overheating and to increase an operating range of low temperature zone by pressure-reducing liquid refrigerant condensed by a condenser by a second pressure reducing unit, cooling suction gas overheated by cooling a motor, pouring it in a compressing chamber so that pressure-reduced refrigerant becomes an intermediate pressure, sucking suction gas from a suction port of the chamber to compress it. CONSTITUTION:Refrigerant gas sucked from a suction tube 17 flows around a motor 13 to cool the motor 13, and the suction gas is heated to be expanded to pass through a passage 19. Liquid refrigerant condensed by a condenser 2 is pressure-reduced by a second pressure reducing unit 4, heated by the motor 13 so that the suction gas heated by the motor 13 to show a high temperature is thermally exchanged by a suction gas cooler 9, and the suction gas is sucked into a suction port 7 of the chamber. The refrigerant heat exchanged with the suction gas is poured in inlets 11a, 11b on the way of compression, cooled, combined with refrigerant on the way of suction and compression from the port 7, discharged from a discharge tube 19, condensed by the condenser 2, and circulated. As described above, the suction gas heated by the motor 13 can be recooled to improve its performance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸入ガスD過熱によって生ずる冷凍能力の低
下を防止するとともに低温域の運転範囲の拡大を可能と
した低温用の冷凍用圧m=に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to a low-temperature refrigeration pressure m that prevents a decrease in the refrigerating capacity caused by overheating of the suction gas D and enables an expansion of the operating range in the low-temperature region. = related.

〔従来の技術〕[Conventional technology]

従来の吸入ガスにより電m*を冷却する構造り密閉形冷
凍用圧#f機は、電動機冷却に伴なう吸入ガスの加熱に
より、吸入ガスの比体積が大きくなり、冷媒vfI項量
が低下して冷凍能力が低下するとの問題がある。
In the conventional closed-type refrigeration pressure #f machine that cools electric m* with suction gas, the specific volume of suction gas increases due to the heating of suction gas that accompanies motor cooling, and the amount of refrigerant vfI term decreases. There is a problem in that the refrigerating capacity decreases.

この1頃向は低温用になればなるほど大きくなる更に雇
低濫用では、冷凍能力の低下の皐ならず、電lIb機の
冷却によって、圧縮室に吸入される前の鉄人ガス温度は
高温になりすぎて、吐出ガス温度が異常に高くなり、冷
凍用圧ia礪として使用できなくなる。このように従来
り冷凍用圧縮機は、吸入ガスの加熱による冷凍能力の低
丁訃よび、冷凍用圧縮機として実用上の使用範囲が限ら
れていた。
This effect increases as the temperature increases.Furthermore, if the temperature is used for low temperature applications, the refrigeration capacity will not decrease, and the temperature of the iron gas before being sucked into the compression chamber will become high due to the cooling of the electric IIB machine. As a result, the temperature of the discharged gas becomes abnormally high, making it impossible to use it as a refrigeration pressure vessel. As described above, conventional refrigeration compressors suffer from low refrigeration capacity due to heating of intake gas, and their practical use as refrigeration compressors is limited.

〔発明が解決しようとする課1遣〕 本発明は前記従来技術り間4点を解決し、低温使用にp
いても吸入ガスの〃口熱による損失を防止し、冷凍能力
を確保すると共3こ、吐出ガス温度り上昇を防止し、低
温用としての使用範囲の拡大を図るものである。
[Section 1 to be solved by the invention] The present invention solves the four problems of the prior art and provides a
This prevents the loss of suction gas due to mouth heat and secures the refrigerating capacity, and also prevents the discharge gas temperature from rising, thereby expanding the range of use for low-temperature applications.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、凝m器で凝縮した液冷媒を
第二減圧装置で減圧し、その減圧冷媒の潜熱で、電動f
!4の冷却Vこより加熱された吸入ガスを圧縮室吸入前
で再冷却し、加熱損失を防止する。吸入ガスを冷却した
減圧冷媒は、圧縮途中の圧縮室Vこ吸入して吸入ガスと
共に圧縮吐出して再び凝縮器で凝縮する。このように減
圧冷媒を圧縮途中り圧縮室より注入させることは通常の
容積形圧婦機であれば可能である。特に圧縮途中の中間
圧力室が形F&されるスクロール式圧*a機、スクリエ
ー式圧縮礪には適して′J?jlJ、例えばスクロール
式圧縮機では特開昭57−76289号にその構造の一
例が示されている。
In order to achieve the above purpose, the liquid refrigerant condensed in the condenser is depressurized in a second pressure reducing device, and the latent heat of the depressurized refrigerant is used to
! The heated suction gas is recooled by the cooling V in step 4 before being sucked into the compression chamber to prevent heating loss. The reduced pressure refrigerant that has cooled the suction gas is sucked into the compression chamber V during compression, compressed and discharged together with the suction gas, and condensed again in the condenser. Injecting the reduced pressure refrigerant from the compression chamber during compression in this manner is possible with a normal positive displacement compressor. It is especially suitable for scroll type pressure*a machines and scree type compression chambers in which the intermediate pressure chamber during compression is shaped like 'J? An example of the structure of a scroll type compressor, for example, is shown in Japanese Patent Application Laid-open No. 76289/1983.

本発明は減圧冷媒の潜熱で電動機に上り力り熱された吸
入ガスを冷却することにより従来技術の問題点0屏決を
図るものである。他の方法とし吸入ガスを直接圧縮室に
吸入し、モータ等による吸入ガスlliり770熱を防
ぐと共にモータを前記減圧冷媒の潜熱で冷却し、前記ε
同様に圧縮途中に注入することによって同等の効果が得
られるようにしたものである。
The present invention attempts to eliminate the problems of the prior art by cooling suction gas that has been heated up by the electric motor using the latent heat of the decompressed refrigerant. Another method is to suck the suction gas directly into the compression chamber, prevent the suction gas from being heated by the motor, etc., and cool the motor with the latent heat of the depressurized refrigerant.
Similarly, the same effect can be obtained by injecting it during compression.

〔作用〕[Effect]

前述の構成により、電動機を冷却するここにより加熱膨
張し比体積が増加した吸入ガスは圧縮室へ吸入される前
に冷却された後に吸入If縮される。このため吸入ガス
の加熱による冷凍化力の低下を防止できる。又冷却され
た吸入ガスを吸入圧縮することにより吐出ガスの温度も
下げることができる。スクロール式又はスクリュー式冷
凍圧縮機は圧縮途中の中間圧力室が形Fy、されるため
吸入ガスを冷却した減圧冷媒を容易に圧縮途中り圧縮室
に注入することができる。この減圧冷媒の注入口を吸入
口に連通しない位置に設けることにより、吸入ガスの流
量を低下させることなく注入が0]″能である。
With the above-described configuration, the suction gas, which is heated and expanded to increase its specific volume by cooling the electric motor, is cooled before being sucked into the compression chamber, and then is compressed if it is sucked. Therefore, it is possible to prevent a reduction in the refrigeration power due to heating of the intake gas. Furthermore, by suctioning and compressing the cooled suction gas, the temperature of the discharge gas can also be lowered. A scroll type or screw type refrigeration compressor has an intermediate pressure chamber in the middle of compression in the form of Fy, so that the reduced pressure refrigerant that has cooled the suction gas can be easily injected into the compression chamber in the middle of compression. By providing the injection port for the reduced pressure refrigerant at a position that does not communicate with the suction port, injection can be performed without reducing the flow rate of the suction gas.

注入された減圧冷媒は吸入ガスと共に圧縮吐出され、@
縮器で凝縮し、循環するつ 〔実施例〕 第1図〜第2図に、本発明の実施例を示す。
The injected reduced pressure refrigerant is compressed and discharged together with the suction gas, @
Condensation in a condenser and circulation [Example] Figures 1 and 2 show examples of the present invention.

第1図にJpVsて、1は本発明による圧縮機であり、
本実施例では、スクロール式としている。この圧縮機1
と凝縮器2、第1減圧装置5、蒸発器8pよび凝縮器2
とg1減圧装置5の途中から分岐し圧縮機2の冷媒注入
管8とを接続する第2減圧装置114を介在した′W路
から冷凍サイクルを形成している。
In FIG. 1, 1 is a compressor according to the present invention,
In this embodiment, a scroll type is used. This compressor 1
and condenser 2, first pressure reducing device 5, evaporator 8p and condenser 2
A refrigeration cycle is formed from the 'W path which branches off from the middle of the g1 pressure reducing device 5 and interposes a second pressure reducing device 114 which connects to the refrigerant injection pipe 8 of the compressor 2.

圧縮機1は、ケーシング6内を吸入圧力としている。吸
入・117より冷媒ガスはケーシング6内に導かれ、7
レーム12に固定されfc4動機動機1同0 けらmしたガス通路19を通り、固定スクロール式Oの
外周近くに設けら1また圧縮室吸入口7より圧a礪a部
に吸入され、′4駆動12により駆動されるクランク4
41i 1.i、旋回スクロール15の旋回運動により
圧縮され、固定スクロール1Of2)中央部12接続さ
れた吐出管工8よつ吐出される。
The compressor 1 has suction pressure in the casing 6. Refrigerant gas is guided into the casing 6 from the suction 117,
The fc4 motor is fixed to the frame 12, passes through a narrow gas passage 19, is provided near the outer periphery of the fixed scroll type O, and is sucked into the pressure a section from the compression chamber suction port 7. Crank 4 driven by 12
41i 1. i, compressed by the orbiting movement of the orbiting scroll 15 and discharged through the discharge pipework 8 connected to the central part 12 of the fixed scroll 1Of2).

II!i1Mスクロール10にはインジェクン冒ン穴と
して圧縮途中の空間へ開口される注入口11a。
II! The i1M scroll 10 has an injection port 11a that is opened into a space during compression as an injection hole.

11bを有−rる。該注入口1 1 a I l 1 
1)には、前記第2$.圧長置仝に連通した冷媒注入管
8に接続される吸入ガス冷却器9が接続されている。1
4は潤滑油である。
11b. The injection port 1 1 a I l 1
1) includes the second $. A suction gas cooler 9 is connected to a refrigerant injection pipe 8 that communicates with the pressure and length. 1
4 is lubricating oil.

次に動作について説明する。Next, the operation will be explained.

吸入管17より吸入された冷媒ガスは電gll1機18
0周囲を流れることによりit電動機18冷却する。こ
のため吸入ガスは加熱膨張する。この加熱le張により
、同一体積の冷媒ガスを吸入圧縮する場合、ガスの圧縮
仕事は加熱量の程度によらず一定となるが、圧縮重量流
量が低減し、圧縮仕事量に対する圧縮重量流量が低下し
、圧縮機の効率が低下する。これを通常加熱損失と呼ん
でいる。この加熱損失は極力小さくすることが1ましい
が、吸入ガスでtmt*を冷却する構造OIE縮機では
避けられない。
The refrigerant gas sucked through the suction pipe 17
It cools the motor 18 by flowing around it. Therefore, the suction gas is heated and expanded. When the same volume of refrigerant gas is sucked and compressed by heating and compressing, the work of compressing the gas remains constant regardless of the degree of heating, but the compression weight flow rate decreases, and the compression weight flow rate relative to the compression work decreases. and the efficiency of the compressor decreases. This is usually called heating loss. Although it is preferable to minimize this heating loss, it cannot be avoided in an OIE compressor having a structure in which tmt* is cooled with suction gas.

以上のように加熱された冷媒ガスは通路19を通り固定
スクロールIOとケーシング6で形成される空間に導か
れる。こ7)空間には吸入ガス冷却器9が設けられてj
r D % この吸入ガス冷却器9によって、吸入ガス
は圧縮Mg&人口7に吸入される前で再冷却される。
The refrigerant gas heated as described above passes through the passage 19 and is guided into the space formed by the fixed scroll IO and the casing 6. 7) An intake gas cooler 9 is provided in the space.
r D % This suction gas cooler 9 re-cools the suction gas before it is sucked into the compressed Mg&population 7.

この吸入ガスの冷却は、凝縮機2で#!縮された液冷媒
を第2減圧装置Φにて減圧し、その減圧冷媒の潜熱と電
動機18により加熱され高温となった吸入ガスと吸入ガ
ス冷却器9にて熱交換するととにより笑mされる。この
吸入ガスと熱交換された冷媒は固定スクロールに設けた
注入口11a。
This intake gas is cooled by condenser 2! The compressed liquid refrigerant is depressurized by the second pressure reducing device Φ, and the latent heat of the depressurized refrigerant and the suction gas heated by the electric motor 18 to a high temperature are exchanged with the suction gas cooler 9. . The refrigerant with which heat was exchanged with the suction gas is supplied to an injection port 11a provided in the fixed scroll.

11bより圧縮途中に注入され、前記のy口く冷却され
て圧縮室吸入口7より吸入圧縮途中の冷媒と合流し、吐
出f18より吐出され凝縮器2にて凝縮されて循櫨する
The refrigerant is injected from 11b during compression, cooled by the above-mentioned y-hole, merges with the refrigerant that is being suctioned and compressed from the compression chamber suction port 7, is discharged from the discharge port f18, is condensed in the condenser 2, and circulates.

以上・D如く、本発明によれば、電動機18により加熱
された吸入ガスを再冷却することができ、性能向上する
ことができる。
As described above, according to the present invention, the suction gas heated by the electric motor 18 can be recooled, and performance can be improved.

更に、本発明を、超低温用の冷凍サイクルに適用した場
合、より大きな効果を発揮する。即ち、超低温用の場合
、吸入ガス圧力は低圧で希薄なガスとなるが、この希薄
ガスを圧縮するための圧縮動力は所定を要する。このた
め、低温用で使用すればするほど、吸入ガスの加熱程度
は大きくなり、加熱損失の増加による損失は非常に大き
なものとなる。−例として、冷媒として、フロン22を
使用して、蒸発温度を一60°C程度とすると加熱損失
による効率低下は20%以上にも達する。本発明ではこ
の効率低下を改善すると共に、更に、より重大な効果を
発揮する。即ち、同一条件の試算に分いて、!動機13
による吸入ガスD加熱量は約80℃橿度となる。このよ
うな高温になるため吸入ガス冷却器9を有しない従来の
冷凍ブイフルルでは吐出ガス温度の異常上昇と圧縮機の
過熱高温のため、運転が不可能となる。
Furthermore, when the present invention is applied to a refrigeration cycle for ultra-low temperatures, even greater effects are exhibited. That is, in the case of ultra-low temperature applications, the suction gas pressure is low and the gas is diluted, but a certain amount of compression power is required to compress this diluted gas. Therefore, the more the pump is used at low temperatures, the more the suction gas is heated, and the loss due to increased heating loss becomes extremely large. - For example, if Freon 22 is used as the refrigerant and the evaporation temperature is about -60°C, the reduction in efficiency due to heating loss will reach 20% or more. The present invention not only improves this decrease in efficiency but also exhibits even more significant effects. In other words, it is divided into trial calculations under the same conditions! Motive 13
The amount of heating of the suction gas D is approximately 80°C. Due to such high temperatures, conventional refrigerated buoys without the suction gas cooler 9 cannot be operated due to the abnormal rise in discharge gas temperature and the overheating of the compressor.

しかしながら、本発IIAによれば、吸入ガスの再冷却
により、かかる超低温用の条件でも運転できるようにな
る。
However, according to the IIA of the present invention, by recooling the intake gas, it becomes possible to operate even under such extremely low temperature conditions.

ii2図は、本発明の別の実施例を示す。第1図に示し
た実施しlとの差異は、吸入管17より吸入された冷媒
ガスはわrかな隙間をもってほぼ直接的に圧縮室吸入口
7に導入されること、kよび第1図の吸入ガス冷却器9
の代替とし、電I21′@冷却器20が第2減圧装置4
に連通した冷媒注入管8と固定スクロールIOK設けた
注入口11atllbK接続されていることである。本
実施例において、吸入ガスは電動機18により加熱され
ることがないため性能の低下が発生しないこと、一方電
動機1Bは電動機冷却器20により冷却される、電動機
冷却器20の原理は第1図の吸入ガス冷却器と同じであ
るので説明を省略する。
Figure ii2 shows another embodiment of the invention. The difference from the embodiment 1 shown in FIG. Intake gas cooler 9
As an alternative, electric I21' @ cooler 20 is used as the second pressure reducing device
The refrigerant injection pipe 8 communicating with the fixed scroll IOK is connected to the injection port 11atllbK provided with the fixed scroll IOK. In this embodiment, the intake gas is not heated by the electric motor 18, so that no deterioration in performance occurs.On the other hand, the electric motor 1B is cooled by the electric motor cooler 20.The principle of the electric motor cooler 20 is as shown in FIG. Since it is the same as the intake gas cooler, the explanation will be omitted.

本実施例によっても第1図と同様な効果が得られる。第
1図、第2図の実施例では、注入口を2ケ所としている
が、1ケ所でも良いし、又、2ヶ以上としても同様の効
果が得られるDは8及するまでもない。
This embodiment also provides the same effects as in FIG. 1. In the embodiments shown in FIGS. 1 and 2, there are two injection ports, but it is possible to use only one injection port, and the same effect can be obtained even if there are two or more injection ports.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、吸入ガスD710熱損失を低減できる
のみならず、超低温用vcpいては従来では、電動機に
よる加熱により吸入ガス温度の異常高温により運転でき
なかった条件の運転が、運転可能となり、従来に比べ低
温側の運転範囲を拡大できる効果を有する。
According to the present invention, not only can the heat loss of the suction gas D710 be reduced, but also it is possible to operate under conditions that conventionally could not be performed due to abnormally high suction gas temperature due to heating by the electric motor in the ultra-low temperature VCP. This has the effect of expanding the operating range on the low temperature side compared to conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例θ冷凍圧縮機の儲或図を示す
。 第2図は他の実施例の冷凍圧縮機の構成図を示す。 l・・・圧m機  2・・・凝縮器  8・・・蒸発器
4・・・第2減圧装置 吸入ガス冷却器  1 1a、11b・・・注入口 ・・・電動機冷却器。 5・・・第1減圧装置 0・・・固定スクロール 18・・・WLtlh機 9・・・ 0 寥1(2)
FIG. 1 shows a profit diagram of a θ refrigeration compressor according to an embodiment of the present invention. FIG. 2 shows a configuration diagram of a refrigeration compressor according to another embodiment. l...Pressure m machine 2...Condenser 8...Evaporator 4...Second pressure reducing device Suction gas cooler 1 1a, 11b...Inlet...Motor cooler. 5...First pressure reducing device 0...Fixed scroll 18...WLtlh machine 9...0 1 (2)

Claims (1)

【特許請求の範囲】 1、冷凍圧縮機には吸入圧力と吐出圧力の中間の圧力と
なる圧縮室が形成され、この中間の圧力となる圧縮室に
減圧した冷媒を注入する注入口を有する冷凍用圧縮機と
凝縮器と第一、第二減圧装置と蒸発器にて冷媒回路を形
成する冷凍サイクルにおいて、 凝縮器で凝縮した液冷媒を第二減圧装置で減圧し、この
減圧冷媒の潜熱によって、電動機の冷却により過熱され
た吸入ガスを冷却した後に、上記減圧冷媒を前記注入口
より、中間の圧力となる圧縮室に注入すると共に、吸入
ガスは圧縮室吸入口より吸入され圧縮されることを特徴
とする冷凍用圧縮機。 2、吸入圧力と吐出圧力の中間の圧力となる圧縮室が形
成され、この中間の圧力となる圧縮室に減圧した冷媒を
注入する注入口を有する冷凍用圧縮機と、凝縮器と第一
、第二減圧装置と蒸発器よりなる冷凍サイクルにおいて
、 冷凍用圧縮機に導入された吸入ガスを直接又は加熱を防
止して圧縮室吸入口より吸入圧縮し、凝縮器で凝縮した
液冷媒を第二減圧装置で減圧し、当減圧冷媒の潜熱によ
り電導機を冷却し、当減圧冷媒は前記注入口より中間の
圧力となる圧縮室に注入することを特徴とする冷凍用圧
縮機。
[Claims] 1. A refrigeration compressor is formed with a compression chamber having a pressure intermediate between suction pressure and discharge pressure, and has an injection port for injecting reduced pressure refrigerant into the compression chamber having an intermediate pressure. In a refrigeration cycle in which a refrigerant circuit is formed by a commercial compressor, a condenser, a first and second pressure reducing device, and an evaporator, the liquid refrigerant condensed in the condenser is depressurized in the second pressure reducing device, and the latent heat of this reduced pressure refrigerant is used to reduce the pressure of the liquid refrigerant. After cooling the suction gas that has been superheated by cooling the electric motor, the depressurized refrigerant is injected from the injection port into the compression chamber at an intermediate pressure, and the suction gas is sucked through the compression chamber suction port and compressed. A refrigeration compressor featuring: 2. A refrigeration compressor having a compression chamber having a pressure intermediate between suction pressure and discharge pressure, and having an inlet for injecting decompressed refrigerant into the compression chamber having an intermediate pressure; a condenser; In a refrigeration cycle consisting of a second pressure reducing device and an evaporator, the suction gas introduced into the refrigeration compressor is suctioned and compressed through the compression chamber suction port, either directly or while preventing heating, and the liquid refrigerant condensed in the condenser is transferred to the second A refrigeration compressor, characterized in that the pressure is reduced by a pressure reducing device, a conductive machine is cooled by the latent heat of the reduced pressure refrigerant, and the reduced pressure refrigerant is injected from the injection port into a compression chamber having an intermediate pressure.
JP17391789A 1989-07-07 1989-07-07 Refrigerating compressor cryostatic Pending JPH0339864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17391789A JPH0339864A (en) 1989-07-07 1989-07-07 Refrigerating compressor cryostatic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17391789A JPH0339864A (en) 1989-07-07 1989-07-07 Refrigerating compressor cryostatic

Publications (1)

Publication Number Publication Date
JPH0339864A true JPH0339864A (en) 1991-02-20

Family

ID=15969475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17391789A Pending JPH0339864A (en) 1989-07-07 1989-07-07 Refrigerating compressor cryostatic

Country Status (1)

Country Link
JP (1) JPH0339864A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6769267B2 (en) * 2000-03-30 2004-08-03 Sanyo Electric Co., Ltd. Multistage compressor
JP2006283998A (en) * 2005-03-31 2006-10-19 Mitsubishi Electric Corp Refrigerating cycle
US8372890B2 (en) 2006-06-16 2013-02-12 Zenyaku Kogyo Kabushikikaisha Functional food containing sodium tricaffeoylaldarate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6769267B2 (en) * 2000-03-30 2004-08-03 Sanyo Electric Co., Ltd. Multistage compressor
JP2006283998A (en) * 2005-03-31 2006-10-19 Mitsubishi Electric Corp Refrigerating cycle
US8372890B2 (en) 2006-06-16 2013-02-12 Zenyaku Kogyo Kabushikikaisha Functional food containing sodium tricaffeoylaldarate

Similar Documents

Publication Publication Date Title
KR940011714B1 (en) Scroll compressor and scroll type refrigerator
JPH062678A (en) Closed type rotary compressor
KR20030041574A (en) Turbo compressor cooling structure
KR101220741B1 (en) Freezing device
KR20110074706A (en) Freezing device
KR101220663B1 (en) Freezing device
JP2008297996A (en) Single screw type multiple stage compressor and freezing-refrigerating system using same
JPH0448160A (en) Freezing cycle device
JPH11351168A (en) Screw type refrigerating device
JP3903409B2 (en) Two-stage compression refrigerator
US6385995B1 (en) Apparatus having a refrigeration circuit
KR20110074708A (en) Freezing device
JP3443443B2 (en) Screw refrigerator
JPH0339864A (en) Refrigerating compressor cryostatic
WO2013153970A1 (en) Two-stage oil-cooled compressor device
JPH09236338A (en) Heat pump
JP2000337282A (en) Two-stage type screw compressor
JP3847493B2 (en) Two-stage compression refrigeration system
JP3541110B2 (en) Screw refrigerator
KR100309011B1 (en) Refrigeration cycle
JPH05256285A (en) Two-state compressing compressor for superlow temperature refrigerator
JP7229348B2 (en) refrigerator
JPH02133757A (en) Two-stage compression refrigerating cycle
JP3569606B2 (en) Screw refrigerator
JP2005264829A (en) Fluid machine