JPH03190901A - Reaction temperature control of reactor - Google Patents

Reaction temperature control of reactor

Info

Publication number
JPH03190901A
JPH03190901A JP32737789A JP32737789A JPH03190901A JP H03190901 A JPH03190901 A JP H03190901A JP 32737789 A JP32737789 A JP 32737789A JP 32737789 A JP32737789 A JP 32737789A JP H03190901 A JPH03190901 A JP H03190901A
Authority
JP
Japan
Prior art keywords
reaction temperature
reaction
rate
change
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32737789A
Other languages
Japanese (ja)
Inventor
Susumu Kono
進 河野
Katsutoshi Fukumoto
福本 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP32737789A priority Critical patent/JPH03190901A/en
Publication of JPH03190901A publication Critical patent/JPH03190901A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To efficiently control reaction temperature by making a change rate calculator operate by a signal of a function calculator to increase and reduce a change ratio depending upon reaction temperature discovered by a reaction temperature detector and making a reaction temperature adjuster add judgment by a sign determining device to regulate flow rate of refrigerant. CONSTITUTION:Reaction temperature of a reaction tank 22 equipped with a cooling jacket 23 is discovered by a reaction temperature detector 19, the detected temperature is inputted to a function calculator 5, a signal to increase a change rate by rise in reaction temperature is outputted, the outputted signal is multiplied by the reaction temperature by a reaction temperature regulator 20 having inputted the signal, a change rate of reaction temperature is outputted by a change rate calculator 1 having inputted reaction temperature outputted from the reaction temperature detector 19, a sign determining device 2 having inputted the outputted change rate outputs a signal proportional tp the change rate only when the change rate is positive, the signal is inputted to the the reaction temperature calculator 20, added and a flow rate of refrigerant is regulated to control the reaction temperature of reactor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明ば、ポリスチレン重合反応装置等の発熱反応を伴
なう反応装置の反応温度制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for controlling the reaction temperature of a reactor that involves an exothermic reaction, such as a polystyrene polymerization reactor.

〔従来の技術〕[Conventional technology]

従来の反応装置の反応温度制御方法を、第3図に示すポ
リスチレンの重合反応器の例により説明する。
A conventional reaction temperature control method for a reactor will be explained using an example of a polystyrene polymerization reactor shown in FIG.

第3図において、原料混合液(スチレンモノマ、回収モ
ノマー、エチルヘンゼン、触媒溶液等)は配管25より
予熱器6を経由して、冷却用ジャケラ1−23を設けた
反応槽22に供給される。反応槽22内で反応した重合
反応後のポリマー液は、配管7により糸外へ取り出され
る。上記予熱器6出口の原料溶液の温度は原料温度検出
器(温度計)12により検出され、この検出値は原料温
度調節計13へ人力され、原料温度調節計13は上記検
出値が予め設定された設定温度になるように、操作出力
を調節弁14に出力する。そのため、調節弁14の開度
、即ち予熱器6の熱媒流量は、上記調節計13の操作出
力に応じて変更される。以上の各機器の働きにより、予
熱器6出口の原料溶液の温度は安定に所定値に保たれ、
反応槽22に安定した運転を可能とする条件が与えられ
る。
In FIG. 3, a raw material mixture (styrene monomer, recovered monomer, ethyl henzene, catalyst solution, etc.) is supplied from a pipe 25 via a preheater 6 to a reaction tank 22 equipped with a cooling jacket 1-23. The polymer liquid reacted in the reaction tank 22 after the polymerization reaction is taken out to the outside of the yarn through the pipe 7. The temperature of the raw material solution at the outlet of the preheater 6 is detected by a raw material temperature detector (thermometer) 12, and this detected value is manually input to a raw material temperature controller 13, where the detected value is preset. The operating output is output to the control valve 14 so that the set temperature is reached. Therefore, the opening degree of the control valve 14, that is, the flow rate of the heat medium of the preheater 6, is changed according to the operation output of the controller 13. Through the functions of each of the above-mentioned devices, the temperature of the raw material solution at the outlet of the preheater 6 is stably maintained at a predetermined value.
Conditions that enable stable operation of the reaction tank 22 are provided.

L記反応槽22内における反応後のポリマー液(ポリス
チレン)の重合率を所望の値に保つためには、重合率と
相関のある反応槽22内の重合液温度(反応温度)を所
定値に制御する必要があるが、その仕組みは以下の通り
である。反応槽22内の反応温度は反応温度検出器19
により検出される。この検出信号は反応温度調節計20
に入力として与えられ、反応温度調節計20により反応
温度設定値と比較され、両者が一致するように反応温度
調節計20はその出力を冷媒温度調節計16に冷媒温度
設定値として与える。冷媒温度調節計16は冷媒温度計
15が検出した冷媒温度を上記反応温度調節計20が出
力した冷媒温度設定値と等しくするよう訂正信号を演算
し、冷媒であるホットオイルを供給する配管8に設置し
た調節弁17と、同じく冷媒であるコールドオイルを供
給する配管9に設置した調節弁18の両方に関数演算器
21を経由して演算値を出力する。」−記調節弁17.
18は上記演算値により開度が調整され、それぞれホン
I・オイル及びコールドオイルの流量を調整する。」二
記流量が調整された冷媒であるポットオイルとコールド
オイルは供給配管89を通って供給配管10て合流しジ
ャケット23に供給され、ジャケント23にて反応杆1
22を冷却した後、配管T1により糸外に至る。上記関
数演算器21ば冷媒温度調節計16の出力に応して調節
弁】7と18をスプリッ(・レンジで操作するためのも
ので、設定例を第4図に示す。冷媒温度調節計16の出
力50%を境にして、50%〜100%の領域で調節弁
17の開度をO〜100%操作し、0〜50%の領域で
は調節弁18の開度を100〜0%操作するようにして
いる。このようにすることにより、冷媒温度調節計16
の出力が50%以」二の領域では冷媒温度調節計16の
出力増加に応して高温のホットオイルの流量が増加する
(冷却量が減少する)。冷媒温度調節計16の出力が5
0%以下の領域では冷媒温度調節it 1.6の出力減
少に応じて低温のコールドオイルの流量が増加する(冷
却量が増加する)こととなる。従って冷媒温度調節計1
6の出力に応じてほぼ連続的に冷却量を変更する仕組み
となっている。
In order to maintain the polymerization rate of the polymer liquid (polystyrene) after the reaction in the reaction tank 22 at a desired value, the temperature of the polymer liquid (reaction temperature) in the reaction tank 22, which is correlated with the polymerization rate, must be kept at a predetermined value. It needs to be controlled, and the mechanism is as follows. The reaction temperature in the reaction tank 22 is measured by the reaction temperature detector 19.
Detected by This detection signal is detected by the reaction temperature controller 20.
The reaction temperature controller 20 compares it with the reaction temperature set value, and so that the two match, the reaction temperature controller 20 gives its output to the refrigerant temperature controller 16 as the refrigerant temperature set value. The refrigerant temperature controller 16 calculates a correction signal to make the refrigerant temperature detected by the refrigerant thermometer 15 equal to the refrigerant temperature set value outputted by the reaction temperature controller 20, and sends a correction signal to the piping 8 that supplies hot oil as a refrigerant. A calculated value is output via the function calculator 21 to both the installed control valve 17 and the control valve 18 installed in the pipe 9 that also supplies cold oil, which is a refrigerant. ”-Regulating valve 17.
The opening degree of 18 is adjusted based on the above-mentioned calculated value, and the flow rates of hot oil and cold oil are adjusted respectively. 2. Pot oil and cold oil, which are refrigerants whose flow rates have been adjusted, pass through the supply pipe 89, join together at the supply pipe 10, and are supplied to the jacket 23, and are fed to the jacket 23 at the reaction rod 1.
22 is cooled down, the pipe T1 leads to the outside of the thread. The function calculator 21 is used to operate the control valves 7 and 18 in a split range according to the output of the refrigerant temperature controller 16, and a setting example is shown in FIG. 4.Refrigerant temperature controller 16 With the output of 50% as the boundary, the opening degree of the control valve 17 is operated from 0 to 100% in the range of 50% to 100%, and the opening degree of the control valve 18 is operated from 100 to 0% in the range of 0 to 50%. By doing this, the refrigerant temperature controller 16
In the second region where the output of the refrigerant temperature controller 16 is 50% or more, the flow rate of high temperature hot oil increases (the amount of cooling decreases) in accordance with the increase in the output of the refrigerant temperature controller 16. The output of the refrigerant temperature controller 16 is 5
In the region below 0%, the flow rate of low-temperature cold oil increases (the amount of cooling increases) in accordance with the decrease in the output of the refrigerant temperature control IT 1.6. Therefore, refrigerant temperature controller 1
The system is designed to change the amount of cooling almost continuously according to the output of 6.

、に記のように各機器が働くため、例えば定常運転中に
おいて何らかの外乱により反応温度が上昇すると、反応
温度調節計20は冷媒温度調節計16に対し冷媒温度設
定値を減少させる働きをする。
Since each device operates as described in , for example, if the reaction temperature rises due to some disturbance during steady operation, the reaction temperature controller 20 acts on the refrigerant temperature controller 16 to decrease the refrigerant temperature set value.

冷媒温度調節計16は温度計15の出力と冷媒温度設定
値を一致させるため、冷媒温度調節計16の出力を減少
しその際の冷媒温度調節計16の出力が50%以下の領
域の場合にはコールドオイル流量を増加させるべく調節
弁18の開度を増加させる。上記により冷媒温度(温度
計15の出力)は低下し、冷却量が増大して反応温度の
上昇は抑制される。
The refrigerant temperature controller 16 reduces the output of the refrigerant temperature controller 16 in order to match the output of the thermometer 15 with the refrigerant temperature set value, and when the output of the refrigerant temperature controller 16 at that time is in the region of 50% or less, increases the opening degree of the control valve 18 in order to increase the cold oil flow rate. As a result of the above, the refrigerant temperature (output of the thermometer 15) decreases, the amount of cooling increases, and the rise in reaction temperature is suppressed.

上記とは逆に反応温度が下降しそうになると反応温度調
節計20は冷媒温度設定値を増加させ、冷媒温度調節計
16は出力を増加するため調節弁18の開度を減少させ
、コールドオイル流量が減少する(冷媒温度調節計16
の出力が50%以下の領域の場合)。上記により冷却量
が減少するので反応温度の下降は抑制される。
Contrary to the above, when the reaction temperature is about to drop, the reaction temperature controller 20 increases the refrigerant temperature set value, the refrigerant temperature controller 16 decreases the opening degree of the control valve 18 to increase the output, and the cold oil flow rate increases. decreases (refrigerant temperature controller 16
(in the area where the output is less than 50%). Since the amount of cooling is reduced as described above, the drop in reaction temperature is suppressed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

重合反応装置において重要なことは、反応温度を適切に
所定値に保つことにある。しかしながら従来の装置にお
いては、ポリスチレンの重合反応が高温発熱を伴うもの
であるにもかかわらず、重合液の粘度が高いため、伝熱
係数が大きく取れず操作遅れが大きい。これらにより、
反応温度の変動が大きくなるのみか、制御系が反応熱の
変動等に追従しきれず暴走反応が発生ずる恐れがあった
What is important in a polymerization reactor is to appropriately maintain the reaction temperature at a predetermined value. However, in conventional apparatuses, although the polymerization reaction of polystyrene is accompanied by high temperature heat generation, the viscosity of the polymerization liquid is high, so a large heat transfer coefficient cannot be achieved, resulting in large operational delays. With these,
There was a fear that either the fluctuations in reaction temperature would increase or the control system would not be able to follow the fluctuations in reaction heat, leading to a runaway reaction.

本発明は、上記課題を解決し反応温度の変動を極力少な
くすると共に暴走反応による不良製品の生産、更にはプ
ランI・停止等をなくすためのものである。
The present invention is intended to solve the above-mentioned problems, to minimize fluctuations in reaction temperature, and to eliminate production of defective products due to runaway reactions, as well as Plan I stoppages.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の反応装置の反応温度制御方法は、冷却用ジャケ
ラI・が設けられた反応槽の反応温度を反=5= 応温度検出器が検出し、同反応温度検出器より反応温度
を入力した反応温度調節計が2L記冷却用ジャケントに
供給される冷媒流量を制御する反応装置において、−F
記反応温度検出器が出力した反応温度を関数演算器が入
力して反応温度の増加に対して変化率が増大する信号を
出力し、その信号を入力した反応温度調節計が反応温度
に上記信号を乗算し7、また、上記反応温度検出器が出
力した反応温度を入力した変化速度演算器が反応温度の
変化速度を出力し、同変化速度を入力した正負判定器が
上記変化速度が正のときのみ同変化速度に比例した信号
を出力し、同信号を上記反応温度調節計が入力して加算
し、冷媒流量を制御することを特徴としている。
In the reaction temperature control method of the reaction apparatus of the present invention, a reaction temperature detector detects the reaction temperature of a reaction tank equipped with a cooling jacket I, and the reaction temperature is input from the reaction temperature detector. In a reaction apparatus in which a reaction temperature controller controls the flow rate of refrigerant supplied to a 2L cooling jacket,
A function calculator inputs the reaction temperature output by the reaction temperature detector and outputs a signal whose rate of change increases as the reaction temperature increases, and the reaction temperature controller that inputs that signal changes the reaction temperature to the above signal. In addition, the rate of change calculator that inputs the reaction temperature output from the reaction temperature detector outputs the rate of change of the reaction temperature, and the sign/negative determiner that inputs the same rate of change determines whether the rate of change is positive. A signal proportional to the rate of change is output only when the reaction temperature controller is input and added to the reaction temperature controller to control the refrigerant flow rate.

〔作用〕[Effect]

上記において、反応槽内の反応温度が上昇した場合には
、反応温度検出器が出力した反応温度が関数源′g器に
入力され、同関数演算器は反応温度の増加に対して変化
率が増大する信号を出力する。
In the above, when the reaction temperature in the reaction tank increases, the reaction temperature output from the reaction temperature detector is input to the function source 'g', and the function calculator calculates the rate of change with respect to the increase in reaction temperature. Outputs an increasing signal.

関数演算器の出力信号は反応温度調節計に入力され、同
調節計においては」二記反応温度に」−配出力信号が乗
算される。また、反応温度検出器より反応温度を人力し
た変化速度演算器は反応温度の変化速度を出力し、正負
判定器を介して反応温度調節具」へ入力される。同反応
温度調節計ば、−に記関数演算器と+’E fl−判定
器より人力された信号により、比例動作と積分動作と微
分動作が加算された動作を行い、冷媒流量を制御する。
The output signal of the function calculator is input to the reaction temperature controller, where the reaction temperature is multiplied by the distribution output signal. In addition, a rate-of-change calculator that manually calculates the reaction temperature from the reaction temperature detector outputs the rate of change in the reaction temperature, which is input to the reaction temperature controller via the sign/negative determiner. The reaction temperature controller performs an operation in which the proportional operation, integral operation, and differential operation are added according to signals manually inputted from the function calculator and the +'E fl-determiner to control the refrigerant flow rate.

北記調節計は比例動作と積分動作と微分動作が加算され
た動作を行うため、I−記冷媒流¥は反応温度の増加に
対して累積的に増大(−1また反応温度の上昇に対して
ずはやく応答し、冷却効果が高められている。
Since the Kitaki controller performs an operation that is a combination of proportional action, integral action, and differential action, the refrigerant flow shown in I-1 increases cumulatively as the reaction temperature increases (-1 and increases as the reaction temperature increases). It responds quickly and has an enhanced cooling effect.

上記に対して、反応温度が一ト降した場合には、FE 
i4+、判定器からの出力はなく、また関数演算器が出
力する変化率は減少するため、冷媒流量の減少は小幅に
押えられる。
In contrast to the above, if the reaction temperature drops by one, FE
i4+, there is no output from the determiner, and the rate of change output from the function calculator decreases, so the decrease in the refrigerant flow rate is suppressed to a small extent.

上記により、反応温度か−L昇する場合にはジャゲット
に供給される冷媒が大幅に冷却効果を高め、下降する場
合は冷却効果を小幅に1にめるため、反応温度の変動を
低減させることが可能となり、ポリスチレン等を生成す
る場合、均一な品質とすることができ、また暴走反応に
よる不良製品の生産やプラン1−停止を防止することが
可能となる。
As a result of the above, when the reaction temperature increases by -L, the cooling effect of the refrigerant supplied to the jaguget is greatly enhanced, and when it decreases, the cooling effect is slightly reduced to 1, thereby reducing fluctuations in the reaction temperature. When polystyrene or the like is produced, it is possible to achieve uniform quality, and it is also possible to prevent the production of defective products and stoppage of Plan 1 due to runaway reactions.

〔実施例〕〔Example〕

本発明の一実施例を第1図に示す。 An embodiment of the present invention is shown in FIG.

第1図に示す本実施例は、冷却用ジャケラ)−23が設
けられた反応槽22内に予熱器6が設けられた配管25
により原料が供給され配管7によりm出され、配管8に
よ/)供給されたボンドオイルと配管9により供給され
たコールドオイルカ配管10にて合流し上記冷却用ジャ
ケット23に供給されて反応槽22を冷却して配管11
により排出され、ヒ記予熱器6出口の原料温度を原料温
度検出器12が検出して原料温度検出器13に入力し7
同調節計13が調節弁14を介して一ヒ記予熱器6に供
給される熱媒量を制御し、上記反応槽22の温度を反応
温度検出器19が検出し反応温度調節計20を介して冷
媒温度調節計16に入力し、同冷媒温度調節計16が冷
媒温度計15により検出された配管10を流れる冷媒の
温度を入力し関数演算器21を介して−に記配管8に設
げられた調節弁】7と上記配管9に設げられた調節弁1
8の開度制御を行う反応装置において、上記反応温度検
出器19の出力信号を入力し出力信号を反応温度調節計
20に人力する関数演算器5、」−記反応温度検出器1
9が検出した反応温度を入力し7反応温度の変化速度を
演算する変化速度演算器1、および同演算器1より変化
速度を人力しそれが正の場合のみ出力して反応温度調節
計20に微分動作を行わせる正負判定器2を備えている
In the present embodiment shown in FIG.
The raw material is supplied and discharged through piping 7, and the bond oil supplied through piping 8 and the cold oil supplied through piping 9 join together in piping 10, and are supplied to the cooling jacket 23 to form a reaction tank. 22 and pipe 11
The raw material temperature at the outlet of the preheater 6 is detected by the raw material temperature detector 12 and inputted to the raw material temperature detector 13.
The controller 13 controls the amount of heat medium supplied to the preheater 6 via the control valve 14, and the reaction temperature detector 19 detects the temperature of the reaction tank 22, and the temperature is detected via the reaction temperature controller 20. The temperature of the refrigerant flowing through the pipe 10 detected by the refrigerant thermometer 15 is inputted to the refrigerant temperature controller 16, and the temperature of the refrigerant flowing through the pipe 10 detected by the refrigerant thermometer 15 is input to the refrigerant temperature controller 16. Control valve 7 provided in the pipe 9 and control valve 1 provided in the piping 9
8, a function calculator 5 inputs the output signal of the reaction temperature detector 19 and manually inputs the output signal to the reaction temperature controller 20;
A rate-of-change calculator 1 inputs the reaction temperature detected by 9 and calculates the rate of change of the reaction temperature 7, and a rate-of-change calculator 1 manually calculates the rate of change from the calculator 1 and outputs it only when it is positive to the reaction temperature controller 20. It is equipped with a sign/negative determiner 2 that performs a differential operation.

本実施例においては、変化速度演算器1、正負判定器2
及び関数演算器5以外の装置による作用は、従来と変ら
ないためその説明を省略する。
In this embodiment, a change rate calculator 1, a positive/negative determiner 2,
The operations of devices other than the function calculator 5 are the same as in the prior art, and therefore their explanations will be omitted.

−に記において、定常運転中に何らかの外乱により反応
温度が上昇すると、関数演算器5の出力は反応温度検出
器19の出力増加に応じて第2図に示すように増加し、
反応温度調節計20の比例ゲインを乗算補正する。また
、上記反応温度検出器j9より反応温度を入力した変化
速度演算器1は反応温度の変化速度を出力して正負判定
器2に入】 0 力し、同判定器2は変化速度を反応温度調節計20に入
力し、同反応温度調節計20は上記関数演算器5と正負
判定器2より入力された信号により比例動作と積分動作
と微分動作が加算された動作を行い、従来方法に比べ大
幅な減少訂正信号を冷媒温度調節計16に設定値として
出力する。従って、冷媒温度調節計16は従来に比べよ
り速く大幅に調節弁18の開度を増加させ、(冷媒温度
調節計16の出力が50%以下の領域の場合)冷却量を
増加させる。
-, when the reaction temperature rises due to some disturbance during steady operation, the output of the function calculator 5 increases as shown in FIG. 2 in accordance with the increase in the output of the reaction temperature detector 19,
The proportional gain of the reaction temperature controller 20 is multiplied and corrected. In addition, the rate of change calculator 1, which inputs the reaction temperature from the reaction temperature detector j9, outputs the rate of change of the reaction temperature and inputs it into the positive/negative determiner 2. The reaction temperature controller 20 performs an operation in which the proportional operation, integral operation, and differential operation are added based on the signals input from the function calculator 5 and the positive/negative judger 2, which is faster than the conventional method. A large decrease correction signal is output to the refrigerant temperature controller 16 as a set value. Therefore, the refrigerant temperature controller 16 significantly increases the opening degree of the control valve 18 more quickly than in the past, and increases the amount of cooling (when the output of the refrigerant temperature controller 16 is in the region of 50% or less).

以−トの動作により反応温度の上昇変動は微少に保たれ
る。
Due to the above operation, fluctuations in the rise in reaction temperature are kept to a minimum.

上記に対して、反応温度が下降気味の場合には、従来方
法に比べ冷媒温度調節計16へ入力される設定値は関数
演算器5の信号のみが入力されるため小幅な増加となり
、調節弁18の開度は従来に比べ小幅に減少し適切な冷
却量が与えられる。これにより反応温度の下降変動は微
少に保たれる。
In contrast to the above, when the reaction temperature is decreasing, the set value input to the refrigerant temperature controller 16 will increase slightly compared to the conventional method because only the signal from the function calculator 5 is input, and the control valve The opening degree of No. 18 is slightly reduced compared to the conventional one, and an appropriate amount of cooling is provided. This keeps the drop in reaction temperature to a minimum.

ヒ記本実施例は、反応槽22における反応温度が制御し
にくい主原因として、反応温度によりプロセス特性が異
なるごとに着目し7たものである。
Note: This embodiment focuses on the fact that the process characteristics differ depending on the reaction temperature as the main reason why the reaction temperature in the reaction tank 22 is difficult to control.

具体的には反応温度が上昇ずれば発熱量も増大する。即
ち反応温度の増加につれて反応速度(k:mol、/r
r(−h)が増大する。また、発熱量、’ Q (kc
a E/、(・h)と反応速度にば(1)式に示す関係
がある。
Specifically, as the reaction temperature rises, the amount of heat generated also increases. That is, as the reaction temperature increases, the reaction rate (k: mol, /r
r(-h) increases. In addition, the calorific value, ' Q (kc
There is a relationship between a E/, (·h) and the reaction rate as shown in equation (1).

従って反応温度の増加に対応して発熱量qも増加をする
こととなる。
Therefore, as the reaction temperature increases, the calorific value q also increases.

qock・△H−−−−−−−−−−−−−−−−−−
一一一−−−−(1)但し、八H(kcal/mo(2
)は反応熱このプロセス特性を利用し良好に制御するた
めには、反応温度が上昇したときは下降したときに比べ
冷却量を速やかに多用に増加させて必要な冷却量を確保
し、下降したときには上昇したときに比べ冷却量を少量
減少し、絞り過ぎによる反応温度の変動をきたさない適
切な冷却¥を留C保することとしている。
qock・△H----------------------
111---(1) However, 8H (kcal/mo(2
) is the reaction heat.In order to take advantage of this process characteristic and control the reaction temperature well, when the reaction temperature rises, the amount of cooling must be increased more quickly and more frequently than when it falls, to ensure the necessary amount of cooling, and to reduce the temperature. Sometimes, the amount of cooling is reduced by a small amount compared to when the temperature is increased to maintain an appropriate level of cooling that will not cause fluctuations in the reaction temperature due to excessive throttling.

また、反応槽22の反応温度の変化速度を監視し、変化
速度が正(増加)のときには、反応温度調節計の微分動
作によって早めに冷却量を反応温度の変化速度に応じて
増加させ、狛(減少)のときにほこの動作を行わず、冷
却量の絞り込みを押え、プロセスになじむ良好な制御を
行うことができるものとしている。
In addition, the rate of change in the reaction temperature of the reaction tank 22 is monitored, and when the rate of change is positive (increase), the amount of cooling is increased early according to the rate of change in the reaction temperature by the differential operation of the reaction temperature controller. (decrease), no operation is performed, the amount of cooling is suppressed, and good control that is compatible with the process can be performed.

上記により、反応槽の反応温度の変動が少なくなり均一
な品質のポリスチレンを得ることができる。また、暴走
反応による不良製品の生産やプラント停止もなくなり、
プラント停止や復旧操作による稼動率の低下を防ぐこと
ができる。
As a result of the above, fluctuations in the reaction temperature of the reaction tank are reduced and polystyrene of uniform quality can be obtained. It also eliminates the production of defective products and plant shutdowns due to runaway reactions.
It is possible to prevent a decrease in the operating rate due to plant stoppages and restoration operations.

〔発明の効果〕〔Effect of the invention〕

本発明の反応装置の温度制御方法は、反応槽を冷却する
冷媒流量について、反応温度の変化に応じて変化率が増
減する関数演算器の出力信号と、変化速度演算器より反
応温度の変化速度を入力し正の場合にそれを出力する正
負判定器の出力信号により制御することによって、反応
温度が上昇する場合にはジャケットに供給される冷媒が
大幅に冷却効果を高め、下降する場合は冷却効果を小幅
に止めるため、反応温度の変動を低減させることが可能
となり、ポリスチレン等を生成する場合、均一な品質と
することができ、また暴走反応による不良製品の生産や
プラントの停止を防止することが可能となる。
The temperature control method for a reaction apparatus of the present invention uses an output signal from a function calculator whose rate of change increases or decreases according to changes in the reaction temperature, and a rate of change of the reaction temperature from a rate-of-change calculator to determine the flow rate of refrigerant for cooling the reaction tank. By controlling by the output signal of the positive/negative determiner which inputs and outputs it when the reaction temperature is positive, the cooling effect of the refrigerant supplied to the jacket increases significantly when the reaction temperature increases, and decreases when the reaction temperature decreases. Since the effect is kept to a small level, it is possible to reduce fluctuations in reaction temperature, and when producing polystyrene, etc., it is possible to achieve uniform quality, and it also prevents the production of defective products and plant shutdowns due to runaway reactions. becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明図、第2図は上記一実
施例に用いる関数演算器の特性図、第3図は従来の方法
の説明図、第4図は上記従来の方法における冷媒温度調
節計の特性図である。 ■・・・変化速度演算器、 2・・・正負判定器、5・
・・関数演算器、 6・・・予熱器、7 8.9.10
.11・・・配管、 12・・・原料温度検出器、 13・・・原料温度調節計、 14・・・調節弁、  15・・・冷媒温度計、16・
・・冷媒温度調節計、 1718・・・調節弁、 19・・・反応温度検出器、 20・・・反応温度調節計、 21・・・関数演算器、 22・・・反応槽、23・・
・冷却用ジャケット。 3 4 角4区 −6−
Fig. 1 is an explanatory diagram of an embodiment of the present invention, Fig. 2 is a characteristic diagram of a functional arithmetic unit used in the above embodiment, Fig. 3 is an explanatory diagram of a conventional method, and Fig. 4 is an explanatory diagram of the above conventional method. It is a characteristic diagram of the refrigerant temperature controller in . ■... Change rate calculator, 2... Positive/negative judge, 5...
...Function calculator, 6...Preheater, 7 8.9.10
.. DESCRIPTION OF SYMBOLS 11... Piping, 12... Raw material temperature detector, 13... Raw material temperature controller, 14... Control valve, 15... Refrigerant thermometer, 16.
...Refrigerant temperature controller, 1718...Control valve, 19...Reaction temperature detector, 20...Reaction temperature controller, 21...Function calculator, 22...Reaction tank, 23...
- Cooling jacket. 3 4 Corner 4 Ward-6-

Claims (1)

【特許請求の範囲】[Claims] 冷却用ジャケットが設けられた反応槽の反応温度を反応
温度検出器が検出し、同反応温度検出器より反応温度を
入力した反応温度調節計が上記冷却用ジャケットに供給
される冷媒流量を制御する反応装置において、上記反応
温度検出器が出力した反応温度を関数演算器が入力して
反応温度の増加に対して変化率が増大する信号を出力し
、その信号を入力した反応温度調節計が反応温度に上記
信号を乗算し、また、上記反応温度検出器が出力した反
応温度を入力した変化速度演算器が反応温度の変化速度
を出力し、同変化速度を入力した正負判定器が上記変化
速度が正のときのみ同変化速度に比例した信号を出力し
、同信号を上記反応温度調節計が入力して加算し、冷媒
流量を制御することを特徴とする反応装置の反応温度制
御方法。
A reaction temperature detector detects the reaction temperature of a reaction tank equipped with a cooling jacket, and a reaction temperature controller that receives the reaction temperature from the reaction temperature detector controls the flow rate of refrigerant supplied to the cooling jacket. In the reaction apparatus, a function calculator inputs the reaction temperature output from the reaction temperature detector and outputs a signal whose rate of change increases as the reaction temperature increases. The temperature is multiplied by the above signal, and the rate of change calculator inputting the reaction temperature output from the reaction temperature detector outputs the rate of change of the reaction temperature, and the sign/negative determiner inputting the same rate of change calculates the rate of change. 1. A reaction temperature control method for a reaction apparatus, comprising: outputting a signal proportional to the rate of change only when is positive, and inputting and adding the signal to the reaction temperature controller to control the flow rate of the refrigerant.
JP32737789A 1989-12-19 1989-12-19 Reaction temperature control of reactor Pending JPH03190901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32737789A JPH03190901A (en) 1989-12-19 1989-12-19 Reaction temperature control of reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32737789A JPH03190901A (en) 1989-12-19 1989-12-19 Reaction temperature control of reactor

Publications (1)

Publication Number Publication Date
JPH03190901A true JPH03190901A (en) 1991-08-20

Family

ID=18198463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32737789A Pending JPH03190901A (en) 1989-12-19 1989-12-19 Reaction temperature control of reactor

Country Status (1)

Country Link
JP (1) JPH03190901A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108212019A (en) * 2017-12-29 2018-06-29 厦门金达威维生素有限公司 A kind of dropwise reaction process automaton and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108212019A (en) * 2017-12-29 2018-06-29 厦门金达威维生素有限公司 A kind of dropwise reaction process automaton and method

Similar Documents

Publication Publication Date Title
JP4932740B2 (en) Control method for hydrotreating
JPS60248702A (en) Method and device to control polymerization reaction
NO178790B (en) Process for preparing olefin polymers in an autoclave reactor
CN110666126B (en) Method for stabilizing convection heat exchange coefficient of crystallizer copper plate cooling water
GB1466429A (en) Control apparatus for fractionation tower
US6165418A (en) System for controlling temperature of a continuous polymerization process
JPH03190901A (en) Reaction temperature control of reactor
JP3552064B2 (en) Method for controlling hydrogen production apparatus and apparatus therefor
JPH03190902A (en) Reaction temperature control of reactor
JPH03181330A (en) Reaction temperature control method for reactor
JPH03181331A (en) Reaction temperature control method for reactor
US3812090A (en) Process for performing gas-phase reactions under pressure
US4264566A (en) Temperature control for an ammonia synthesis reactor
SU429064A1 (en) METHOD OF AUTOMATIC CONTROL OF POLYMERIZATION PROCESS OR ETHYLENE COPOLYMERIZATION
SU1575158A1 (en) Method of controlling the process of emulsion polymerization of styrene
SU1775390A1 (en) Method for controlling hydroformylation of propylene
SU1556734A1 (en) Device for protection and regulation of the process for producing dimethylformamides
SU954392A1 (en) Method for controlling process of initiated polymerization
JPS6061003A (en) Device for controlling top temperature of distillation tower
JPS62226316A (en) Flow rate control device
SU651006A1 (en) Method of automatic control of process of propylene polymerization
SU964334A1 (en) Method of adjusting green liquor level in soda regeneration boiler unit melt solution tank
SU865894A1 (en) Method of automatic control of bitumen oxidation process
US6294078B1 (en) Antifoulant control process
SU789478A1 (en) Method and device for automatic control of temperature conditions in column for methanol synthesis