JPH03191039A - Heat-resistant austenitic stainless steel - Google Patents

Heat-resistant austenitic stainless steel

Info

Publication number
JPH03191039A
JPH03191039A JP1330128A JP33012889A JPH03191039A JP H03191039 A JPH03191039 A JP H03191039A JP 1330128 A JP1330128 A JP 1330128A JP 33012889 A JP33012889 A JP 33012889A JP H03191039 A JPH03191039 A JP H03191039A
Authority
JP
Japan
Prior art keywords
stainless steel
value
less
austenitic stainless
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1330128A
Other languages
Japanese (ja)
Other versions
JP2530231B2 (en
Inventor
Yoshihiro Uematsu
植松 美博
Isamu Shimizu
勇 清水
Naoto Hiramatsu
直人 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP1330128A priority Critical patent/JP2530231B2/en
Priority to EP90102879A priority patent/EP0434887B1/en
Priority to DE69015140T priority patent/DE69015140T2/en
Priority to CA002010174A priority patent/CA2010174C/en
Priority to KR1019900020876A priority patent/KR930005899B1/en
Publication of JPH03191039A publication Critical patent/JPH03191039A/en
Application granted granted Critical
Publication of JP2530231B2 publication Critical patent/JP2530231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Arc Welding In General (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To obtain the heat-resistant stainless steel excellent in high temp. salt corrosion resistance, weld hot cracking resistance and hot workability by adding specified amounts of Si, Mo, etc., to an austenitic stainless steel and limiting its D value as the index value of ferrite crystallization into a specified range. CONSTITUTION:The austenitic stainless steel is the one contg., by weight, <0.06% C, 1 to 4% Si, 0.5 to 4% Mn, <0.035% P, <0.005% S, 10 to 17% Ni, 14 to 20% Cr, 1 to 4% Mo, 0.01 to 0.5% Al and <0.035% N, satisfying Si+Mo>=3% and 2.5Si+Mo<=11% and having 7 to 11D value as the index value of ferrite crystallization expressed by formula 1. Or, it is the heat-resistant austenitic stainless steel having a compsn. furthermore contg. 0.5 to 2.5% Cu and total 0.005 to 0.1% of one or 2 kinds among rare earth metals and, in this case, having 6 to 11D value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温の腐食性雰囲気で、特に萬温塩腐食または
溶融塩腐食等、塩を含む腐食が問題となる雰囲気で繰り
返し加熱・冷却を受けるような用途に使用される耐高温
塩腐食性、ならびに耐溶接高温割れ性および熱間加工性
、溶接性、および溶接部の耐高温塩腐食性に優れた耐熱
用オーステナイト系ステンレス鋼に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to repeated heating and cooling in high-temperature corrosive atmospheres, particularly in atmospheres where salt-containing corrosion is a problem, such as Manten salt corrosion or molten salt corrosion. The present invention relates to a heat-resistant austenitic stainless steel that has excellent high-temperature salt corrosion resistance, weld hot cracking resistance, hot workability, weldability, and high-temperature salt corrosion resistance of welded parts, and is used in applications such as high temperature salt corrosion resistance.

〔従来技術とその問題点〕[Prior art and its problems]

自動車の排ガス浄化システム、加熱炉の部品、熱交換器
等の部品、電気コンロや魚焼器などの調理用電気器具な
どの厳しい腐食環境下で使用される耐熱鋼に要求される
特性としては高温強度特性、耐高温酸化性、酸化スケー
ルの剥離抵抗などの一般的特性に加えて、燃焼雰囲気で
の高温ガス腐食あるいはpbo、v20.などの各種酸
化物、PbCρ2、NaCQ、 Mgc4.、KCQな
どの塩化物を含む環境での耐高温酸化性および、さらに
高温での耐溶融塩腐食がある。さらに、冷却時には凝縮
水による湿食の問題もある。このような厳しい環境の下
では耐熱用表面処理鋼板ではもたず、5LIS30/I
で代表される耐熱用ステンレスt〜が用いられている。
High-temperature properties are required for heat-resistant steel used in harsh corrosive environments such as automobile exhaust gas purification systems, heating furnace parts, heat exchanger parts, and cooking appliances such as electric stoves and fish fryers. In addition to general properties such as strength properties, high temperature oxidation resistance, oxide scale peeling resistance, high temperature gas corrosion in combustion atmospheres or PBO, v20. Various oxides such as PbCρ2, NaCQ, Mgc4. It has high temperature oxidation resistance in environments containing chlorides such as , KCQ, and molten salt corrosion resistance at even higher temperatures. Furthermore, there is also the problem of moisture corrosion due to condensed water during cooling. Heat-resistant surface-treated steel sheets do not hold up under such harsh environments, and 5LIS30/I
Heat-resistant stainless steel t~ is used.

大量廃棄物処理等に用いる焼却炉、窩炉の羽目バーナー
、重油ボイラー、内燃機関の排ガス管などで、路面凍結
防止剤を散布するような地域など。
Areas where road surface de-icing agents are sprayed at incinerators used for large-scale waste processing, siding burners in pit furnaces, heavy oil boilers, exhaust gas pipes from internal combustion engines, etc.

塩化物あるいは灰分が付着する環境下で使用されている
部材の一部には著しい高温腐食を生じている例が見られ
問題となっている。これらの腐食事例を調査した結果、
共通した現象として粒界侵食型の加速酸化が発生してお
り、これは高温で塩の付着した状態あるいは溶融塩状態
での腐食であり、特に塩化物を含む塩による高温腐食が
著しいことがわかった。
Some parts used in environments where chlorides or ash are present have been found to suffer from severe high-temperature corrosion, which has become a problem. As a result of investigating these corrosion cases,
A common phenomenon is grain boundary erosion type accelerated oxidation, which is corrosion at high temperatures with salt attached or in a molten salt state, and it has been found that high-temperature corrosion caused by salts containing chlorides is particularly remarkable. Ta.

しかしこの高温腐食に対しては既存の耐熱用ステンレス
鋼である5US30/I、5US321および5US3
10Sなどこのような用途に対しては十分ではない。
However, existing heat-resistant stainless steels 5US30/I, 5US321 and 5US3 are effective against this high-temperature corrosion.
10S is not sufficient for such applications.

一般に高Si、高Moを含有する鋼は耐食性改善には確
かに効果があるが、一方、これらの高合金化によって熱
間加工性が劣り歩留が低く表面性状が劣るという製造上
の問題および実用化するヒで造管性や施工上の溶接性の
問題が生じた。また、新たに高温下で使用する部材に高
濃度の塩水が接触するような環境下では条件によっては
母材は健全であるが溶接ボン1〜部が高温塩害によって
著しく選択腐食を生じるという現象が明らかとなった。
In general, steels containing high Si and high Mo content are certainly effective in improving corrosion resistance, but on the other hand, their high alloying causes manufacturing problems such as poor hot workability, low yield, and poor surface quality. When it was put into practical use, problems arose with pipe forming and weldability during construction. In addition, in environments where highly concentrated salt water comes into contact with parts that are newly used at high temperatures, depending on the conditions, the base material may be sound, but the welding bong 1 to 1 may undergo significant selective corrosion due to high-temperature salt damage. It became clear.

特開昭63−213643号公報には、単長でC: 0
.03%以下、Cr : 10〜20%、Ni : 1
0〜30%、4n:2%以下、Sl:1〜6%、Mo 
: 0.5〜5%およびN:0.02〜0.4%を含み
、式 %式% の値が500以下であることを特徴とする塩化物共存下
での耐高温腐食性に優れたステンレス鋼が開示されてい
る。この鋼はTi、 Zr、 Nb、 Taの少くとも
1種を合計で0.1〜1%含むことができる。しかしこ
の鋼は耐溶接高温割れ性の改善に配慮がなされていない
JP-A No. 63-213643 discloses that C: 0 in single length.
.. 03% or less, Cr: 10-20%, Ni: 1
0-30%, 4n: 2% or less, Sl: 1-6%, Mo
: 0.5-5% and N: 0.02-0.4%, and the value of formula % is 500 or less. Excellent high-temperature corrosion resistance in the coexistence of chlorides. Stainless steel is disclosed. This steel can contain at least one of Ti, Zr, Nb, and Ta in a total amount of 0.1 to 1%. However, no consideration has been given to improving the weld hot cracking resistance of this steel.

従って、耐高温塩腐食性と同時に耐溶接高温割れ性およ
び熱間加工性に優れた耐熱用オーステナイト系ステンレ
ス鋼が望まれている。
Therefore, there is a need for a heat-resistant austenitic stainless steel that has excellent high-temperature salt corrosion resistance, welding hot cracking resistance, and hot workability as well as high-temperature salt corrosion resistance.

〔問題解決に関する知見〕[Knowledge about problem solving]

本発明は耐熱用オーステナイト系ステンレス鋼の耐高温
塩腐食性と同時に耐溶接高温割れ性および熱間加工性を
改良することを課題とし、課題解決に関し、鋭意研究し
た結果、耐高温塩腐食性の改良に対してはSiおよびM
oを限定添加し、さらに応力腐食割れあるいは耐候性の
点から所望ならば。
The present invention aims to improve the high-temperature salt corrosion resistance of heat-resistant austenitic stainless steel, as well as the welding hot cracking resistance and hot workability. Si and M for improvement
If desired from the viewpoint of stress corrosion cracking or weather resistance, a limited amount of o may be added.

Cuを限定添加することにより、粒界侵食型の高温腐食
と冷却時の混食による耐粒界腐食性および高温強度、熱
間加工性に対してはNb、 Ti、 Vを限定添加する
ことにより、また熱間加工性、溶接高温割れ感受性に対
してはBおよびREMを限定添加することにより改良さ
れるという知見を得た。
By adding a limited amount of Cu, the grain boundary corrosion resistance due to intergranular corrosion at high temperature and mixed corrosion during cooling, high temperature strength, and hot workability can be improved by adding a limited amount of Nb, Ti, and V. It was also found that hot workability and weld hot cracking susceptibility can be improved by adding B and REM in limited amounts.

〔発明の構成〕[Structure of the invention]

上記目的は、 C: 0.06%以下 Si:1〜4% Mn : 0.5〜4% P : 0.035%以下 s : 0.005%以下 Ni : 10〜17% Cr:14〜20% Mo:1〜4% AI2: 0.01〜0.5% N : 0.03%以下 を基本組成とし、この基本組成に必要に応じてCu :
 0.5−2.5% を含有させ、 さらに、基本組成および基本組成にCuを含有する鋼に Nb、 Ti、 Vの1種または2種以上の含有合計量
:0.05〜0.5% および/または B  : 0.0005〜0.02% を含有させ、さらに基本組成および基本組成にCuを含
有する鋼、およびこれらの鋼にNb、 Ti、 Vの1
種または2種以上および/またはBを含有する鋼に REMの1種または2種: 0.005〜0.1%を含
有させ、残部Feおよび不可避的不純物からなり、下式
に示す(1)式で表わす(Si%+Mo%)が3以上、
(2)式で表わす(2,5Si%+Mo%)が11以下
、(3)式で表わすD値が、溶接性の点から、REMま
たはBを含有する場合は6以上、含有しない場合は7以
上、11以下である耐熱用オーステナイト系ステンレス
鋼によって達成される。
The above objectives are: C: 0.06% or less Si: 1-4% Mn: 0.5-4% P: 0.035% or less S: 0.005% or less Ni: 10-17% Cr: 14-20 % Mo: 1 to 4% AI2: 0.01 to 0.5% N: 0.03% or less is the basic composition, and Cu: is added to this basic composition as necessary.
0.5-2.5%, and further, the basic composition and the total content of one or more of Nb, Ti, and V in the steel containing Cu: 0.05-0.5 % and/or B: 0.0005 to 0.02%, and further contains Cu in the basic composition and basic composition, and these steels contain 1 of Nb, Ti, and V.
A steel containing one or more types and/or B contains one or two types of REM: 0.005 to 0.1%, and the balance consists of Fe and inevitable impurities, as shown in the following formula (1) (Si% + Mo%) expressed by the formula is 3 or more,
(2,5Si%+Mo%) expressed by formula (2) is 11 or less, and the D value expressed by formula (3) is 6 or more when containing REM or B, and 7 when not containing it, from the viewpoint of weldability. The above can be achieved by using a heat-resistant austenitic stainless steel with a rating of 11 or less.

(Si%十No%)≧3 ・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・(1)(2,5S
i%+Mo%)≦11・・・・・・・・・・・・・・・
・・・・・・・・・・・・(2)D値= (Cr%+1
.55i%十阿0%+3Al%+2.6Ti%+0.5
Nb%+0.5v%)=(Ni%+30C%+3ON%
+0.5Mn%+2Cu%)・・・・・・・・・・・・
・・・・・・・・・・・・・・・(3)先に言及した特
開昭63−213643の鋼の実施例に示される鋼の上
式に基づくD値はすべて4未満である。本発明者らは、
この値を6または7以上とすることによって、高Si高
Mo鋼の溶接高温割れを防止することに成功したもので
ある。
(Si%10No%)≧3 ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・(1)(2,5S
i%+Mo%)≦11・・・・・・・・・・・・・・・
・・・・・・・・・・・・(2) D value = (Cr%+1
.. 55i%10%+3Al%+2.6Ti%+0.5
Nb%+0.5v%)=(Ni%+30C%+3ON%
+0.5Mn%+2Cu%)・・・・・・・・・・・・
・・・・・・・・・・・・・・・(3) All the D values based on the above formula of the steels shown in the steel examples of JP-A-63-213643 mentioned above are less than 4. . The inventors
By setting this value to 6 or 7 or more, welding hot cracking of high-Si, high-Mo steel can be successfully prevented.

本発明鋼の好ましい組成は、C: 0.03〜0.06
0%以下、Si:2〜3%、Mn : 0.5〜1%、
 P : 0.03%以下、s : 0.005%以下
、Ni:12−16%、Cr:16〜]8%、Mo :
  2〜3.2%、l : 0.01〜0.03%、N
二0.03%以下、残部Feおよび不可避的不純物であ
る。
The preferred composition of the steel of the present invention is C: 0.03 to 0.06.
0% or less, Si: 2-3%, Mn: 0.5-1%,
P: 0.03% or less, s: 0.005% or less, Ni: 12-16%, Cr: 16~]8%, Mo:
2-3.2%, l: 0.01-0.03%, N
20.03% or less, the remainder being Fe and unavoidable impurities.

次に、本発明において鋼の組成の限定理由を以下に説明
する。
Next, the reasons for limiting the composition of steel in the present invention will be explained below.

C:不可避成分であり、強力なオーステナイト生成元素
であり5本発明鋼のように優れた熱間加工性、造管性を
も要求される鋼においては、組成バランス上からも必要
な元素である。また高価なNiの節減にも有効である。
C: An inevitable component and a strong austenite-forming element.5 In steels that also require excellent hot workability and pipe forming properties, such as the steel of the present invention, it is a necessary element from the viewpoint of compositional balance. . It is also effective in saving expensive Ni.

さらに、Cは侵入型元素として固溶し、高温強度を向上
させるのに有効な元素でもある。しかし、Cを過度に添
加すると脆化をひきおこし、また、加工性も低下するの
で、上限は0.06%とする。一方、Cの低減はX錬時
間を長くシ、製造コストを押し上げるので好ましくなく
、また、必要な高温強度を得るためにも0603%以下
に過度に低減するのは好ましくない。
Furthermore, C is an interstitial element that forms a solid solution and is an effective element for improving high-temperature strength. However, excessive addition of C causes embrittlement and also reduces workability, so the upper limit is set at 0.06%. On the other hand, reducing C is undesirable because it lengthens the X-melting time and increases manufacturing costs, and it is also undesirable to reduce C excessively to 0.603% or less in order to obtain the necessary high-temperature strength.

Sj:耐酸化性および耐高混塩腐食性を改良する上で最
も重要な元素の1つであり、十分な効果を得るには1%
以上、好ましくは2%を必要とする。
Sj: One of the most important elements for improving oxidation resistance and high mixed salt corrosion resistance, and 1% to obtain sufficient effect.
Above, preferably 2% is required.

一方、Siはσ相の析出を促し靭性の低下を来たすこと
、また、熱間加工性、溶接性ならびに成形加工性を低下
せしめるので上限を4%、好ましくは3%とした。
On the other hand, Si promotes precipitation of the σ phase and causes a decrease in toughness, and also reduces hot workability, weldability, and formability, so the upper limit is set to 4%, preferably 3%.

Mn:溶接高温割れに有害なSをMnSとして固定し、
溶着金属中のSを除去、減少させる。Mnが低すぎると
MnSは粒界に膜状に存在し、高温での粒界強度低下を
助長するが、Mn量が高くなるとMnSは球状化し粒界
強度低下への影響が小さくなる。
Mn: S, which is harmful to welding hot cracking, is fixed as MnS,
Removes and reduces S in weld metal. If the Mn content is too low, MnS will exist in the form of a film at the grain boundaries, promoting a decrease in grain boundary strength at high temperatures; however, if the Mn content is high, MnS will become spheroidal and its influence on the decrease in grain boundary strength will be reduced.

それにはMniは0.5%以上必要であり、また、4%
を超えてもその効果は同じである。したがって0.5%
以上4%以下とした。D値を考慮すると1%以下が好ま
しい。
For that, Mni is required to be 0.5% or more, and 4%
The effect is the same even if it exceeds . Therefore 0.5%
4% or less. Considering the D value, it is preferably 1% or less.

P:Sと同様に溶接高温割れに対して有害であるので、
可能な限り低い方が良いが、低くするには製造コストの
上昇を招くので上限を0.035%以下とした。
P: Same as S, it is harmful to welding hot cracking.
Although it is better to keep the content as low as possible, lowering it will increase manufacturing costs, so the upper limit is set to 0.035% or less.

S:上述のように溶接高温割れに対して有害であるので
可能な限り低いほうが好ましいが、低くするには製造コ
ストの上昇を招くので上限を0.005%とする。
S: As mentioned above, it is harmful to weld hot cracking, so it is preferable to keep it as low as possible, but lowering it causes an increase in manufacturing costs, so the upper limit is set at 0.005%.

Niニオ−ステナイト系ステンレス鋼の基本的元素の1
つであり、溶接高温割れ防止の点からδフェライトが生
成する組成にする必要があるので、その組成バランスを
考慮して下限を10%とした。
Ni is one of the basic elements of niostenitic stainless steel.
Therefore, from the viewpoint of preventing hot weld cracking, it is necessary to have a composition in which δ ferrite is generated, so the lower limit was set at 10% in consideration of the composition balance.

上限は組成バランスおよび製品原価の点から17%以下
とした。D値を考慮すると12〜16%が好ましい。
The upper limit was set at 17% or less from the viewpoint of compositional balance and product cost. Considering the D value, 12 to 16% is preferable.

Crニステンレス鋼の耐酸化性および耐食性を維持する
ために最も基本的な元素である。14%未満では高温の
腐食性環境あるいは単なる耐高温酸化性の点で十分な効
果が得られない。また、20%を超えると組成バランス
の調整が困難となり、δフェライトが多くなって、加工
性の低下を招くので上限20%以下とした。D値を考慮
すると16〜18%が好ましい。
Cr is the most basic element for maintaining the oxidation resistance and corrosion resistance of stainless steel. If it is less than 14%, sufficient effects cannot be obtained in terms of high-temperature corrosive environments or simply high-temperature oxidation resistance. Moreover, if it exceeds 20%, it becomes difficult to adjust the compositional balance, and the amount of δ ferrite increases, resulting in a decrease in workability, so the upper limit was set at 20% or less. Considering the D value, 16 to 18% is preferable.

4o:高温での腐食性環境ならびに耐高温塩害性・高温
強度に有効な元素であるので積極的に添加すべき元素で
ある。1%未満では添加効果が小さいので下限を1%以
上とする。一方、Moは高価であり、また、σ相の析出
を促し靭性の低下を招く。
4o: It is an element that is effective in corrosive environments at high temperatures as well as high-temperature salt damage resistance and high-temperature strength, so it is an element that should be actively added. If it is less than 1%, the effect of addition is small, so the lower limit is set to 1% or more. On the other hand, Mo is expensive and also promotes precipitation of the σ phase, leading to a decrease in toughness.

また、4%を越えて添加すると熱間加工性の低下を来た
すので上限を4%とする。D値を考慮すると2〜3.2
%が好ましい6 Al:耐酸化性の向上に最も有効な元素であり、また、
鋼の清浄度を高めるのに有効であるので0.01%以上
含まれることが望まれる。また、Alは強力なフェライ
ト生成元素であり、組成バランスならびに靭性の点から
、上限0.5%以下とした。
Moreover, if added in excess of 4%, hot workability will be reduced, so the upper limit is set at 4%. Considering the D value, 2 to 3.2
% is preferable 6 Al: The most effective element for improving oxidation resistance, and
Since it is effective in increasing the cleanliness of steel, it is desired that it be contained in an amount of 0.01% or more. Further, Al is a strong ferrite-forming element, and from the viewpoint of compositional balance and toughness, the upper limit was set to 0.5% or less.

D値を考慮すると0.01〜0.03%が好ましい。Considering the D value, 0.01 to 0.03% is preferable.

B:結晶粒界強度を高め熱間加工性や溶接高温割れを改
善するのに有効であるが、o、ooos%未満ではその
効果が現われず、また、含有量が約0.02%超えると
Bの化合物をつくり、粒界強度が逆に低下してくるので
o、ooos%〜0.02%とする。
B: It is effective in increasing grain boundary strength and improving hot workability and weld hot cracking, but the effect does not appear when the content is less than o,ooos%, and when the content exceeds about 0.02% When compound B is prepared, the grain boundary strength decreases, so the content is set to 0.02% to 0.02%.

Nb、 Ti、 V :これらの元素はC,Nと結合し
て微細な析出物を形成し、耐食性のみならず高温強度、
とりわけクリープ強度の改善に効果があり、添加量の合
計が0.05%以上で明確な添加効果が得られる。添加
量が多くなると加工性が低下し、靭性も低下するので合
計で0.5%以下とする。好ましくは0.05〜0.4
%である。
Nb, Ti, V: These elements combine with C and N to form fine precipitates, improving not only corrosion resistance but also high-temperature strength and
It is particularly effective in improving creep strength, and a clear addition effect can be obtained when the total amount added is 0.05% or more. If the amount added increases, workability and toughness will decrease, so the total amount should be 0.5% or less. Preferably 0.05-0.4
%.

REM :溶接高温割れに有害なSを凝固の初期過程に
おいて高融点化合物として固定し割れ感受性の改良に効
果がある。また、加熱−冷却の温度サイクルを受けた場
合の酸化スケールの剥離抵抗を高めるのに効果がある。
REM: Effective in improving cracking susceptibility by fixing S, which is harmful to welding hot cracking, as a high melting point compound during the initial solidification process. It is also effective in increasing the peeling resistance of oxide scale when subjected to heating-cooling temperature cycles.

これらの効果を得るにはREMの合計量で0.005%
以上必要であり、逆に、REMを多量に添加すると粒界
にREM酸化物が多量に析出し、高温における粒界強度
を低下させ、高温割れ感受性の改良効果を相殺してしま
うので、」−眼を0.1%以下とする。
To obtain these effects, the total amount of REM is 0.005%.
On the other hand, if a large amount of REM is added, a large amount of REM oxide will precipitate at the grain boundaries, lowering the grain boundary strength at high temperatures and canceling out the effect of improving hot cracking susceptibility. Eyes should be 0.1% or less.

Cu:応力腐食割れあるいは耐候性の点で効果があり、
その場合0.5%以上を必要とし、一方、多量に添加す
ると結晶粒界に偏析して熱間加工性を著しく損なうので
2.5%を上限とする。D値を考慮すると1〜1.3%
が好ましい。
Cu: Effective in terms of stress corrosion cracking and weather resistance,
In that case, 0.5% or more is required. On the other hand, if added in a large amount, it segregates at grain boundaries and significantly impairs hot workability, so the upper limit is set at 2.5%. 1-1.3% considering the D value
is preferred.

N:Cと同様に高温強度を向上させるのに有効な成分で
あるが、過度に添加すると加工性が低下するので0.0
3%以下とする。
N: Similar to C, it is an effective component for improving high temperature strength, but if added in excess, workability decreases, so add 0.0
3% or less.

さらに、SiとMoについては前記(1)式、(2)式
に示したように合計量でも規制する。下限値の(Si%
十Mo%)≧3は母材の高温塩腐食性を改良するためで
あり、上限値の(2,5Si%+Mo%)≦11は熱間
加工性、耐溶接高温割れ性およびσ脆化の劣化および成
形加工性を最小限にするためである。
Furthermore, the total amount of Si and Mo is also regulated as shown in equations (1) and (2) above. Lower limit value (Si%
The upper limit (2,5Si%+Mo%)≦11 is for improving the high-temperature salt corrosion resistance of the base metal, and the upper limit (2,5Si%+Mo%)≦11 is for improving hot workability, weld hot cracking resistance, and σ embrittlement. This is to minimize deterioration and moldability.

また、前記(3)式で表わすD値を定義し限定したのは
、高Siあるいは高Moを含む鋼はきわめて溶接高温割
れを起こしやすくなるのでその改良を図ったもので、D
値はフェライト品出の指標値である。
In addition, the D value expressed by the above equation (3) was defined and limited in order to improve the D value since steel containing high Si or high Mo is extremely susceptible to welding hot cracking.
The value is an index value for ferrite products.

D値はREMまたはBを含有する場合は6以上、該元素
を含まない場合は7以上である。δフェライトが多くな
りすぎると熱間加工割れを起こし、製造性の低下を招く
ので上限をD値=11とした。
The D value is 6 or more when containing REM or B, and 7 or more when not containing this element. If the amount of δ ferrite is too large, hot working cracks will occur, leading to a decrease in productivity, so the upper limit was set to D value = 11.

〔発明の具体的開示〕[Specific disclosure of the invention]

次に本発明を具体的に説明する。基礎実験として第1表
に示す鋼を真空溶製し、熱間引張試験と高温塩腐食試験
を行った。熱間引張試験は鋼塊から20X20X110
mmに切り出し、1200℃で2時間の熱処理を施し、
10mmφの丸棒の試験片に加工した。
Next, the present invention will be specifically explained. As a basic experiment, the steels shown in Table 1 were vacuum melted and subjected to hot tensile tests and high temperature salt corrosion tests. Hot tensile test is performed using 20X20X110 from steel ingot.
Cut into mm pieces, heat treated at 1200℃ for 2 hours,
It was processed into a round bar test piece with a diameter of 10 mm.

高温塩腐食試験は鋼塊を鍛造で30mm厚さの板とし、
1200℃に加熱した後、熱延で511IIllとし、
以降通常の冷延、焼鈍で2mmの板を作製し、25 X
 35mmの試験片に加工し、全面をI400研摩して
試験に供した。
For the high temperature salt corrosion test, a steel ingot was forged into a 30mm thick plate.
After heating to 1200°C, hot rolling to 511IIll,
Thereafter, a 2mm plate was produced by normal cold rolling and annealing, and 25X
It was processed into a 35 mm test piece, the entire surface of which was polished with I400, and used for testing.

まず、耐高混塩腐食性を確認するため、20℃の飽和食
塩水中に供試材を5分間浸漬した後650℃で2時間加
熱し、5分間空冷する処理を1サイクルとし、これを1
0サイクル実施する方法で高温塩腐食試験を行った。試
験抜脱スケールし、腐食減量によって耐高混塩腐食性を
評価した。その結果を表1に合せて示す。この結果から
S[JS30/I、5US321の規格鋼と比較して、
高Siを含有する5US302B、SUSXM15Jl
 は腐食減量が著しく低減し、 Siとト10を含有す
るE33〜E96はさらに腐食減量が著しく低減してい
ることがわかる。第1図に、第1表に示す鋼のうちのD
値が7以上11以下のものについての耐窩温塩腐食性に
及ぼす(Si + Mo)量の影響を示す。この結果か
ら(Si + Mo)量を3%以上含有すると腐食減量
が著しく低減しており、耐高混塩腐食性を付与するため
には3%以上の(Si+Mo)を添加することが非常に
有効であることがわかる。一般にオーステナイト系ステ
ンレス鋼の優れた耐熱性は鋼表面に形成さ九るCr、 
0.の皮膜によってもたらされるものであるが、この皮
膜は大気酸化に対しては優れた保護性を発揮するが2本
発明鋼の用途である高温塩腐食環境下では十分な保5皮
膜とはなり得す著しく腐食される。これに対して(Si
十阿0)を3%以上添加することにより高温塩腐食環境
下で優れた保護性を発揮する皮膜を形成することが可能
になったと考える。
First, in order to confirm the high mixed salt corrosion resistance, one cycle consisted of immersing the test material in saturated saline at 20°C for 5 minutes, heating it at 650°C for 2 hours, and cooling it in air for 5 minutes.
A high-temperature salt corrosion test was conducted using a 0-cycle method. Tests were taken out and scaled, and high mixed salt corrosion resistance was evaluated by corrosion weight loss. The results are also shown in Table 1. From this result, compared to the standard steel of S[JS30/I, 5US321,
5US302B, SUSXM15Jl containing high Si
It can be seen that the corrosion weight loss of E33 to E96 containing Si and To10 is significantly reduced. Figure 1 shows D of the steels shown in Table 1.
The influence of the amount of (Si + Mo) on the resistance to hot salt corrosion for those having a value of 7 or more and 11 or less is shown. This result shows that when the content of (Si + Mo) is 3% or more, the corrosion loss is significantly reduced, and it is extremely important to add 3% or more of (Si + Mo) in order to provide high mixed salt corrosion resistance. It turns out that it is effective. Generally, the excellent heat resistance of austenitic stainless steel is due to Cr formed on the steel surface.
0. Although this film exhibits excellent protection against atmospheric oxidation, it may not be a sufficient protective film in the high-temperature salt corrosion environment in which the steel of the present invention is used. It is severely corroded. On the other hand, (Si
It is believed that by adding 3% or more of 100% or more, it is possible to form a film that exhibits excellent protection in a high-temperature salt corrosion environment.

一方、SiとMoの含有量が増してくると熱間加工性、
溶接高温割れならびに靭性の劣化を招くので、むやみに
多量添加することはできない。第2図は800〜140
0°Cで熱間高速引張試験を行い破断絞りを求め、その
破断絞り値が0%となる温度、すなわち、nul1点を
求めたものである。この結果から、nul1点はSlと
Moの増加と共に低下し、特にSiはM。
On the other hand, as the content of Si and Mo increases, hot workability improves.
It cannot be added in an unnecessarily large amount because it will cause hot welding cracking and deterioration of toughness. Figure 2 is 800-140
A hot high-speed tensile test was conducted at 0°C to determine the area of area at break, and the temperature at which the area of area at break became 0%, that is, the null1 point was determined. From this result, the null1 point decreases as Sl and Mo increase, especially when Si is M.

の2.5倍できいてくるので大巾な増量は好ましくない
。これはSiとMoの含有量が増してくると高温加熱に
より粒界溶融による凝膜脆性が促進されるためである。
It is not preferable to increase the amount by a large amount because the amount becomes 2.5 times the amount. This is because as the content of Si and Mo increases, coagulation film embrittlement due to grain boundary melting is promoted by high temperature heating.

そのため熱間加工性の点からSlと肋の大巾な増量は望
めず、(2,5Si+Mo)で11%以下が好ましいと
考える。
Therefore, from the viewpoint of hot workability, it is not possible to expect a large increase in the amount of Sl and ribs, and it is considered that (2,5Si+Mo) is preferably 11% or less.

また、図中にも示すように、Bを添加すると同レベルの
(Sj + Mo)の鋼に比へて大幅なnul1点の」
−Hがみられる。これはBは粒界強度を高めるためで、
難熱間加工材の改良に有効である。
In addition, as shown in the figure, when B is added, the number of null points is significantly lower than that of (Sj + Mo) steel at the same level.
-H is seen. This is because B increases grain boundary strength.
Effective for improving materials that are difficult to hot work.

このような背景からSiとNoの添加は合計量でも規制
し、下限は耐高混塩腐食性の点から、上限は熱間加工性
、溶接高温割れおよびσ脆化の点から規制するが、Si
とMoの量の上限を厳しく規制しても、なおかつ熱間加
工性等に問題がある場合にはBを添加する。Bは粒界強
度を高めるため熱間加工性の改良に有効である。
From this background, the addition of Si and No is regulated based on the total amount, with the lower limit being regulated in terms of high mixed salt corrosion resistance, and the upper limit being regulated in terms of hot workability, weld hot cracking, and σ embrittlement. Si
Even if the upper limits of the amounts of Mo and Mo are strictly regulated, if there is still a problem with hot workability, B is added. B increases grain boundary strength and is therefore effective in improving hot workability.

さらに高温塩腐食環境下では、前述したように、母材が
腐食される以前に溶接部が著しく腐食される場合がある
。第4図、第5図、第6図はそれぞれ表1に示す5US
304、SUSXM15J1およびE57(7)ill
常法で熱延し冷延焼鈍で0.3+nm以下の板とし、T
IG溶接した後、5%NaCQを含む溶液で60℃、1
時間湿潤し、60℃、3日間乾燥し、350℃で4時間
加熱を1サイクルとし、これを10サイクル行ったとき
の溶接部の断面の約70倍の顕微鏡写真である。5US
304では溶接部がδフェライト相に沿って腐食し、特
にボンド部の腐食が著しく、そのためボンド部に沿って
破断している。Siを含有するSUSXM15J1は5
US304のようにボンド部が破断するまでにはいたっ
ていないが、δフェライト相はかなり選択腐食されてい
る。これら二つの鋼に対して、(Si 十No)を含有
するE57はまったく腐食されていないことがねかる。
Furthermore, in a high-temperature salt corrosion environment, as described above, the welded part may be severely corroded before the base metal is corroded. Figures 4, 5, and 6 are 5US shown in Table 1, respectively.
304, SUSXM15J1 and E57(7)ill
Hot rolled by a conventional method and cold rolled annealed to form a plate with a thickness of 0.3+nm or less, T
After IG welding, welded with a solution containing 5% NaCQ at 60℃ for 1
This is a microscopic photograph of a cross-section of a welded part at about 70 times magnification obtained by performing 10 cycles of wetting for 1 hour, drying at 60° C. for 3 days, and heating at 350° C. for 4 hours. 5 US
In No. 304, the welded portion corroded along the δ ferrite phase, and the bond portion was particularly corroded, so that it broke along the bond portion. SUSXM15J1 containing Si is 5
Although the bond portion did not break like in US304, the δ ferrite phase was selectively corroded considerably. In contrast to these two steels, E57 containing (Si 10 No) was not corroded at all.

これは5US304ならびニSUSXM l 5J 1
 テはマトリックスに対してδフェライト相が卑となり
電気化学的に著しく腐食されたためと思われる。これに
対し、E57の溶接部が腐食されにくいのは耐高混塩腐
食性に効果のあるSiおよびNoによってδフェライト
相そのものの耐食性が増しているためである。したがっ
て、SiおよびMoを添加することは母材のみでなく、
溶接部の耐高混塩腐食性の向上にも有効である。Si単
独添加ではなし得ながった上記のような厳しい腐食環境
下での使用にはしめて可能ならしめた点に本発明の1つ
の大きな特徴がある。
This is 5US304 and 2SUSXM l 5J 1
This is thought to be due to the fact that the δ ferrite phase became base to the matrix and was electrochemically corroded significantly. On the other hand, the reason why the welded part of E57 is less likely to be corroded is because the corrosion resistance of the δ ferrite phase itself is increased by Si and No, which are effective in high mixed salt corrosion resistance. Therefore, adding Si and Mo is not limited to the base material;
It is also effective in improving the high mixed salt corrosion resistance of welded parts. One of the major features of the present invention is that it can be used in the severe corrosive environment described above, which was not possible with the addition of Si alone.

自動車排ガス部材、加熱炉の部品、熱交換器の部品等溶
接施工される構造物の用途では溶接高温割れ感受性の高
いような材料は致命的である。特に高SiUJMo[は
溶接高温割れ感受性が高いので問題である。この溶接高
温割れに関しては凝固過程で生成するδフェライト相が
大きく影響している。
Materials that are highly susceptible to welding hot cracking are fatal when used in welded structures such as automobile exhaust gas parts, heating furnace parts, and heat exchanger parts. In particular, high-SiUJMo[ is a problem because it has high weld hot cracking susceptibility. This weld hot cracking is largely influenced by the δ ferrite phase generated during the solidification process.

すなわち、オーステナイト単相の鋼では初品がオ−ステ
ナイト相のみであるので、そのオーステナイ1へ相とオ
ーステナイト相の一次粒界に不純物元素が濃縮するため
、その粒界強度を弱め、高温割れを起こすが、δフェラ
イトが存在する場合には初品のδフェライ1〜は凝固過
程でオーステナイトに変態し、その際に粒界移動を伴う
ので、オーステナイトr■相の鋼よりもオーステナイト
粒界の不純物元素が少ないため溶接高温割れが改良され
るといわれている。本発明者らは、このδフエライi〜
を利用し第2表に示す鋼を用いて?8接高温割れ試験に
より割れ感受性を詳細に検討し第3図に示すR1果を得
た。第2表に示す鋼は、真空溶製して鋼塊とし、鍛造で
30mm厚さのスラブにし、1200℃に加熱した後、
熱延で5mm厚の板にし、以降通常の冷延、焼鈍にて1
.5mmの板を作製し40 X 200mmの試験片に
加工した。溶接高温割れ試験は試験片の両i・、“tを
チャッキングして長平方向に引張荷重を加えた状態で■
■G+8接を行った。この方法で種々の引ツ1(荷重を
加えて行った溶接サンプルを5〜10枚作製した。溶接
後、試験前に入れていたケガキ線の位置からひずみ量を
測定し、凝固する際に発生した溶接部の割れの有無を観
察し、溶接割れを起こした最小ひずみ量を臨界ひずみと
し、その臨界ひずみ量とδフエライト量の指標であるD
値との関係を第3図にプロットした。この結果から、高
SJ高XOを含有する鋼においても溶接ビードに適当量
のδフェライトが存在すると高温割れが起こりにくく、
D値が7以上11以下の範囲内で改良されることが明ら
かとなった。また1図中に示すように、前記基本成分に
、さらにB添加ならびにREM添加すると割れ感受性が
鈍くなり、同じD値の鋼に比へて改善効果が認められ、
この場合にはD値6〜11の範囲が最適と考える。
In other words, in the case of austenite single-phase steel, since the initial product has only the austenite phase, impurity elements concentrate at the primary grain boundaries of the austenite phase and the austenite phase, weakening the grain boundary strength and preventing hot cracking. However, when δ ferrite exists, the initial δ ferrite 1 ~ transforms into austenite during the solidification process, and grain boundary movement occurs at that time, so impurities at the austenite grain boundaries are more likely to occur than in austenite r phase steel. It is said that high temperature cracking during welding is improved due to the small amount of elements. The present inventors have discovered that this δ ferrite i~
Using the steel shown in Table 2? The cracking susceptibility was examined in detail by an 8-junction hot cracking test, and the R1 results shown in FIG. 3 were obtained. The steel shown in Table 2 is vacuum melted into a steel ingot, forged into a 30 mm thick slab, heated to 1200°C, and then
Hot rolled into a 5mm thick plate, then normal cold rolled and annealed.
.. A 5 mm plate was prepared and processed into a 40 x 200 mm test piece. The welding hot cracking test was performed by chucking both i and t of the test piece and applying a tensile load in the longitudinal direction.
■Made G+8 contact. Using this method, 5 to 10 welded samples were prepared using various tensile loads. After welding, the amount of strain was measured from the position of the marking line that had been placed before the test, and the amount of strain generated during solidification was measured. The presence or absence of cracks in the welded part was observed, and the minimum strain that caused weld cracking was taken as the critical strain, and D, which is an index of the critical strain and the amount of δ ferrite.
The relationship with the values is plotted in Figure 3. From this result, even in steel containing high SJ and high XO, hot cracking is less likely to occur if an appropriate amount of δ ferrite is present in the weld bead.
It became clear that the D value was improved within the range of 7 or more and 11 or less. In addition, as shown in Figure 1, when B and REM are added to the basic components, the cracking sensitivity becomes weaker, and an improvement effect is observed compared to steel with the same D value.
In this case, a D value in the range of 6 to 11 is considered optimal.

以上、耐高温塩腐食性、熱間加工性、耐溶接高温割れ性
の点から検討しここに高Sl高Mo含有の耐熱用オース
テナイト系ステンレス鋼の提供が可能になったものであ
る。
As described above, it has become possible to provide a heat-resistant austenitic stainless steel containing high Sl/high Mo content by considering the high temperature salt corrosion resistance, hot workability, and weld hot cracking resistance.

〔実施例〕〔Example〕

つぎに、本発明を実施例について説明する。第3表に示
す組成の鋼を溶製し、前記と同様の試料に調製した。合
せて第3表に高温塩害腐食試験により得られた腐食減量
、溶接高温割れ試験により求めた臨界ひずみ、熱間引張
試験により求めたnul1点測定結果を示す。これらの
試験に用いた試料の製法および試験方法は前記1.2図
および第3図に関連して説明したものとまったく同じ方
法で行った。この表から、限定された組成に合わない比
較鋼のE74はSiが低くMoを含有しないため腐食減
量は多い。E75はMoを含有しないため腐食減量が多
く、Sl量が多いためnul1点が低く、また、D値を
8.8にして溶接部のδフェライトが適当量になるよう
に組成バランスを調整しているが5iftが多いために
臨界ひずみが非常に低い。E76はSiおよびMo量が
多いのでやはりnul1点が低く、臨界ひずみも非常に
低い。F6は本発明鋼の範囲内の成分であるが、D値が
4.5と非常に低く本発明の範囲より外れるので臨界ひ
ずみが極端に低い。E77も本発明の鋼の範囲内の成分
であるが、 D値が高すぎるのでデルタフェライトに沿
って腐食されるので腐食減量が多い。また、既存鋼の5
US304は腐食減量が多く、Siを含有するS[JS
302BおよびSUSXMI5J1は5US304より
も腐食減量は少ないが1本発明鋼のようにMoを含有し
ていないので、本発明鋼に比べ腐食減量は多い。
Next, the present invention will be explained with reference to examples. Steel having the composition shown in Table 3 was melted and prepared into the same samples as above. Table 3 also shows the corrosion weight loss obtained from the high temperature salt damage corrosion test, the critical strain obtained from the weld hot cracking test, and the null 1 point measurement results obtained from the hot tensile test. The preparation and testing methods for the samples used in these tests were exactly the same as those described in connection with FIGS. 1.2 and 3 above. From this table, the comparative steel E74, which does not meet the specified composition, has a low Si content and does not contain Mo, so its corrosion loss is large. E75 has a large corrosion loss because it does not contain Mo, and has a low null point because it has a large amount of Sl, and the composition balance has been adjusted so that the D value is 8.8 and the amount of δ ferrite in the weld is appropriate. However, since there are many 5ifts, the critical strain is very low. Since E76 has a large amount of Si and Mo, the null1 point is low, and the critical strain is also very low. Although F6 is a component within the range of the steel of the present invention, the D value is extremely low at 4.5 and is outside the range of the present invention, so the critical strain is extremely low. E77 is also a component within the scope of the steel of the present invention, but since its D value is too high, it corrodes along the delta ferrite, resulting in a large corrosion weight loss. In addition, the existing steel 5
US304 has a large corrosion loss and contains Si.
302B and SUSXMI5J1 have less corrosion loss than 5US304, but unlike the invention steel, they do not contain Mo, so the corrosion loss is greater than the invention steel.

これらに対して、本発明鋼でFlおよびE57は耐高温
塩害腐食性に有効なSiおよび阿0を含有しているため
腐食減量が少なく、また、組成バランスであるD値を8
.5に調整しているので臨界ひずみが高く、nul1点
も高い。E60は耐高温塩害腐食性に有効なSi、 M
oを含有し、さらに耐応力腐食割れに有効なCuを含有
する鋼で、FlおよびE57と同様に腐食減量が少なく
、臨界ひずみおよびnul1点が高い。E61−E66
およびF9は前記同様Si、 Moを含有するため腐食
減量が少ない。また、これらの鋼のうち、E61はとり
わけクリープ強度の改善に有効なNb、Tiを、E62
は同様の考え方でVを、E64はCu、NbおよびVを
含有する鋼で、D値を6.2〜8.5と溶接高温割れを
起こしにくい範囲に組成調整しているので、いずれも臨
界ひずみは高い。F9、E63、E65およびE66は
CuあるいはNb、 TiあるいはVの他にさらに熱間
加工性の改善に有効なりを含有するためnul1点が高
い。
On the other hand, in the steels of the present invention, Fl and E57 contain Si and A0, which are effective in resisting high-temperature salt damage and corrosion, so the corrosion loss is small, and the D value, which is the compositional balance, is 8.
.. Since it is adjusted to 5, the critical strain is high and the null1 point is also high. E60 is Si and M, which are effective in high temperature salt corrosion resistance.
It is a steel containing copper, which is effective for stress corrosion cracking resistance, and has a small corrosion loss, similar to Fl and E57, and a high critical strain and null1 point. E61-E66
Similarly to the above, F9 contains Si and Mo, so the corrosion loss is small. In addition, among these steels, E61 contains Nb and Ti, which are particularly effective for improving creep strength, and E62
E64 is a steel containing Cu, Nb, and V based on the same concept, and the composition has been adjusted to a D value of 6.2 to 8.5, a range that does not easily cause welding hot cracking, so both are critical. Strain is high. F9, E63, E65, and E66 contain Cu, Nb, Ti, or V, which is effective in improving hot workability, and therefore have a high null point.

FIOおよび1E67〜IE73は前記同様耐高混塩腐
食性に有効なSi、 Moを含有するため腐食減量が少
なく。
As mentioned above, FIO and 1E67 to IE73 contain Si and Mo, which are effective in high mixed salt corrosion resistance, so the corrosion loss is small.

また、耐溶接高温割れの改善に有効なREMを含有する
ので1組成バランスであるD値が比較的低いにもかかわ
らず臨界ひずみが高い。これらの鋼のうち、さらに[E
67はCuを、E68はNbを、 E71はCuとNb
を含有するがnul1点は高い。E69、E70. E
72および[ニア3はこれらのREMあるいはNbの他
に、さらに13を含有しているのでnul1点は高い。
In addition, since it contains REM, which is effective in improving weld hot cracking resistance, the critical strain is high even though the D value, which is a one-composition balance, is relatively low. Among these steels, [E
67 is Cu, E68 is Nb, E71 is Cu and Nb
contains, but the null1 point is high. E69, E70. E
72 and [Nia 3 contain 13 in addition to REM or Nb, so the nul1 point is high.

以上述べてきた本発明鋼は耐応力腐食割と同時に耐溶接
高温割れ性および熱間加工性のいずれの特性も優れてい
ることがわかる。
It can be seen that the steel of the present invention described above is excellent in both stress corrosion resistance, weld hot cracking resistance, and hot workability.

〔発明の効果〕〔Effect of the invention〕

本発明により、!’+9の組成を限定することによって
、優れた耐高混塩腐食性を有し、同時に優れた耐?8接
高温割れ性および熱間加工性を有する耐熱用オーステナ
イト系ステンレス鋼が得られたことにより、従来技術の
問題が克服され、優れた耐熱用オーステナイト系ステン
レス鋼材を提供される。
With this invention! By limiting the composition of '+9', it has excellent high mixed salt corrosion resistance and at the same time excellent resistance to corrosion. By obtaining a heat-resistant austenitic stainless steel having 8-junction hot cracking properties and hot workability, the problems of the prior art are overcome, and an excellent heat-resistant austenitic stainless steel material is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は腐食域fk (mg/ csI )とSL +
 Mo (%)との関係を示す図、第2図はnul1点
と加熱温度との関係を示す図、第3図は臨界ひずみE、
(%)とD値との関係を示す図である。第4〜6図はそ
れぞれUS304鋼、 SUSXM15J1fiおよび
本発明!(7)TIG溶接した部分をNaCQ存在下に
繰り返し加熱した場合の溶接部の腐食の状態を示す約7
0倍の顕微鏡写真である。
Figure 1 shows the corrosion area fk (mg/csI) and SL +
Figure 2 is a diagram showing the relationship between Mo (%), Figure 2 is a diagram showing the relationship between the null1 point and heating temperature, Figure 3 is the critical strain E,
It is a figure showing the relationship between (%) and D value. Figures 4 to 6 show US304 steel, SUSXM15J1fi, and the present invention! (7) Approximately 7 indicates the state of corrosion of the welded part when the TIG welded part is repeatedly heated in the presence of NaCQ
This is a 0x micrograph.

Claims (1)

【特許請求の範囲】 1、C:0.06%以下 Si:1〜4% Mn:0.5〜4% P:0.035%以下 S:0.005%以下 Ni:10〜17% Cr:14〜20% Mo:1〜4% Al:0.01〜0.5% N:0.035%以下 を含有し、残部Feおよび不可避的不純物からなり、か
つ、SiおよびMoの含有合計量が下式を満足し、また
下式で表わすD値が7〜11である耐高温塩腐食性、溶
接性、溶接部の耐塩害腐食性および熱間加工性に優れた
耐熱用オーステナイト系ステンレス鋼。 (Si%+Mo%)≧3%・・・・・・・・・・・・・
・・・・・・・・・・・・・・(1)(2.5Si%+
Mo%)≦11%・・・・・・・・・・・・・・・・・
・・・・・・・(2)D値=(Cr%+1.5Si%+
Mo%+3Al%+2.6Ti%+0.5Nb%+0.
5V%)−(Ni%+30C%+30N%+2Cu%+
0.5Mn%)・・・・・・・・・・・・・・・・・・
・・・・・・・・・(3)2、さらに、 Cu:0.5〜2.5% を含有する請求項1に記載のオーステナイト系ステンレ
ス鋼。 3、さらに REMの1種または2種の含有合計量:0.005〜0
.1%を含有する請求項1または2に記載のオーステナ
イト系ステンレス鋼。ただし、この場合においてD値は
6〜11である。 4、C:0.06%以下 Si:1〜4% Mn:0.5〜4% P:0.035%以下 S:0.005%以下 Ni:10〜17% Cr:14〜20% Mo:1〜4% Al:0.01〜0.5% N:0.035%以下 Nb、Ti、Vの1種または2種以上の含有合計量:0
.05〜0.5% および/または B:0.0005〜0.02% を含有し、残部Feおよび不可避的不純物からなり、か
つ、SiおよびMoの含有合計量が下式を満足し、また
下式で表わすD値がBを含む場合は6〜11、含まない
場合は7〜11である耐高温塩腐食性、溶接性、溶接部
の耐塩害腐食性および熱間加工性に優れた耐熱用オース
テナイト系ステンレス鋼。 (Si%+Mo%)≧3%・・・・・・・・・・・・・
・・・・・・・・・・・・・・(1)(2.5Si%+
Mo%)≦11%・・・・・・・・・・・・・・・・・
・・・・・・・(2)D値=(Cr%+1.5Si%+
Mo%+3Al%+2.6Ti%+0.5Nb%+0.
5V%)−(Ni%+30C%+30N%+2Cu%+
0.5Mn%)・・・・・・・・・・・・・・・・・・
・・・・・・・・・(3)5、さらに、 Cu:0.5〜2.5% を含有する請求項4に記載のオーステナイト系ステンレ
ス鋼。 6、さらに REMの1種または2種の含有合計量: 0.005〜0.1% を含有する請求項4または5に記載のオーステナイト系
ステンレス鋼。ただし、この場合においてD値は6〜1
1である。
[Claims] 1. C: 0.06% or less Si: 1-4% Mn: 0.5-4% P: 0.035% or less S: 0.005% or less Ni: 10-17% Cr : 14-20% Mo: 1-4% Al: 0.01-0.5% N: 0.035% or less, with the balance consisting of Fe and unavoidable impurities, and the total content of Si and Mo A heat-resistant austenitic stainless steel that satisfies the following formula and has a D value expressed by the following formula of 7 to 11, which has excellent high-temperature salt corrosion resistance, weldability, salt corrosion resistance of welded parts, and hot workability. . (Si%+Mo%)≧3%・・・・・・・・・・・・
・・・・・・・・・・・・・・・(1)(2.5Si%+
Mo%)≦11%・・・・・・・・・・・・・・・・
・・・・・・・・・(2) D value=(Cr%+1.5Si%+
Mo%+3Al%+2.6Ti%+0.5Nb%+0.
5V%)-(Ni%+30C%+30N%+2Cu%+
0.5Mn%)・・・・・・・・・・・・・・・・・・
(3) The austenitic stainless steel according to claim 1, further comprising: 0.5 to 2.5% Cu. 3. Furthermore, total content of one or two REMs: 0.005 to 0
.. The austenitic stainless steel according to claim 1 or 2, containing 1%. However, in this case, the D value is 6-11. 4. C: 0.06% or less Si: 1-4% Mn: 0.5-4% P: 0.035% or less S: 0.005% or less Ni: 10-17% Cr: 14-20% Mo : 1-4% Al: 0.01-0.5% N: 0.035% or less Total content of one or more of Nb, Ti, and V: 0
.. 05 to 0.5% and/or B: 0.0005 to 0.02%, the balance consists of Fe and unavoidable impurities, and the total content of Si and Mo satisfies the following formula, and A heat-resistant product with excellent high-temperature salt corrosion resistance, weldability, salt damage corrosion resistance of welded parts, and hot workability, where the D value expressed by the formula is 6 to 11 when B is included, and 7 to 11 when it is not. Austenitic stainless steel. (Si%+Mo%)≧3%・・・・・・・・・・・・
・・・・・・・・・・・・・・・(1)(2.5Si%+
Mo%)≦11%・・・・・・・・・・・・・・・・
・・・・・・・・・(2) D value=(Cr%+1.5Si%+
Mo%+3Al%+2.6Ti%+0.5Nb%+0.
5V%)-(Ni%+30C%+30N%+2Cu%+
0.5Mn%)・・・・・・・・・・・・・・・・・・
(3) The austenitic stainless steel according to claim 4, further containing 0.5 to 2.5% of Cu. 6. The austenitic stainless steel according to claim 4 or 5, further comprising a total content of one or two REMs: 0.005 to 0.1%. However, in this case, the D value is 6 to 1
It is 1.
JP1330128A 1989-12-20 1989-12-20 Heat-resistant austenitic stainless steel Expired - Fee Related JP2530231B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1330128A JP2530231B2 (en) 1989-12-20 1989-12-20 Heat-resistant austenitic stainless steel
EP90102879A EP0434887B1 (en) 1989-12-20 1990-02-14 Heat-resistant austenitic stainless steel
DE69015140T DE69015140T2 (en) 1989-12-20 1990-02-14 Heat-resistant austenitic stainless steel.
CA002010174A CA2010174C (en) 1989-12-20 1990-02-15 Heat-resistant austenitic stainless steel
KR1019900020876A KR930005899B1 (en) 1989-12-20 1990-12-18 Heat-resistant austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1330128A JP2530231B2 (en) 1989-12-20 1989-12-20 Heat-resistant austenitic stainless steel

Publications (2)

Publication Number Publication Date
JPH03191039A true JPH03191039A (en) 1991-08-21
JP2530231B2 JP2530231B2 (en) 1996-09-04

Family

ID=18229121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1330128A Expired - Fee Related JP2530231B2 (en) 1989-12-20 1989-12-20 Heat-resistant austenitic stainless steel

Country Status (5)

Country Link
EP (1) EP0434887B1 (en)
JP (1) JP2530231B2 (en)
KR (1) KR930005899B1 (en)
CA (1) CA2010174C (en)
DE (1) DE69015140T2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331388A (en) * 1994-06-02 1995-12-19 Nippon Yakin Kogyo Co Ltd Austenitic stainless steel excellent in hot workability and corrosion resistance in hot water
JPH09263895A (en) * 1996-03-26 1997-10-07 Sumitomo Metal Ind Ltd Austenitic stainless steel excellent in high temperature salt damage corrosion resistance.
JPH1143745A (en) * 1997-07-25 1999-02-16 Nisshin Steel Co Ltd Incinerator body excellent in corrosion resistance
JPH11211046A (en) * 1998-01-26 1999-08-06 Nisshin Steel Co Ltd Waste incinerating furnace
KR100286679B1 (en) * 1996-12-23 2001-04-16 이구택 Anti-abrasive alloy having thermal resistance
JP2006131956A (en) * 2004-11-05 2006-05-25 Nippon Steel & Sumikin Stainless Steel Corp Austenitic stainless steel having excellent high temperature salt damage resistance
JP2007224425A (en) * 2007-05-17 2007-09-06 Nisshin Steel Co Ltd Austenitic stainless steel superior in high temperature salt corrosion resistance
JP2015175017A (en) * 2014-03-14 2015-10-05 日新製鋼株式会社 HIGH CORROSION RESISTANT AUSTENITIC STAINLESS STEEL EXCELLENT IN σ EMBRITTLEMENT RESISTANCE AND WELDABILITY
JP2019044242A (en) * 2017-09-05 2019-03-22 日新製鋼株式会社 Austenitic stainless weld member
KR20190109225A (en) * 2018-03-15 2019-09-25 닛테츠 닛신 세이코 가부시키가이샤 Stainless Steel for Diffusion Bonding Jig

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658633A3 (en) * 1989-05-16 1995-10-25 Nippon Steel Corp Stainless steel foil for automobile exhaust gaspurifying catalyst carrier and process for preparation thereof.
IT1294228B1 (en) * 1997-08-01 1999-03-24 Acciai Speciali Terni Spa PROCEDURE FOR THE PRODUCTION OF AUSTENITIC STAINLESS STEEL BELTS, AUSTENITIC STAINLESS STEEL BELTS SO
US6352670B1 (en) * 2000-08-18 2002-03-05 Ati Properties, Inc. Oxidation and corrosion resistant austenitic stainless steel including molybdenum
US20040042926A1 (en) * 2000-12-14 2004-03-04 Yoshiyuki Shimizu High-silicon stainless
US7985304B2 (en) 2007-04-19 2011-07-26 Ati Properties, Inc. Nickel-base alloys and articles made therefrom
JP5463527B2 (en) * 2008-12-18 2014-04-09 独立行政法人日本原子力研究開発機構 Welding material made of austenitic stainless steel, stress corrosion cracking preventive maintenance method and intergranular corrosion preventive maintenance method using the same
CN114635077A (en) * 2020-12-16 2022-06-17 宝武特种冶金有限公司 Super austenitic stainless steel and preparation method thereof
CN114438408B (en) * 2021-12-31 2022-10-28 嘉兴精科科技有限公司 Low-cost high-strength heat-resistant corrosion-resistant stainless steel material and preparation method of precision parts produced by using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416444A (en) * 1977-07-07 1979-02-07 Sumitomo Chem Co Ltd Optically active alpha-cyano-3-phenoxybenzyl 2-(4-chlorophenyl)-isovalerate and its preparation
JPS60230966A (en) * 1984-04-27 1985-11-16 Sumitomo Metal Ind Ltd Steel for dry and corrosive environment containing chloride at high temperature

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424364B2 (en) * 1973-05-04 1979-08-21
FR2324752A1 (en) * 1975-06-24 1977-04-15 Sandvik Ab STAINLESS STEEL RESISTANT TO CONCENTRATED SULFURIC ACID
JPS5881955A (en) * 1981-11-10 1983-05-17 Japan Atom Energy Res Inst Heat resistant steel for high temperature gas furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416444A (en) * 1977-07-07 1979-02-07 Sumitomo Chem Co Ltd Optically active alpha-cyano-3-phenoxybenzyl 2-(4-chlorophenyl)-isovalerate and its preparation
JPS60230966A (en) * 1984-04-27 1985-11-16 Sumitomo Metal Ind Ltd Steel for dry and corrosive environment containing chloride at high temperature

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331388A (en) * 1994-06-02 1995-12-19 Nippon Yakin Kogyo Co Ltd Austenitic stainless steel excellent in hot workability and corrosion resistance in hot water
JPH09263895A (en) * 1996-03-26 1997-10-07 Sumitomo Metal Ind Ltd Austenitic stainless steel excellent in high temperature salt damage corrosion resistance.
KR100286679B1 (en) * 1996-12-23 2001-04-16 이구택 Anti-abrasive alloy having thermal resistance
JPH1143745A (en) * 1997-07-25 1999-02-16 Nisshin Steel Co Ltd Incinerator body excellent in corrosion resistance
JPH11211046A (en) * 1998-01-26 1999-08-06 Nisshin Steel Co Ltd Waste incinerating furnace
JP2006131956A (en) * 2004-11-05 2006-05-25 Nippon Steel & Sumikin Stainless Steel Corp Austenitic stainless steel having excellent high temperature salt damage resistance
JP4485325B2 (en) * 2004-11-05 2010-06-23 新日鐵住金ステンレス株式会社 Austenitic stainless steel with excellent high temperature salt damage resistance
JP2007224425A (en) * 2007-05-17 2007-09-06 Nisshin Steel Co Ltd Austenitic stainless steel superior in high temperature salt corrosion resistance
JP2015175017A (en) * 2014-03-14 2015-10-05 日新製鋼株式会社 HIGH CORROSION RESISTANT AUSTENITIC STAINLESS STEEL EXCELLENT IN σ EMBRITTLEMENT RESISTANCE AND WELDABILITY
JP2019044242A (en) * 2017-09-05 2019-03-22 日新製鋼株式会社 Austenitic stainless weld member
KR20190109225A (en) * 2018-03-15 2019-09-25 닛테츠 닛신 세이코 가부시키가이샤 Stainless Steel for Diffusion Bonding Jig

Also Published As

Publication number Publication date
EP0434887A1 (en) 1991-07-03
JP2530231B2 (en) 1996-09-04
KR930005899B1 (en) 1993-06-25
DE69015140D1 (en) 1995-01-26
EP0434887B1 (en) 1994-12-14
KR910012322A (en) 1991-08-07
DE69015140T2 (en) 1995-05-04
CA2010174C (en) 2000-09-12
CA2010174A1 (en) 1991-06-20

Similar Documents

Publication Publication Date Title
US8137613B2 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
TWI431122B (en) Ferritic stainless steel excellent in heat resistance and toughness
JPH03191039A (en) Heat-resistant austenitic stainless steel
JPH09267190A (en) Welding wire for high crome ferrite wire
US4999159A (en) Heat-resistant austenitic stainless steel
JP2514367B2 (en) Automotive engine manifold steel
JPH0533104A (en) Heat resisting ferritic stainless steel excellent in heat resistance toughness at low temperature, and weldability
US5350559A (en) Ferrite steel which excels in high-temperature strength and toughness
JP2009235570A (en) Ferritic stainless steel having excellent heat resistance and weldability
JPH0218378B2 (en)
JP3713833B2 (en) Ferritic stainless steel for engine exhaust members with excellent heat resistance, workability, and weld corrosion resistance
JPH07157852A (en) Ferritic stainless steel excellent in high temp erature salt damage property
JPH0578791A (en) High toughness ferritic stainless steel for use at high temperature
JPS6199661A (en) High strength and high toughness welded clad steel pipe for line pipe
JP3973456B2 (en) Austenitic stainless steel with excellent high temperature salt damage corrosion resistance
JP2879630B2 (en) Ferrite heat-resistant stainless steel with excellent high-temperature salt damage properties
JPS61130461A (en) Nitrogen-containing stainless steel of two phase system having superior hot workability
JP4277726B2 (en) Cr-containing alloy with excellent corrosion resistance of welds
JP4775910B2 (en) Austenitic stainless steel with excellent high temperature salt damage corrosion resistance
JPH0483841A (en) Fe-ni series alloy excellent in high temperature corrosion resistance and weldability
JPH04110419A (en) Production of high ni stainless steel plate
JP2622516B2 (en) Welding material for heat resistant steel with excellent creep strength
JP2801837B2 (en) Fe-Cr alloy with excellent corrosion resistance
JPS6338552A (en) Ni alloy having superior resistance to intergranular corrosion
JPH0369977B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees