JPH03190233A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH03190233A JPH03190233A JP33044689A JP33044689A JPH03190233A JP H03190233 A JPH03190233 A JP H03190233A JP 33044689 A JP33044689 A JP 33044689A JP 33044689 A JP33044689 A JP 33044689A JP H03190233 A JPH03190233 A JP H03190233A
- Authority
- JP
- Japan
- Prior art keywords
- sections
- etched
- layer
- insulating layer
- implantation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000012535 impurity Substances 0.000 claims abstract description 36
- 239000000463 material Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 19
- 150000002500 ions Chemical class 0.000 claims description 19
- 239000010410 layer Substances 0.000 abstract description 44
- 238000002513 implantation Methods 0.000 abstract description 15
- 239000011229 interlayer Substances 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 4
- 239000011574 phosphorus Substances 0.000 abstract description 4
- -1 phosphorus ions Chemical class 0.000 abstract description 4
- 238000005468 ion implantation Methods 0.000 description 14
- 238000005530 etching Methods 0.000 description 8
- 238000007796 conventional method Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
半導体装置の製造方法に関わり、特に表面に凹部を有す
る被エツチング材を平坦化する方法に関し、被エツチン
グ材の平坦性を容易な工程を用いて向上させることによ
って、信鎖性の高い半導体装置を提供することを目的と
し、表面に凹部を有する被エツチング材に対して、不純
物イオンを該凹部の底部以外の部分よりも該凹部の底部
には注入され難くなるような角度で照射して前記凹部底
部以外の部分に選択的に不純物を導入する工程と、前記
被エツチング材の前記不純物イオンが導入された領域の
除去速度が前記不純物イオンが導入されなかった領域の
除去速度に比し大なる条件で除去することによって前記
被エツチング材の表面を平坦化する工程とを有すること
を特徴とするように構成する。[Detailed Description of the Invention] [Summary] The present invention relates to a method of manufacturing a semiconductor device, and particularly relates to a method of flattening a material to be etched having a concave portion on its surface, and to improve the flatness of a material to be etched using a simple process. With the aim of providing a semiconductor device with high reliability, impurity ions are more difficult to be implanted into the bottom of the recess than into the parts other than the bottom of the recess in a material to be etched that has a recess on the surface. A step of selectively introducing impurities into a portion other than the bottom of the recess by irradiating at an angle such that the removal rate of the region of the material to be etched into which the impurity ions have been introduced is such that The method is characterized by comprising the step of flattening the surface of the material to be etched by removing the material under conditions higher than the removal speed of the region.
本発明は、半導体装置の製造方法に関わり、特に表面に
凹部を有する被エツチング材を平坦化する方法に関する
。The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of planarizing a material to be etched that has a recessed portion on its surface.
近年の半導体集積回路装置の高集積化の要求に伴いデバ
イスの微細化が求められている。それにより、配線の断
面積は小さくなりつつあるが、それにもかかわらず配線
長は、むしろ長くなる傾向にあり、配線抵抗は増加せざ
るを得ない。一方、高集積化により配線レイアウトも複
雑化しつつある。これらを解決する構造が多層配線であ
るが、この多層配線構造を実現する上での問題点の一つ
は眉間絶縁のしかたである。層間絶縁には1μm程度の
シリコン酸化膜を採用すれば電気的絶縁には問題はない
が、絶縁膜を第1層配線線上に単純に堆積しただけでは
絶縁膜表面が第1層配線の形状を反映して凹凸段差の激
しいものになり第2層の配線を形成する際に段差部での
断線の危険性が大きくなる。従って、眉間絶縁層表面を
平坦化する必要がある。With the recent demand for higher integration of semiconductor integrated circuit devices, miniaturization of devices is required. As a result, although the cross-sectional area of the wiring is becoming smaller, the length of the wiring tends to become longer, and the resistance of the wiring inevitably increases. On the other hand, wiring layouts are becoming more complex due to higher integration. Multilayer wiring is a structure that solves these problems, but one of the problems in realizing this multilayer wiring structure is how to insulate between the eyebrows. If a silicon oxide film with a thickness of about 1 μm is used for interlayer insulation, there will be no problem with electrical insulation, but if the insulating film is simply deposited on the first layer wiring, the surface of the insulating film will not match the shape of the first layer wiring. As a result, the irregularities and steps become severe, increasing the risk of wire breakage at the step portion when forming the second layer wiring. Therefore, it is necessary to flatten the surface of the glabella insulating layer.
次に第2図、従来技術を説明するための半導体装置の要
部断面図を用いて従来行われていた多層配線の形成方法
を説明する。図中1は半導体基板、例えばシリコン(S
i)基板であり2は二酸化シリコン(SiOz)からな
る第1の眉間絶縁層、3はアルミニウム(A I )か
らなる第1配線層、4は低粘性絶縁体からなる第2の眉
間絶縁層、5はアルミニウムからなる第2配線層である
。まず、シリコン基板1の上に化学気相成長法(CVD
)又は熱酸化法を用いて第1の眉間絶縁層2を厚さ50
00人程度形成し、次に第1配線層3をスパッタリング
法で4000人〜5000人形成し所望の形状にパター
ニングする。この場合、各々の電極・配線は5000人
程度離れて形成されている。この上に低粘性絶縁体から
なる厚さ8000人程度0第2の眉間絶縁層4を形成し
、さらにその上にスパッタリング法を用いて厚さ600
0人程度0第2配線層5を形成していた。しかし、この
方法でも第2の眉間絶縁層4が、下地第1配線層3の形
状を受は継ぎ、図中10A、IOB、10Cで示すよう
な5000人程度0段差部が生じ、段差の緩和は充分で
はなかった。従って、図中11で示すようなステップカ
バレッジの悪い部分で断線し易くなり、半導体装置の信
頼性を損なう結果となっていた。このため第2の層間絶
縁層4上にSOGを塗布して平坦化したり、またSOG
塗布後、エッチバックすることにより平坦化をはかって
いた。しかし、これらの方法は工程の繁雑さ等の点で課
題が残っていた。Next, a conventional method of forming multilayer wiring will be explained using FIG. 2, which is a sectional view of a main part of a semiconductor device for explaining the prior art. 1 in the figure is a semiconductor substrate, for example silicon (S
i) A substrate, 2 is a first glabellar insulating layer made of silicon dioxide (SiOz), 3 is a first wiring layer made of aluminum (A I ), 4 is a second glabellar insulating layer made of a low viscosity insulator, 5 is a second wiring layer made of aluminum. First, a chemical vapor deposition method (CVD) is deposited on a silicon substrate 1.
) or using a thermal oxidation method to form the first glabella insulating layer 2 to a thickness of 50 mm.
The first wiring layer 3 is then formed by 4,000 to 5,000 people using a sputtering method and patterned into a desired shape. In this case, each electrode/wiring is formed about 5,000 people apart. On top of this, a second glabellar insulating layer 4 made of a low-viscosity insulator with a thickness of about 8,000 is formed, and further on top of this, a sputtering method is used to form a second glabellar insulating layer 4 with a thickness of about 6000.
Approximately 0 people formed the second wiring layer 5. However, even with this method, the second glabellar insulating layer 4 inherits the shape of the underlying first wiring layer 3, resulting in approximately 5,000 zero step portions as shown at 10A, IOB, and 10C in the figure, which reduces the step difference. was not sufficient. Therefore, wire breakage is likely to occur at portions with poor step coverage as shown by 11 in the figure, resulting in a loss of reliability of the semiconductor device. For this reason, SOG is applied on the second interlayer insulating layer 4 to planarize it, or SOG
After coating, planarization was achieved by etching back. However, these methods still have problems such as the complexity of the process.
このように従来は第1配線層3と第2配線層5の間に低
粘性の絶縁体を用いたり、SOG塗布やエッチバックを
行って平坦化を行う努力がなされていた。しかし、これ
らの方法はSOGを塗布する工程やエッチバックを施す
工程を新たに追加する必要があり、工程が煩雑になって
しまうという課題をのこしていた。As described above, conventional efforts have been made to planarize the layer by using a low-viscosity insulator between the first wiring layer 3 and the second wiring layer 5, or by applying SOG coating or etching back. However, these methods require the addition of a new SOG coating process and an etch-back process, resulting in a problem that the process becomes complicated.
本発明は、被エツチング材(層間絶縁層)の平坦性を容
易な工程を用いて向上させることによって、信頼性の高
い半導体装置を提供することを目的とする。An object of the present invention is to provide a highly reliable semiconductor device by improving the flatness of a material to be etched (an interlayer insulating layer) using a simple process.
上記課題は、表面に凹部を有する被エツチング材に対し
て、不純物イオンを該凹部の底部以外の部分よりも該凹
部の底部には注入され難くなるような角度で照射して、
前記凹部底部以外の部分に選択的に不純物を導入する工
程と、前記被エツチング材の前記不純物イオンが導入さ
れた領域の除去速度が前記不純物イオンが導入されなか
った領域の除去速度に比し大なる条件で除去することに
よって前記被エツチング材の表面を平坦化する工程とを
有することを特徴とするように構成することによって解
決される。The above-mentioned problem is to irradiate impurity ions to a material to be etched which has a recessed portion on its surface at an angle such that it is more difficult to implant impurity ions into the bottom of the recessed portion than into the portion other than the bottom of the recessed portion.
A step of selectively introducing impurities into a portion other than the bottom of the recess, and a removal rate of the region of the material to be etched into which the impurity ions have been introduced is higher than a removal speed of the region where the impurity ions have not been introduced. This problem can be solved by configuring the method to include a step of flattening the surface of the material to be etched by removing the material under the following conditions.
本発明では、凹部を有する被エツチング材に対して、不
純物イオンを該凹部の底部以外の部分よりも該凹部の底
部には注入され難くなるような角度で照射を行うので、
前記被エツチング層の凹部底部以外の部分には積極的に
不純物が導入されるのに対して、凹部底部においては凸
部で遮蔽されるため不純物が凸部や凹部側面部に比べて
あまり導入されない。従って、エツチング除去を行うと
不純物が多く導入された凸部及び凹部側面部は不純物が
比較的導入されなかった凹部底部に比べてエツチングが
はやく進むため、このエツチングレートの差を利用して
凸部及び凹部側面部を選択的に除去でき平坦性の良い眉
間絶縁層を形成できる。In the present invention, impurity ions are irradiated to a material to be etched having a recess at an angle such that it is more difficult to implant the impurity ions into the bottom of the recess than in other parts.
While impurities are actively introduced into the etched layer other than the bottom of the recess, the bottom of the recess is shielded by the convex part, so impurities are not introduced as much as in the convex part or the sides of the recess. . Therefore, when etching is performed, the protrusions and the side surfaces of the recesses into which a large amount of impurities have been introduced will be etched more quickly than the bottoms of the recesses where relatively little impurities have been introduced. Also, the side surfaces of the recess can be selectively removed, and a glabellar insulating layer with good flatness can be formed.
また、イオン注入による不純物分布が最終的なエツチン
グ形状を決定するのでイオン注入における注入不純籾種
、注入エネルギー、注入DO3E量、注入角度を任意に
選ぶことによって、層間絶縁層の材料が変わっても、ま
た凹部の幅や深さが変わってもそれに応じた適切な上記
イオン注入条件を設定できる。従って、操作性の高い平
坦化処理が行なえる。また、本発明は従来のように平坦
化のための5OGI布やエッチハックを行う必要がない
ので従来よりも容易に平坦化を実現できる。そして、5
oc4布やエッチバックを行わずにすむので、表面のコ
ンタミネーションも従来に比べて押さえることができる
。よって、本発明は半導体装置の高集積微細化に伴い凹
部が微細化されまた凹凸段差部が増加しても有効である
。In addition, since the impurity distribution caused by ion implantation determines the final etched shape, by arbitrarily selecting the impurity type, implantation energy, implantation DO3E amount, and implantation angle during ion implantation, it is possible to change the material of the interlayer insulating layer. Furthermore, even if the width or depth of the recess changes, the above-mentioned ion implantation conditions can be set appropriately. Therefore, the flattening process can be performed with high operability. Further, the present invention does not require 5OGI cloth or etch hacking for flattening as in the conventional method, so that flattening can be realized more easily than in the conventional method. And 5
Since there is no need for OC4 cloth or etchback, surface contamination can be reduced compared to conventional methods. Therefore, the present invention is effective even when the concave portions become finer and the uneven step portions increase as semiconductor devices become more highly integrated and finer.
次に、第1図、本発明の詳細な説明するための要部工程
断面図を用いて、本発明の詳細な説明する。尚、以下の
実施例では、被エツチング層として眉間絶縁膜を選んだ
。しかし、被エツチング層としては絶縁膜に限らず金属
や半導体でも可能である。では、実施例の説明に入る。Next, the present invention will be explained in detail with reference to FIG. 1, which is a sectional view of the main steps for explaining the present invention in detail. In the following examples, the glabellar insulating film was selected as the layer to be etched. However, the layer to be etched is not limited to an insulating film, but may also be a metal or a semiconductor. Now, an explanation of the embodiment will be given.
第1図(a)参照。See Figure 1(a).
図中、第2図で示したものと同一のものは同一の記号で
示しである。従来技術で眉間絶縁層4までを形成すると
IOA、IOB、IOCに示されるような段差部が生じ
る。この表面にリンイオン(Po)をDO3E量1.3
x 1015cfi−2、加速電圧360keV、注
入角θ(図示)=40’の注入条件でウェハーを90°
ずっ回転させて凹部底部には注入されないように4方向
から打ち込む。In the figure, the same parts as those shown in FIG. 2 are indicated by the same symbols. When forming up to the glabella insulating layer 4 using the conventional technique, step portions as shown by IOA, IOB, and IOC occur. Phosphorus ions (Po) are added to this surface in an amount of DO3E of 1.3
The wafer was placed at 90° under the implantation conditions of x 1015cfi-2, acceleration voltage 360keV, and implantation angle θ (shown) = 40'.
Rotate all the way and drive from 4 directions so as not to inject into the bottom of the recess.
尚、注入不純籾種はリンの他にヒ素(As)やホウ素(
B)でもよい。また、凹部に注入されないようにすれば
4方向でなくともよい。但し、4方向のように方向を増
やせば1方向からイオン注入するよりも凹部側面部全体
に注入されるのでよりよい平坦化が望める。In addition to phosphorus, the injected impure rice seeds also contain arsenic (As) and boron (
B) is also acceptable. Further, as long as the injection is prevented from being injected into the recessed portion, it is not necessary to use the directions in four directions. However, if the number of directions is increased, such as four directions, better planarization can be expected since ions can be implanted into the entire side surface of the recess than if ions are implanted from one direction.
第1図(b)参照。See Figure 1(b).
このように、イオン注入を施した後の不純物分布は第1
図(b)のようになる。図を見てもわかるとおり層間絶
縁層の凸部及び凹部材側面部は不純物のドープ量が多い
のに対してIOA、IOB。In this way, the impurity distribution after ion implantation is
The result will be as shown in figure (b). As can be seen from the figure, the convex portion of the interlayer insulating layer and the side surface portion of the concave member have a large amount of impurity doping, whereas IOA and IOB.
IOC直下の凹部底部は凸部によるシャドウィング効果
のため比較的不純物ドープ量が少ない。このように、斜
め方向からイオン注入することによってシャドウィング
効果を利用して眉間絶縁層4の凸部や凹部側面部に注入
することが可能になる。The bottom of the recess directly below the IOC has a relatively small amount of impurity doping due to the shadowing effect caused by the projection. In this manner, by performing ion implantation from an oblique direction, it becomes possible to implant the ions into the convex portions and the side surfaces of the concave portions of the glabella insulating layer 4 by utilizing the shadowing effect.
ここで、たとえ凹部に少量不純物イオンが注入されてし
まったとしても凸部や凹部側面部との注入量に大きな差
があるので、充分に凸部や凸部側面部材を選択的にエツ
チングできる。Here, even if a small amount of impurity ions are implanted into the concave portion, there is a large difference in the amount of implantation from the convex portions and the side surfaces of the concave portions, so that the convex portions and side surfaces of the convex portions can be sufficiently selectively etched.
第1図(c)参照。See Figure 1(c).
次に例えば、N Ha OH/ H202溶液を用いて
等方性のウェットエツチングを500分行うと、不純物
のドープ量の多い凸部及び凹部側面部が不純物のドープ
量の少ない凹部底部に比べて早くエツチングが進むため
選択的に除去される。尚、ウェットエツチングの際には
フッ酸を用いてもよく、この場合上記NHa OH/H
20□に比べてエツチングスピードが速いので6分程度
のエンチングですむ。このとき、凸部と凹部のエツチン
グレート比は1分間当たり1200/300になり凸部
及び凹部側面部が選択的に除去される。このエツチング
によって眉間絶縁層4の表面は平坦化される。Next, for example, if isotropic wet etching is performed for 500 minutes using a N Ha OH/H202 solution, the convex portions and side surfaces of the recesses, which are doped with a large amount of impurities, will be etched more quickly than the bottom portions of the recesses, which are doped with a lower amount of impurities. As etching progresses, it is selectively removed. Note that hydrofluoric acid may be used during wet etching, in which case the above NHa OH/H
The etching speed is faster than 20□, so it only takes about 6 minutes. At this time, the etching rate ratio of the convex portions and the concave portions is 1200/300 per minute, and the convex portions and the side surfaces of the concave portions are selectively removed. This etching flattens the surface of the glabellar insulating layer 4.
第1図(d)参照。See Figure 1(d).
このように平坦化された眉間絶縁層4の上にアルミニウ
ムからなる第2の配線層5を形成する。A second wiring layer 5 made of aluminum is formed on the glabellar insulating layer 4 flattened in this way.
下地の眉間絶縁層4が平坦化されたので従来第2配線層
5の段差部10A、IOB、IOCで生じていたステッ
プカバレッジの悪い部分(第2図の11)がなくなり断
線を防止できる。以上の工程を経て、多層配線構造をも
つ半導体装置が完成する。Since the underlying glabellar insulating layer 4 is flattened, the portions (11 in FIG. 2) with poor step coverage that conventionally occurred in the step portions 10A, IOB, and IOC of the second wiring layer 5 are eliminated, and disconnection can be prevented. Through the above steps, a semiconductor device having a multilayer wiring structure is completed.
〔他の実施例の説明]
上述の実施例ではイオン注入条件を注入不純動程リンイ
オン(Pl、注入角度θ=40°で行っているが、この
条件で1回目のイオン注入を行った後、2回目に注入不
純物種ヒ素イオン(As゛)、注入角度θ=30°の注
入条件でイオン注入を行ってもよい。このように複数回
イオン注入を行うことも可能である。例えば1回目のイ
オン注入で所望の平坦性が得られなかった場合、注入角
θを下げて2回目のイオン注入を行うことにより、1回
目のイオン注入で不純物が導入されに(かった段差部1
0A、IOB、10Cの底部エツジ部にも不純物が導入
され、この後エツチング処理を施せば、さらに平坦性の
良い下地が期待できる。1回目のイオン注入では厚さ方
向に5000人程度打ち込まれるが、凸部が凹部側面部
より多く注入されやすいので、もし仮に凹部側面部の注
入量が不足していた場合は注入角度を落とせば凹部側面
部の注入量を増やせるので、よりよい平坦化が望める。[Description of other embodiments] In the above-mentioned embodiments, the ion implantation conditions were implanted impurity phosphorus ions (Pl, implantation angle θ = 40°). After performing the first ion implantation under these conditions, Ion implantation may be performed in the second implantation using arsenic ions (As) as the impurity species and implantation angle θ = 30°.It is also possible to perform ion implantation multiple times in this way.For example, in the first If the desired flatness cannot be obtained by ion implantation, by lowering the implantation angle θ and performing a second ion implantation, it is possible to eliminate the impurities introduced in the first ion implantation.
Impurities are also introduced into the bottom edge portions of 0A, IOB, and 10C, and if an etching process is performed after this, a base with even better flatness can be expected. In the first implantation, about 5,000 ions are implanted in the thickness direction, but it is easier to implant more ions into the convex part than on the side parts of the recessed part, so if the amount of ion implanted on the side part of the recessed part is insufficient, you can reduce the implantation angle. Since the amount of implantation into the side surfaces of the recess can be increased, better planarization can be expected.
また、注入不純動程を変えれば、眉間絶縁層4の深さ方
向の不純物分布を変えることができるので、平坦化する
際の操作性を上げることができる。尚、2回目のイオン
注入時のDO3E量、加速電圧を任意に選ぶことにより
、さらに制御性よ(平坦化を行うことができる。Further, by changing the implanted impurity movement, the impurity distribution in the depth direction of the glabellar insulating layer 4 can be changed, so that operability during planarization can be improved. Further controllability (flattening) can be achieved by arbitrarily selecting the DO3E amount and accelerating voltage during the second ion implantation.
以上説明したように、本発明によれば下地の形状を受は
継いだ凹部を有する被エツチング層の凸部及び凹部側面
部を操作性良く選択的にエツチング除去できるので被エ
ツチング層を従来よりさらに平坦化できる。従って、そ
の上に形成される層の断面積が小さくなったとしても、
断線の心配がない。従って、本発明は半導体装置の信転
性の向上に寄与するところが大きい。また、従来のよう
なSOG塗布やエッチバックを用いなくても平坦化を実
現できるので、半導体装置の製造プロセスの簡略化にも
寄与する。As explained above, according to the present invention, it is possible to selectively remove the convex portions and the side surfaces of the concave portions of the layer to be etched, which have concave portions that follow the shape of the underlying layer, with good operability. It can be flattened. Therefore, even if the cross-sectional area of the layer formed on it becomes smaller,
There is no need to worry about disconnection. Therefore, the present invention greatly contributes to improving the reliability of semiconductor devices. Further, since planarization can be achieved without using conventional SOG coating or etchback, it also contributes to simplifying the manufacturing process of semiconductor devices.
第1図は本発明の一実施例を説明するための半導体装置
の要部工程断面図、第2図は従来技術を説明するための
半導体装置の要部断面図である。
図中、
0A
0B
に半導体基板
2:絶縁膜
3:第1電極・配線層
4:眉間絶縁層
5:第2電極・配線層
10C:段差部
11ニステツプカバレツジの
悪い部分
θ:イオン注入角度
1緊音is :1l−1fL IIQ面 図郭1 図(
τ01)
竿@P1才狛賄面図
第
図(t
の2)
第
?
図FIG. 1 is a cross-sectional view of a main part of a semiconductor device to explain an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a main part of a semiconductor device to explain a conventional technique. In the figure, 0A 0B indicate semiconductor substrate 2: insulating film 3: first electrode/wiring layer 4: glabella insulating layer 5: second electrode/wiring layer 10C: stepped portion 11. Poor step coverage θ: ion implantation angle 1st sound is: 1l-1fL IIQ side Figure 1 Figure (
τ01) Rod @P1 Saikomamenzu figure (t 2) No. ? figure
Claims (1)
イオンを該凹部の底部以外の部分よりも該凹部の底部に
は注入され難くなるような角度で照射して、前記凹部底
部以外の部分に選択的に不純物を導入する工程と、 前記被エッチング材の前記不純物イオンが導入された領
域の除去速度が前記不純物イオンが導入されなかった領
域の除去速度に比し大なる条件で除去することによって
前記被エッチング材の表面を平坦化する工程とを有する
ことを特徴とする半導体装置の製造方法。[Claims] A material to be etched having a recessed portion on its surface is irradiated with impurity ions at an angle such that impurity ions are more difficult to be implanted into the bottom of the recessed portion than in a portion other than the bottom of the recessed portion, and the etched material is etched into the recessed portion. a step of selectively introducing impurities into a portion other than the bottom; and a condition that the removal rate of the region of the material to be etched into which the impurity ions are introduced is higher than the removal speed of the region where the impurity ions are not introduced. A method for manufacturing a semiconductor device, comprising the step of flattening the surface of the material to be etched by removing the material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33044689A JPH03190233A (en) | 1989-12-20 | 1989-12-20 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33044689A JPH03190233A (en) | 1989-12-20 | 1989-12-20 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03190233A true JPH03190233A (en) | 1991-08-20 |
Family
ID=18232708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33044689A Pending JPH03190233A (en) | 1989-12-20 | 1989-12-20 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03190233A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4002431A1 (en) * | 2020-11-19 | 2022-05-25 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Method for planarizing a semiconductor substrate |
-
1989
- 1989-12-20 JP JP33044689A patent/JPH03190233A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4002431A1 (en) * | 2020-11-19 | 2022-05-25 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Method for planarizing a semiconductor substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5945724A (en) | Trench isolation region for semiconductor device | |
EP0154573A2 (en) | Semiconductor planarization process and structures made thereby | |
KR19990029308A (en) | Process for restoring a wafer identified as defective on the line so that it can be used as new | |
JPH03291921A (en) | Manufacture of ic | |
JP2000082682A (en) | Fabrication of semiconductor-insulation layer and element having it | |
JPS6113642A (en) | Method of forming separate region of semiconductor substrate | |
JPH0722145B2 (en) | Method for manufacturing semiconductor device | |
US4708767A (en) | Method for providing a semiconductor device with planarized contacts | |
KR960005046B1 (en) | Semiconductor integrated circuit and the manufacturing process | |
JPH04229625A (en) | Manufacture of semiconductor device | |
WO1993001617A1 (en) | Method for the manufacture of a semiconductor component | |
JPH08250713A (en) | Insulated-gate field-effect transistor and manufacture thereof | |
JP3039978B2 (en) | Method of forming an electric field isolation structure and a gate structure in an integrated MISFET device | |
JPH03190233A (en) | Manufacture of semiconductor device | |
JP4465760B2 (en) | Method for manufacturing vertical semiconductor device | |
US5851901A (en) | Method of manufacturing an isolation region of a semiconductor device with advanced planarization | |
JPH02143527A (en) | Wiring formation | |
JPH0750702B2 (en) | Method of forming an insulator on a patterned conductive layer | |
JPH04209534A (en) | Manufacture of semiconductor device | |
JPH0642510B2 (en) | Method of forming a semiconductor structure | |
JPS6249643A (en) | Semiconductor device and its manufacture | |
KR0156143B1 (en) | Planerizing method of semiconductor device | |
KR19990003056A (en) | Device Separation Method of Semiconductor Device | |
JPH06124944A (en) | Semiconductor device | |
JPH0456222A (en) | Manufacture of semiconductor device |