JPS5881955A - Heat resistant steel for high temperature gas furnace - Google Patents

Heat resistant steel for high temperature gas furnace

Info

Publication number
JPS5881955A
JPS5881955A JP17906781A JP17906781A JPS5881955A JP S5881955 A JPS5881955 A JP S5881955A JP 17906781 A JP17906781 A JP 17906781A JP 17906781 A JP17906781 A JP 17906781A JP S5881955 A JPS5881955 A JP S5881955A
Authority
JP
Japan
Prior art keywords
weight
resistant steel
heat resistant
gas furnace
high temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17906781A
Other languages
Japanese (ja)
Other versions
JPH0147546B2 (en
Inventor
Manabu Tamura
学 田村
Tatsuo Kondo
近藤 達男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP17906781A priority Critical patent/JPS5881955A/en
Priority to DE19823241414 priority patent/DE3241414C2/en
Publication of JPS5881955A publication Critical patent/JPS5881955A/en
Publication of JPH0147546B2 publication Critical patent/JPH0147546B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Abstract

PURPOSE:To provide heat resistant steel for a high temp. gas furnace with enhanced corrosion resistance and high temp. strength in an inert gas, by a method wherein a specific amount of C, Si, Mu, Cu, Ni, Al, Mo are contained and Ti and Nb are further added to reduce the amount of Cr. CONSTITUTION:This heat resistant steel for high temp. gas furnace consists of, on the wt. basis, 0.02-0.2% C, 0.05-2.0% Si, 0.05-2.0% Mn, 8-15% Cr, 8- 13.5% Ni, 0.3% or less Al, 3.5-8% Mo, 0.01-0.1 Ti and Nb respectively added alone or compositely and the remainder Fe and inevitable impurities. This constituent steel is one of which the amounts of Cr and Ni are reduced and a specific amount of Mo, Ti, Nb are added. By this composition, heat resistant steel for the high temp. gas furnace having excellent corrosion resistance and high temp. strength in an impure helium gas is inexpensively obtained.

Description

【発明の詳細な説明】 本発明は高温ガス炉用耐熱−に関する。詳しくは、本発
明に不純な不活性ガク中ですぐれた耐食性とすぐれた高
温強度を有する高温ガス炉用耐熱鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to heat resistance for high temperature gas furnaces. More specifically, the present invention relates to a heat-resistant steel for high-temperature gas furnaces that has excellent corrosion resistance and high-temperature strength in impure inert solids.

隔温ガス炉用の構造@料のうち、高温部はハステロイ−
X合金などを主体とするNi  基超合金が使用されよ
うとしているが、これらの材料のほとんどは20重量%
を超える多量のクロムを含有しているために、通常の酸
化性ガス中の常識とは逆に、不純ヘリウム中では耐酸化
性が十分でない。
The structure for the remote temperature gas furnace is made of Hastelloy for the high temperature parts.
Ni-based superalloys mainly composed of X alloys are being used, but most of these materials contain 20%
Contrary to common knowledge in oxidizing gases, it does not have sufficient oxidation resistance in impure helium because it contains a large amount of chromium.

この場合、適量のシリコンとマンガンを添加することに
よって1lj1f化性を改善することもできるがなお十
分でない。またこれらの合金・は一般に高他なモリブデ
ン、タングステンおよびニッケルなどの合金元X−+犬
量に含んでいるためにこれらの合金は総じて商価という
欠点をもっている。
In this case, the 1lj1f property can be improved by adding appropriate amounts of silicon and manganese, but this is still not sufficient. Furthermore, since these alloys generally contain high amounts of alloying elements such as molybdenum, tungsten, and nickel, these alloys generally have the disadvantage of low commercial prices.

本発明の目的はこのような欠点を補うために安口な鉄基
@利″でハステロイ−X合金よりもすぐれた耐酸化性と
・・ステロイーX谷金に匹敵する商混強度を有する高温
ガ、ス炉用耐熱材料を提供することである。
The purpose of the present invention is to make up for these drawbacks by developing a high-temperature steel that uses an inexpensive iron base and has better oxidation resistance than Hastelloy-X alloy and commercial strength comparable to that of Steroidy-X alloy. The purpose of the present invention is to provide heat-resistant materials for gas furnaces.

本願発明者等は、鋭意研究の結果、本発明の炭素0.0
2〜02重量%、シリコン0.05〜20重量%、マン
ガン0.05〜2.0重量%、クロへ8〜15重t%、
ニッケル87−13.5!t%、アルミニウム0.3重
量%以下、モリブデン3.5〜8重量%、チタンおよび
ニオブをそれぞれ0.01〜1.0重量%の範囲で単独
または複合添力口し、残部は溶製上不可避の不純物と鉄
よシなる不純ヘリウムガス中ですぐれた耐酸化性と高温
強度を有する高温ガス炉用耐熱鋼によってこの目的を達
成した。
As a result of intensive research, the inventors of the present invention have found that the carbon 0.0
2-02% by weight, silicon 0.05-20% by weight, manganese 0.05-2.0% by weight, black 8-15% by weight,
Nickel 87-13.5! t%, aluminum 0.3% by weight or less, molybdenum 3.5 to 8% by weight, titanium and niobium in the range of 0.01 to 1.0% by weight each, singly or in combination, and the remainder added by melting. This objective was achieved by creating a heat-resistant steel for high-temperature gas furnaces that has excellent oxidation resistance and high-temperature strength in impure helium gas, which contains unavoidable impurities and iron.

而して、本願発明の、達成に当り、本願発明者等は9下
の点を考慮して最適の合金組成範囲を定めた。具体的に
説明する。
Therefore, in achieving the present invention, the present inventors determined the optimum alloy composition range in consideration of the following points. I will explain in detail.

(1)  炭素量は0.02重量%以下では炭化物によ
る強化が期待できずまた0、 2重量%以上では結晶粒
度調整がむづかしくなるので、0.02〜0,2重量%
とする。
(1) If the carbon content is less than 0.02% by weight, no reinforcement by carbide can be expected, and if it is more than 0.2% by weight, it will be difficult to adjust the grain size, so the carbon content should be 0.02 to 0.2% by weight.
shall be.

(2)  シリコン: 0.05〜2を量%。シリコン
ハ脱酸剤として欠くことのできない元素であシ、また不
純ヘリウム中の被膜のはく離に対して有効な元素である
が、2重量%以上の多量を含有すると非金槁介在物が増
えるので上限を2重量%とする。また、0.05重量%
以下では効果が期待できない。
(2) Silicon: 0.05-2% by weight. Silicon is an indispensable element as a deoxidizing agent, and is also an effective element for peeling off films in impure helium, but if it is contained in a large amount of 2% by weight or more, non-metallic inclusions will increase, so the upper limit must be set. is 2% by weight. Also, 0.05% by weight
The following effects cannot be expected.

(3)  マンガン: o、 05〜2重量%。マンガ
ンハシリコンとともに脱酸剤として有効であるばかりで
なく、不純ヘリウム中では、クロムとともにクロム−マ
ンガンスピネル酸化物を形成し耐酸化性に寄与するが2
重量%以上工は加工性を害する。また、005重量%以
下では効果が期待できない。
(3) Manganese: o, 05-2% by weight. Manganese is not only effective as a deoxidizing agent together with silicon, but also forms chromium-manganese spinel oxide with chromium in impure helium, contributing to oxidation resistance.
Machining more than % by weight impairs workability. Moreover, if it is less than 0.005% by weight, no effect can be expected.

(4)  クロム:8〜15重量%。不純ヘリウム中で
はクロムが少ない万が耐酸化性は良いがクロムが8重量
%以下ではオーステナイト地の強さが維持できず1.ま
た炭化物による強化作用も期待できない。しかも、クロ
ム量が15重量%以上になると不純ヘリウム中における
耐酸化性が悪くなるので上限を15重量%とする。
(4) Chromium: 8-15% by weight. In impure helium, the oxidation resistance is good even if the chromium content is low, but if the chromium content is less than 8% by weight, the strength of the austenitic base cannot be maintained.1. Further, the strengthening effect of carbides cannot be expected. Moreover, if the amount of chromium exceeds 15% by weight, the oxidation resistance in impure helium will deteriorate, so the upper limit is set at 15% by weight.

(5)  ニッケル28〜13.5重量%。オースティ
ナイト地を安定化させるためにはニッケル8重量%以上
の添刀口が必要であり、安価な鉄基材料を供給するとい
う目的のためにニッケルの上限を13.5重量%とする
(5) 28-13.5% by weight of nickel. In order to stabilize the austenite base, a nickel addition of 8% by weight or more is required, and for the purpose of supplying an inexpensive iron-based material, the upper limit of nickel is set at 13.5% by weight.

(6)  アルミニウム=03重量%以下、アルミニウ
ムは脱酸剤として有効であるが、03重量%以上添卵重
ると内部酸化が著しくなる。
(6) Aluminum = 3% by weight or less, aluminum is effective as a deoxidizing agent, but if it is added in excess of 03% by weight, internal oxidation becomes significant.

(7)  モリブデン=3.5〜8重量%、モリブデン
は35東量%以下ではオーステナイト地が強化されず、
またMo6CおよびF’e2Mo相による析出強化作用
が望めない、モリブデン全8重量%以上添加すると、本
合金糸ではオースティナイト地を安定化することは困難
となり、靭性が低下するので上限を8厘量%とする。
(7) Molybdenum = 3.5 to 8% by weight, if molybdenum is less than 35% by weight, the austenitic area will not be strengthened.
Furthermore, if Mo6C and F'e2Mo phases do not provide precipitation strengthening effects, and if more than 8% by weight of molybdenum is added in total, it will be difficult to stabilize the austenite base in this alloy yarn and the toughness will decrease, so the upper limit should be set at 8%. The amount is expressed as %.

(8〕  チタンおよびニオブfl 0.01〜1.0
重量%の範囲でそれぞれ単独にまたは複合して添刀口す
る。
(8) Titanium and niobium fl 0.01-1.0
Each may be added singly or in combination within a range of weight percent.

チタンまたはニオブはごく微量でも炭化物の形状寸法を
制御できる。炭化物の微細分散効果を狙うにはチタンま
たはニオブのいずれか一万を少なくとも0.011厘量
祭加する必要があり、接合添加するとさらにその効果は
一段と強められるが、それぞれli童%以上になると溶
接性、製造性全書する。
Even a very small amount of titanium or niobium can control the shape and size of the carbide. In order to achieve the effect of finely dispersing carbides, it is necessary to add at least 0.011 ton of either titanium or niobium, and the effect is further strengthened by adding bonding, but when each is over 100%, Complete book on weldability and manufacturability.

(9)  残!ll:不純物以外は鉄 上記の組成範囲の細面を溶製し、10梅鋼塊を作製し、
熱間If姑さらに固溶化処理したあと、高温ガス炉近(
IJヘリウムガス中でフリープ破断拭験および腐食試験
ヲ行なった。ヘリウムガク中の不純物量の測定例は以下
のとおりである。水素205゜メタン5,0095,0
022ppmb 02  検出限界以下。この試験結果
を化学組成とともに第1表に示す。
(9) Remaining! ll: Iron except for impurities. Smelting the thin side of the above composition range to produce a 10-meter steel ingot,
After further solid solution treatment, it is placed near the high temperature gas furnace (
Freep rupture wiping tests and corrosion tests were conducted in IJ helium gas. An example of measuring the amount of impurities in helium gas is as follows. Hydrogen 205° Methane 5,0095,0
022ppmb 02 Below detection limit. The test results are shown in Table 1 along with the chemical composition.

クロム量の高い比I!!!2釦1、従来鋼に比べ本発明
軸の酸化増量は著しく少ない。不純ヘリウム中のクリー
プ破断強さは表から明らかなように数%以上のモリブデ
ンを添刀口することによって得られ、かつ微量のチタン
およびニオブを単独または複合添加することによってそ
の強度は一段と高められ、ごくわずかの合金元素を含む
鉄基耐熱釦1でありなからNi  基の従来合金である
ハステロイ−X合金に匹敵する強度を示す。当然のこと
ながら本tmはオースティナイト’1安定化させている
ために、時効後のU性は、従来鋼であるインコロイ80
0合金、ハヌテロイーX合金と同等以上の値を示す。
High chromium content ratio I! ! ! 2. Button 1. Compared to conventional steel, the oxidation weight gain of the shaft of the present invention is significantly smaller. As is clear from the table, the creep rupture strength in impure helium can be obtained by adding several percent or more of molybdenum, and the strength can be further increased by adding trace amounts of titanium and niobium, either singly or in combination. Although it is an iron-based heat-resistant button 1 containing only a small amount of alloying elements, it exhibits strength comparable to Hastelloy-X alloy, which is a conventional Ni-based alloy. Naturally, since this TM is stabilized with Austinite '1, its U properties after aging are lower than that of Incoloy 80, which is the conventional steel.
It shows values equal to or higher than those of the 0 alloy and the Hanuteroi X alloy.

第2表に一例を示す。An example is shown in Table 2.

本発明は不純ヘリウム中では低Or  の方が耐食性が
優れているという事実と結果論であるが不純ヘリウム中
のクリープ強さを高める方法として大気中でよく知られ
ているMo による強化およびT1Nb  による強化
作用が不純ヘリウム中でも使えることを基礎にしたもの
であるが、本発明の要点は、耐食性を部上させるために
通常耐熱鉗・1に含まれるフェライト安定化元素である
クロムを大幅に低減させ、その分だけ高価なオーステナ
イト安定化元系であるニッケルを減じ、さらに、フェラ
イト安定化元素であるが強い強化作用をもつモリブデン
、チタン、ニオブ11口して、安価で不純ヘリウム中で
優れた鋼を提供することにある。
The present invention is based on the fact that corrosion resistance is better in impure helium with a lower Or. However, reinforcement with Mo and T1Nb, which are well known in the atmosphere, are methods for increasing creep strength in impure helium. The strengthening effect is based on the fact that it can be used even in impure helium, but the key point of the present invention is to significantly reduce chromium, a ferrite stabilizing element normally contained in heat-resistant forceps 1, in order to improve corrosion resistance. By reducing the amount of nickel, which is an expensive austenite stabilizing element, and adding molybdenum, titanium, and niobium, which are ferrite stabilizing elements but have strong strengthening effects, we have created a steel that is inexpensive and excellent in impure helium. Our goal is to provide the following.

本発明の高協ガス炉用耐熱−u1は増殖炉のランバー管
、高温ガス炉における制御棒、ダクト拐、中間熱交換器
など低識化ボテンンヤル中ですぐれた耐食性と高温強さ
全要求される構造部杓として利用することができる。
The Kokyo Gas Reactor Heat Resistance U1 of the present invention is required to have excellent corrosion resistance and high-temperature strength in low-level construction such as lumbar tubes in breeder reactors, control rods in high-temperature gas reactors, duct breaks, and intermediate heat exchangers. It can be used as a structural part ladle.

不純ヘリウム中では低クロムの万が耐食性75曙マれて
いることは公知であるが、これは大気中などの強酸化性
雰囲気で知られている常識とは逆の新しい事実である。
It is well known that low chromium materials have a corrosion resistance of 75% in impure helium, but this is a new fact that is contrary to the common knowledge in strongly oxidizing atmospheres such as the air.

一方、大気中のクリープ強さにおいては強化作用として
モリブデンを添刀口する、T1およびNbを微量単独あ
るいは複合させて添加する方法はよく知られている。し
かし、不純物を含むヘリウム中ではクリープ試験中に特
有の腐食反応をともなうために、大気中のクリープ強さ
の強化作用をそのまま借用することはできない。すなわ
ち、大気中の腐食に関する常識が通用しないような不純
ヘリウム中では現時点では、クリープの強化作用につい
ても大気中の常識は根拠をもたないし、不純ヘリウム中
で耐食性が優れ、高い強度をもつ拐料金求めることは、
大気中の挙動からでは推察し得ない新規の技術範囲と、
言うことができる、 特許出願人 日本原子力研究所
On the other hand, with regard to the creep strength in the atmosphere, it is well known to add molybdenum as a reinforcing effect, and to add trace amounts of T1 and Nb alone or in combination. However, in helium containing impurities, a unique corrosion reaction occurs during the creep test, so the creep strength enhancement effect in the atmosphere cannot be directly utilized. In other words, in impure helium, where common sense regarding corrosion in the atmosphere does not apply, the common sense in the atmosphere regarding the reinforcing effect of creep has no basis. To ask for the price,
A new technological range that cannot be inferred from behavior in the atmosphere,
It can be said that the patent applicant Japan Atomic Energy Research Institute

Claims (1)

【特許請求の範囲】[Claims] 炭素0.02〜0.2重量%、シリコン0.05〜2.
0重量%、マンガン005〜20重量%、クロム8〜1
5重量%、ニッケル8〜13.5重量%、アルミニウム
0.3重量%以下、モリブデン35〜8重量%、チタン
およびニオブをそれぞれ001〜10重量%の範囲で単
独または複合添刀口し、残部は溶製上不可避の不純物と
鉄よりなる不純ヘリウムガス中ですぐれた耐酸化性と高
温強度を有する尚温ガス炉用耐熱鋼。
Carbon 0.02-0.2% by weight, silicon 0.05-2.
0% by weight, manganese 005-20% by weight, chromium 8-1
5% by weight, nickel 8-13.5% by weight, aluminum 0.3% by weight or less, molybdenum 35-8% by weight, titanium and niobium each in the range of 001-10% by weight, singly or in combination, and the remainder A heat-resistant steel for still-temperature gas furnaces that has excellent oxidation resistance and high-temperature strength in impure helium gas, which is made of impurities and iron that are unavoidable during melting.
JP17906781A 1981-11-10 1981-11-10 Heat resistant steel for high temperature gas furnace Granted JPS5881955A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17906781A JPS5881955A (en) 1981-11-10 1981-11-10 Heat resistant steel for high temperature gas furnace
DE19823241414 DE3241414C2 (en) 1981-11-10 1982-11-09 Use of a heat-resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17906781A JPS5881955A (en) 1981-11-10 1981-11-10 Heat resistant steel for high temperature gas furnace

Publications (2)

Publication Number Publication Date
JPS5881955A true JPS5881955A (en) 1983-05-17
JPH0147546B2 JPH0147546B2 (en) 1989-10-16

Family

ID=16059519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17906781A Granted JPS5881955A (en) 1981-11-10 1981-11-10 Heat resistant steel for high temperature gas furnace

Country Status (2)

Country Link
JP (1) JPS5881955A (en)
DE (1) DE3241414C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194129A (en) * 1991-01-18 1993-03-16 W. R. Grace & Co.-Conn. Manufacture of optical ferrules by electrophoretic deposition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530231B2 (en) * 1989-12-20 1996-09-04 日新製鋼株式会社 Heat-resistant austenitic stainless steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131203A (en) * 1974-09-10 1976-03-17 Matsushita Electric Ind Co Ltd TEEPUSHUTANKENSHUTSUSOCHI
JPS5314417A (en) * 1976-07-26 1978-02-09 Mitsubishi Electric Corp Control valve for breaker
JPS53144417A (en) * 1977-03-30 1978-12-15 Vyzk Ustav Hutnictvi Hardenable highhquality crrniimo steel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1458325A1 (en) * 1964-02-29 1969-01-16 Armco Steel Corp Heat-hardenable, stainless, alloyed chrome-nickel-molybdenum steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131203A (en) * 1974-09-10 1976-03-17 Matsushita Electric Ind Co Ltd TEEPUSHUTANKENSHUTSUSOCHI
JPS5314417A (en) * 1976-07-26 1978-02-09 Mitsubishi Electric Corp Control valve for breaker
JPS53144417A (en) * 1977-03-30 1978-12-15 Vyzk Ustav Hutnictvi Hardenable highhquality crrniimo steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194129A (en) * 1991-01-18 1993-03-16 W. R. Grace & Co.-Conn. Manufacture of optical ferrules by electrophoretic deposition

Also Published As

Publication number Publication date
DE3241414C2 (en) 1984-11-22
DE3241414A1 (en) 1983-05-19
JPH0147546B2 (en) 1989-10-16

Similar Documents

Publication Publication Date Title
EP0381121B1 (en) High-strength heat-resistant steel with improved workability
JPH02232345A (en) High strength high chromium steel excellent in corrosion resistance and oxidation resistance
US4227925A (en) Heat-resistant alloy for welded structures
WO2008086141A1 (en) Oxidation resistant high creep strength austenitic stainless steel
US4556423A (en) Austenite stainless steels having excellent high temperature strength
JPH0885849A (en) High chromium ferritic heat resistant steel
JP3982069B2 (en) High Cr ferritic heat resistant steel
JP3543366B2 (en) Austenitic heat-resistant steel with good high-temperature strength
JPS626634B2 (en)
JPH0672286B2 (en) ▲ High ▼ Austenitic stainless steel with excellent temperature strength
JPS5881955A (en) Heat resistant steel for high temperature gas furnace
JP2831051B2 (en) Austenitic stainless steel welding wire
US3826649A (en) Nickel-chromium-iron alloy
JP3301284B2 (en) High Cr ferritic heat resistant steel
JP3196587B2 (en) High Cr ferritic heat resistant steel
JPS61177352A (en) Heat resistant cast steel having superior elongation characteristic at room temperature
JPS62238353A (en) High-manganese austenitic steel excellent in strength at high temperature
JPS63183155A (en) High-strength austenitic heat-resisting alloy
JPH0248613B2 (en)
JPH0142346B2 (en)
JPH03236448A (en) Cr-ni series heat resistant steel
JPS62243743A (en) Austenitic stainless steel for use at high temperature
JP2664499B2 (en) Ni-Cr austenitic stainless steel with excellent creep rupture characteristics
JPS61174350A (en) Heat-resistant high-chromiun alloy
JPH0657868B2 (en) Steam turbine blade