JPH0147546B2 - - Google Patents

Info

Publication number
JPH0147546B2
JPH0147546B2 JP56179067A JP17906781A JPH0147546B2 JP H0147546 B2 JPH0147546 B2 JP H0147546B2 JP 56179067 A JP56179067 A JP 56179067A JP 17906781 A JP17906781 A JP 17906781A JP H0147546 B2 JPH0147546 B2 JP H0147546B2
Authority
JP
Japan
Prior art keywords
weight
chromium
molybdenum
helium
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56179067A
Other languages
Japanese (ja)
Other versions
JPS5881955A (en
Inventor
Manabu Tamura
Tatsuo Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP17906781A priority Critical patent/JPS5881955A/en
Priority to DE19823241414 priority patent/DE3241414C2/en
Publication of JPS5881955A publication Critical patent/JPS5881955A/en
Publication of JPH0147546B2 publication Critical patent/JPH0147546B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高温ガス炉用耐熱鋼に関する。詳しく
は、本発明は、例えば発電用等を含む多目的高温
ガス炉用の耐熱鋼に関する。すなわち、本発明は
不純な不活性ガス中ですぐれた耐食性とすぐれた
高温強度を有する高温ガス炉用耐熱鋼に関する。 高温ガス炉用の構造材料のうち、高温部はハス
テロイーX合金などを主体とするNi基超合金が
使用されようとしているが、これらの材料のほと
んどは20重量%を超える多量のクロムを含有して
いるために、通常の酸化性ガス中の常識とは逆
に、不純ヘリウム中では耐酸化性が十分でない。
この場合、適量のシリコンとマンガンを添加する
ことによつて耐酸化性を改善することもできるが
なお十分でない。またこれらの合金は一般に高価
なモリブデン、タングステンおよびニツケルなど
の合金元素を大量に含んでいるためにこれらの合
金は総じて高価という欠点をもつている。 本発明の目的はこのような欠点を補うために安
価な鉄基材料でハステロイーX合金よりもすぐれ
た耐酸化性とハステロイーX合金に匹敵する高温
強度を有する高温ガス炉用耐熱材料と提供するこ
とである。 本願発明者等は、鋭意研究の結果、本発明の炭
素0.02〜0.2重量%、シリコン0.05〜2.0重量%、
マンガン0.05〜2.0重量%、クロム8〜15重量%、
ニツケル8〜13.5重量%、モリブデン3.5〜8重
量%、チタンおよびニオブをそれぞれ0.01〜1.0
重量%の範囲で単独または複合添加し、残部は溶
製上不可避の不純物と鉄よりなる不純ヘリウムガ
ス中にすぐれた耐酸化性と高温強度を有する高温
ガス炉用耐熱鋼によつてこの目的を達成した。 而して、本願発明の達成に当り、本願発明者等
は以下の点を考慮して最適の合金組成範囲を定め
た。具体的に説明する。 (1) 炭素量は0.02重量%以下では炭化物による強
化が期待できずまた0.2重量%以上では結晶粒
度調整がむづかしくなるので、0.02〜0.2重量
%とする。 (2) シリコン:0.05〜2重量%。シリコンは脱酸
剤として欠くことのできない元素であり、また
不純ヘリウム中の被膜のはく離に対して有効な
元素であるが、2重量%以上の多量を含有する
と非金属介在物が増えるので上限を2重量%と
する。また、0.05重量%以下では効果が期待で
きない。 (3) マンガン:0.05〜2重量%。マンガンはシリ
コンとともに脱酸剤として有効であるばかりで
なく、不純ヘリウム中では、クロムとともにク
ロム−マンガンスピネル酸化物を形成し耐酸化
性に寄与するが2重量%以上では加工性を害す
る。また、0.05重量%以下では効果が期待でき
ない。 (4) クロム:8〜15重量%。不純ヘリウム中では
クロムが少ない方が耐酸化性は良いがクロムが
8重量%以下ではオーステナイト地の強さが維
持できず、また炭化物による強化作用も期待で
きない。しかも、クロム量が15重量%以上にな
ると不純ヘリウム中における耐酸化性が悪くな
るので上限を15重量%とする。 (5) ニツケル:8〜13.5重量%。オーステイナイ
ト地を安定化させるためにはニツケル8重量%
以上の添加が必要であり、安価な鉄基材料を供
給するという目的のためにニツケルの上限を
13.5重量%とする。 (6) モリブデン:3.5〜8重量%、モリブデンは
3.5重量%以下ではオーステナイト地が強化さ
れず、またMo6CおよびFe2Mo相による析出強
化作用が望めない。モリブデンを8重量%以上
添加すると、本合金系ではオーステイナイト地
を安定化することは困難となり、靭性が低下す
るので上限を8重量%とする。 (7) チタンおよびニオブは0.01〜1.0重量%の範
囲でそれぞれ単独にまたは複合して添加する。
チタンまたはニオブはごく微量でも炭化物の形
状寸法を制御できる。炭化物の微細分散効果を
狙うにはチタンまたはニオブのいずれか一方を
少なくとも0.01重量%添加する必要があり、複
合添加するとさらにその効果は一段と強められ
るが、それぞれ1重量%以上になると溶接性、
製造性を害する。 (8) 残り:不純物以外は鉄 上記の組成範囲の鋼を溶製し、10Kg鋼塊を作製
し、熱間圧延さらに固溶化処理したあと、高温ガ
ス炉近似ヘリウムガス中でフリープ破断試験およ
び腐食試験を行なつた。ヘリウムガス中の不純物
量の測定例は以下のとおりである。水素205、メ
タン5、CO95、CO22ppm、O2検出限界以下。この
試験結果を化学組成とともに第1表に示す。
The present invention relates to heat-resistant steel for high temperature gas furnaces. In particular, the present invention relates to heat-resistant steel for multi-purpose high temperature gas furnaces, including those for power generation and the like. That is, the present invention relates to a heat-resistant steel for high-temperature gas furnaces that has excellent corrosion resistance in impure inert gas and excellent high-temperature strength. Among the structural materials for high-temperature gas reactors, Ni-based superalloys such as Hastelloy Contrary to common knowledge in normal oxidizing gases, oxidation resistance is not sufficient in impure helium.
In this case, the oxidation resistance can be improved by adding appropriate amounts of silicon and manganese, but this is still not sufficient. Furthermore, these alloys generally have the disadvantage of being expensive because they generally contain large amounts of expensive alloying elements such as molybdenum, tungsten, and nickel. An object of the present invention is to provide a heat-resistant material for high-temperature gas reactors that is an inexpensive iron-based material and has superior oxidation resistance than Hastelloy X alloy and high-temperature strength comparable to Hastelloy X alloy, in order to compensate for these drawbacks. It is. As a result of intensive research, the inventors of the present invention found that the carbon of the present invention is 0.02 to 0.2% by weight, silicon is 0.05 to 2.0% by weight,
Manganese 0.05-2.0% by weight, chromium 8-15% by weight,
8-13.5% by weight of nickel, 3.5-8% by weight of molybdenum, 0.01-1.0% each of titanium and niobium.
This purpose is achieved by using heat-resistant steel for high-temperature gas furnaces that has excellent oxidation resistance and high-temperature strength in impure helium gas, which is added singly or in combination in a range of % by weight, and the remainder is made up of impurities and iron that are unavoidable during melting. Achieved. Therefore, in achieving the present invention, the present inventors determined the optimum alloy composition range in consideration of the following points. I will explain in detail. (1) If the amount of carbon is less than 0.02% by weight, no strengthening by carbides can be expected, and if it is more than 0.2% by weight, it becomes difficult to adjust the grain size, so the carbon content should be 0.02 to 0.2% by weight. (2) Silicon: 0.05-2% by weight. Silicon is an indispensable element as a deoxidizing agent, and is also an effective element for peeling off films in impure helium, but if it is contained in a large amount of 2% by weight or more, nonmetallic inclusions will increase, so the upper limit should be set. 2% by weight. Moreover, no effect can be expected if it is less than 0.05% by weight. (3) Manganese: 0.05-2% by weight. Manganese is not only effective as a deoxidizing agent together with silicon, but also forms a chromium-manganese spinel oxide together with chromium in impure helium, contributing to oxidation resistance, but if it exceeds 2% by weight, it impairs processability. Moreover, no effect can be expected if it is less than 0.05% by weight. (4) Chromium: 8-15% by weight. In impure helium, the less chromium there is, the better the oxidation resistance is, but if the chromium content is less than 8% by weight, the strength of the austenitic base cannot be maintained, and the strengthening effect of carbides cannot be expected. Furthermore, if the amount of chromium exceeds 15% by weight, the oxidation resistance in impure helium will deteriorate, so the upper limit is set at 15% by weight. (5) Nickel: 8-13.5% by weight. To stabilize the austenitic area, 8% nickel by weight is required.
The above addition is necessary, and the upper limit of nickel is
The content shall be 13.5% by weight. (6) Molybdenum: 3.5 to 8% by weight, molybdenum is
If it is less than 3.5% by weight, the austenite base will not be strengthened, and the precipitation strengthening effect of the Mo 6 C and Fe 2 Mo phases cannot be expected. If more than 8% by weight of molybdenum is added, it becomes difficult to stabilize the austenitic structure in this alloy system and the toughness decreases, so the upper limit is set to 8% by weight. (7) Titanium and niobium are added individually or in combination in a range of 0.01 to 1.0% by weight.
Even a very small amount of titanium or niobium can control the shape and size of the carbide. In order to achieve the effect of fine dispersion of carbides, it is necessary to add at least 0.01% by weight of either titanium or niobium, and if they are added in combination, the effect will be further strengthened, but if each exceeds 1% by weight, weldability will deteriorate.
Impairs manufacturability. (8) Remainder: Iron except for impurities Steel with the above composition range was melted to make a 10Kg steel ingot, hot-rolled and solution treated, and subjected to a free rupture test and corrosion in helium gas similar to a high-temperature gas furnace. I conducted a test. An example of measuring the amount of impurities in helium gas is as follows. Hydrogen 205, methane 5, CO95, CO2 2ppm, O2 below detection limit. The test results are shown in Table 1 along with the chemical composition.

【表】【table】

【表】 クロム量の高い比較鋼、従来鋼に比べ本発明鋼
の酸化増量は著しく少ない。不純ヘリウム中のク
リープ破断強さは表から明らかなように数%以上
のモリブデンを添加することによつて得られ、か
つ微量のチタンおよびニオブを単独または複合添
加することによつてその強度は一段と高められ、
ごくわずかの合金元素を含む鉄基耐熱鋼でありな
がらNi基の従来合金であるハステロイーX合金
に匹敵する強度を示す。当然のことながら本鋼は
オーステイナイトを安定化させているために、時
効後の靭性は、従来鋼であるインコロイ800合金、
ハステロイーX合金と同等以上の値を示す。第2
表に一例を示す。
[Table] Compared to comparative steels with high chromium content and conventional steels, the oxidation weight gain of the steel of the present invention is significantly smaller. As is clear from the table, the creep rupture strength in impure helium can be obtained by adding several percent or more of molybdenum, and the strength can be further improved by adding trace amounts of titanium and niobium, either singly or in combination. elevated;
Although it is an iron-based heat-resistant steel containing only a small amount of alloying elements, it exhibits strength comparable to Hastelloy X alloy, a conventional Ni-based alloy. Naturally, this steel has stabilized austenite, so its toughness after aging is lower than that of conventional steel Incoloy 800 alloy.
Shows values equal to or higher than Hastelloy X alloy. Second
An example is shown in the table.

【表】 本発明は不純ヘリウム中では低Crの方が耐食
性の優れているという事実と結果論であるが不純
ヘリウム中のクリープ強さを高める方法として大
気中でよく知られているMoによる強化および
TiNbによる強化作用が不純ヘリウム中でも使え
ることを基礎にしたものであるが、本発明の要点
は、耐食性を向上させるために通常耐熱鋼に含ま
れるフエライト安定化元素であるクロムを大幅に
低減させ、その分だけ高価なオーステナイト安定
化元素であるニツケルを減じ、さらに、フエライ
ト安定化元素であるが強い強化作用をもつモリブ
デン、チタン、ニオブを添加して、安価で不純ヘ
リウム中で優れた鋼を提供することにある。 本発明の高温ガス炉用耐熱鋼は増殖炉のラツパ
一管、高温ガス炉における制御棒、ダクト材、中
間熱交換器など低酸化ポテンシヤル中ですぐれた
耐食性と高温強さを要求される構造部材として利
用することができる。 不純ヘリウム中では低クロムの方が耐食性が優
れていることは公知であるが、これは大気中など
の強酸化性雰囲気で知られている常識とは逆の新
しい事実である。一方、大気中のクリープ強さに
おいては強化作用としてモリブデンを添加する、
TiおよびNbを微量単独あるいは複合させて添加
する方法はよく知られている。しかし、不純物を
含むヘリウム中ではクリープ試験中に特有の腐食
反応をともなうために、大気中のクリープ強さの
強化作用をそのまま借用することはできない。す
なわち、大気中の腐食に関する常識が通用しない
ような不純ヘリウム中では現時点では、クリープ
の強化作用についても大気中の常識は根拠をもた
ないし、不純ヘリウム中で耐食性が優れ、高い強
度をもつ材料を求めることは、大気中の挙動から
では推察し得ない新規の技術範囲と言うことがで
きる。
[Table] The present invention is based on the fact that low Cr has better corrosion resistance in impure helium, but reinforcement with Mo is well known in the atmosphere as a method of increasing creep strength in impure helium. and
This invention is based on the fact that the strengthening effect of TiNb can be used even in impure helium. By reducing nickel, which is an expensive austenite stabilizing element, and adding molybdenum, titanium, and niobium, which are ferrite stabilizing elements but have strong strengthening effects, we can provide a steel that is inexpensive and excellent in impure helium. It's about doing. The heat-resistant steel for high-temperature gas reactors of the present invention is used for structural members that require excellent corrosion resistance and high-temperature strength in low oxidation potentials, such as the lapper tubes of breeder reactors, control rods, duct materials, and intermediate heat exchangers in high-temperature gas reactors. It can be used as It is well known that low chromium has better corrosion resistance in impure helium, but this is a new fact that is contrary to the common knowledge in strongly oxidizing atmospheres such as the air. On the other hand, molybdenum is added as a strengthening effect for creep strength in the atmosphere.
The method of adding small amounts of Ti and Nb alone or in combination is well known. However, in helium containing impurities, a unique corrosion reaction occurs during the creep test, so the creep strength enhancement effect in the atmosphere cannot be directly utilized. In other words, in impure helium, where common sense regarding corrosion in the atmosphere does not apply, the common sense in the atmosphere regarding the reinforcing effect of creep has no basis at present, and materials with excellent corrosion resistance and high strength in impure helium have no basis. Determining this can be said to be a new technological scope that cannot be inferred from behavior in the atmosphere.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素0.02〜0.2重量%、シリコン0.05〜2.0重
量%、マンガン0.05〜2.0重量%、クロム8〜15
重量%、ニツケル8〜13.5重量%、モリブデン
3.5〜8重量%、チタン及びニオブをそれぞれ
0.01〜1.0重量%の範囲で単独又は複合添加し、
残部は溶製上不可避の不純物と鉄とより成る不純
ヘリウムガス中に優れた耐酸化性と高温強度を有
する高温ガス炉用耐熱鋼。
1 Carbon 0.02-0.2% by weight, Silicon 0.05-2.0% by weight, Manganese 0.05-2.0% by weight, Chromium 8-15
Weight%, Nickel 8-13.5% by weight, Molybdenum
3.5-8% by weight of titanium and niobium, respectively
Added singly or in combination in the range of 0.01 to 1.0% by weight,
A heat-resistant steel for high-temperature gas furnaces that has excellent oxidation resistance and high-temperature strength in impure helium gas, the remainder of which is iron and impurities that are unavoidable during melting.
JP17906781A 1981-11-10 1981-11-10 Heat resistant steel for high temperature gas furnace Granted JPS5881955A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17906781A JPS5881955A (en) 1981-11-10 1981-11-10 Heat resistant steel for high temperature gas furnace
DE19823241414 DE3241414C2 (en) 1981-11-10 1982-11-09 Use of a heat-resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17906781A JPS5881955A (en) 1981-11-10 1981-11-10 Heat resistant steel for high temperature gas furnace

Publications (2)

Publication Number Publication Date
JPS5881955A JPS5881955A (en) 1983-05-17
JPH0147546B2 true JPH0147546B2 (en) 1989-10-16

Family

ID=16059519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17906781A Granted JPS5881955A (en) 1981-11-10 1981-11-10 Heat resistant steel for high temperature gas furnace

Country Status (2)

Country Link
JP (1) JPS5881955A (en)
DE (1) DE3241414C2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530231B2 (en) * 1989-12-20 1996-09-04 日新製鋼株式会社 Heat-resistant austenitic stainless steel
US5194129A (en) * 1991-01-18 1993-03-16 W. R. Grace & Co.-Conn. Manufacture of optical ferrules by electrophoretic deposition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131203A (en) * 1974-09-10 1976-03-17 Matsushita Electric Ind Co Ltd TEEPUSHUTANKENSHUTSUSOCHI
JPS5314417A (en) * 1976-07-26 1978-02-09 Mitsubishi Electric Corp Control valve for breaker
JPS53144417A (en) * 1977-03-30 1978-12-15 Vyzk Ustav Hutnictvi Hardenable highhquality crrniimo steel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1458325A1 (en) * 1964-02-29 1969-01-16 Armco Steel Corp Heat-hardenable, stainless, alloyed chrome-nickel-molybdenum steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131203A (en) * 1974-09-10 1976-03-17 Matsushita Electric Ind Co Ltd TEEPUSHUTANKENSHUTSUSOCHI
JPS5314417A (en) * 1976-07-26 1978-02-09 Mitsubishi Electric Corp Control valve for breaker
JPS53144417A (en) * 1977-03-30 1978-12-15 Vyzk Ustav Hutnictvi Hardenable highhquality crrniimo steel

Also Published As

Publication number Publication date
DE3241414C2 (en) 1984-11-22
DE3241414A1 (en) 1983-05-19
JPS5881955A (en) 1983-05-17

Similar Documents

Publication Publication Date Title
US3592634A (en) High-strength corrosion-resistant stainless steel
EP0381121B1 (en) High-strength heat-resistant steel with improved workability
US4227925A (en) Heat-resistant alloy for welded structures
JPH02232345A (en) High strength high chromium steel excellent in corrosion resistance and oxidation resistance
JPS6024353A (en) Heat-resistant 12% cr steel
US2793113A (en) Creep resistant steel
US4556423A (en) Austenite stainless steels having excellent high temperature strength
JP3982069B2 (en) High Cr ferritic heat resistant steel
JP2970955B2 (en) High chromium ferritic heat resistant steel with excellent copper checking resistance
JPH02217439A (en) High strength low alloy steel having excellent corrosion resistance and oxidation resistance
JPH0147546B2 (en)
JP2831051B2 (en) Austenitic stainless steel welding wire
JPS60165359A (en) High strength and high toughness steel for high and medium pressure rotor of steam turbine
US3825417A (en) Austenitic stainless steel
JPH07138708A (en) Austenitic steel good in high temperature strength and hot workability
JP3301284B2 (en) High Cr ferritic heat resistant steel
JPH0248613B2 (en)
JPH0570694B2 (en)
JPS62238353A (en) High-manganese austenitic steel excellent in strength at high temperature
JP2594265B2 (en) TIG welding wire for 9Cr-Mo steel
JPH055891B2 (en)
JPS60116750A (en) Heat-resistant austenitic alloy containing v and n
JPS63183155A (en) High-strength austenitic heat-resisting alloy
KR102418267B1 (en) Welding material for extremly low temperature high manganese steel plasma welding
JPS6214629B2 (en)