JPH03190004A - Plane light source device - Google Patents

Plane light source device

Info

Publication number
JPH03190004A
JPH03190004A JP1328230A JP32823089A JPH03190004A JP H03190004 A JPH03190004 A JP H03190004A JP 1328230 A JP1328230 A JP 1328230A JP 32823089 A JP32823089 A JP 32823089A JP H03190004 A JPH03190004 A JP H03190004A
Authority
JP
Japan
Prior art keywords
light
layer
diffusion
light source
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1328230A
Other languages
Japanese (ja)
Inventor
Yoshiaki Fujimori
義昭 藤森
Tsutomu Suzuki
勤 鈴木
Masato Takahashi
正人 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP1328230A priority Critical patent/JPH03190004A/en
Publication of JPH03190004A publication Critical patent/JPH03190004A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To thin a device by providing diffusing patterns, where the diffusion/ scattering becomes larger as a distance from a light source becomes larger, on at least either of the reflecting layer side of a transparent photoconductive layer and the transparent photoconductive layer side of the reflecting layer. CONSTITUTION:A light diffusing layer 1 is disposed all over the surface between tubular light sources 5, 5. Under the light diffusing layer 1, a transparent photoconductive layer 2 and a reflecting layer 4 are superposed in order. Acryl resin or polyester resin is used as the light diffusing layer 1 for the purpose of uniformly diffusing light emitted from the transparent photoconductive layer 2 over the whole surface. Grid-like diffusing/scattering patterns are screen-printed on one surface of the reflecting layer side of the acryl resin plate in such a manner that the area of a grid-like square becomes larger at every pitch proceding from the light receiving surface toward the center of the photoconductive layer, to be used for the transparent photoconductive layer 2. Therefore, the disposition of the diffusing/scattering patterns can be varied density, or a quantity of the light permeating in the direction of a visual field can be controlled. Consequently, the transparent photoconductive layer thinner than a conventional one can provide a plane luminance equal to or more than that of the conventional one as well as uniformity of the plane luminance, and additionally, a device can be formed thinly.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、照明などに用いられる面状光源装置、特に点
状光源又は線状光源からの光を受けて比較的広い面積に
わたって均一に照明を行うための面状光源として利用さ
れる照明装置例えば、広告等の表示照明パネルや透過型
液晶表示装置の裏面照明として用いられる面状光源装置
に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a planar light source device used for illumination, etc., and in particular, to uniformly illuminating a relatively wide area by receiving light from a point light source or a linear light source. The present invention relates to a lighting device that is used as a planar light source to perform a display, for example, a planar light source device that is used as a display lighting panel for advertisements or the backside illumination of a transmissive liquid crystal display device.

〔従来の技術〕[Conventional technology]

従来、室内照明灯、夜間屋外の広告用看板等に蛍光灯を
用いる場合、蛍光灯と数本並列してその上に乳半板等の
光拡散性の板状物体を配置することによって線光源から
の出射光を擬似的な面光源に変換して用いることが一般
的に行われているが、この従来法では蛍光灯の全周的に
均一な光源束をそのままある位置で強引に平面的に取り
出すことになるため、光拡散板を配置する平面部分での
輝度分布は時として見苦しい不均一が生じ、これが視覚
的には蛍光灯の輪郭等となって照明具としての美観を損
ねる一因となるため、光拡散板と蛍光trとはかなりの
距離をおいて配置しなければならず、省スペース等の観
点から問題となる。
Conventionally, when fluorescent lamps are used for indoor lighting, advertising billboards outdoors at night, etc., a linear light source is created by placing a light-diffusing plate-like object such as a breast plate in parallel with several fluorescent lamps and above them. It is common practice to convert the light emitted from a fluorescent lamp into a pseudo surface light source, but in this conventional method, the light source flux that is uniform all around the fluorescent lamp is forcibly converted into a flat light source at a certain position. As a result, the brightness distribution on the flat area where the light diffusion plate is placed sometimes becomes unsightly and uneven, which visually becomes the outline of the fluorescent lamp, which is one reason why it spoils the aesthetic appearance of the lighting device. Therefore, the light diffusing plate and the fluorescent light transducer must be placed at a considerable distance, which poses a problem from the viewpoint of space saving.

また、最近液晶ブレビや携帯用パーソナルコンピュータ
あるいは液晶デイスプレィの背面照明用に比較的小型で
かつ均一な輝度分布を有する面状光源の要求が高まって
いる。
In addition, recently there has been an increasing demand for a relatively small planar light source having a uniform luminance distribution for use in back lighting of liquid crystal cameras, portable personal computers, or liquid crystal displays.

これに対しては、現在のところEL(エレクトロルミネ
センス)や直下に蛍光灯を配置して遮光用フィルタ等で
輝度分布を調整した直下型バックライトが既に存在する
が、耐久性に乏しく拡散照明を十分満足しうるちのとは
ならないため、−枚の透明導光板を用いてその側縁より
光を導き、これによって面を拡散照明しようとする提案
が、例えば特開昭51−88042号公報等によって既
になされ、一部で実用化されている。
To deal with this, there are currently EL (electroluminescence) and direct type backlights in which a fluorescent lamp is placed directly below and the brightness distribution is adjusted using a light-shielding filter, etc., but they are not durable and are used as diffused lighting. Since it is not possible to obtain a transparent light that fully satisfies the above, there have been proposals to use two transparent light guide plates to guide light from their side edges, thereby providing diffused illumination of the surface. This has already been done and put into practical use in some areas.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、従来での一枚の透明導光板を用いる場合、そ
れ自体では光拡散率が低く輝度が低いため、裏面にヘア
ライン状の粗面を設けたり、多数の導光板を積層するこ
とにより効率良(光を散乱若しくは導光させ輝度を上げ
る必要があり、または発光面内の輝度分布をできるだけ
均一にするために調光部材を設ける必要がある。
However, when using a single transparent light guide plate in the past, it has a low light diffusion rate and low brightness, so it is possible to improve efficiency by providing a hairline-like rough surface on the back side or stacking a large number of light guide plates. (It is necessary to increase the brightness by scattering or guiding light, or it is necessary to provide a light control member to make the brightness distribution within the light emitting surface as uniform as possible.

しかし、これら改善方法にも限界があって煩雑な加工の
割りには満足できるものではなく、面状光源装置として
要求される面輝度を達成するには透明導光層の厚みを相
当厚くする必要が生じて装置の小型軽量化要求に対して
対応できないで、問題となっている。
However, these improvement methods have limitations and are not satisfactory considering the complicated processing involved, and it is necessary to increase the thickness of the transparent light guiding layer considerably in order to achieve the surface brightness required for a planar light source device. This has caused problems as it has not been possible to meet the demand for smaller and lighter equipment.

本発明は、これら従来の問題点を解消しようとするもの
で、極めて厚みの薄い透明性導光層において従来と同等
以上の輝度が得られ、装置の小型化、軽量化が図れる面
状光源装置を構成簡単で製作容易かつ安価な形態で提供
することを目的とするものである。
The present invention aims to solve these conventional problems, and is a planar light source device that can obtain brightness equal to or higher than conventional ones with an extremely thin transparent light guiding layer, and can reduce the size and weight of the device. The purpose is to provide a simple structure, easy to manufacture, and inexpensive form.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、視野方向より、光拡散層と、少なくとも一端
縁を光の入射面となした透明性導光層と、反射層とを順
次積層し、前記透明性導光層の少なくとも一端縁に光源
と光源用反射層を設置し、前記透明性導光層の反射層側
若しくは反射層の透明性導光層側の少なくとも一方に、
或いは反射層と透明性導光層の間に、前記光源からの距
離が大となるにつれて拡散・散乱が大となる拡散模様を
備えたことを特徴とする面状光源装置である。
In the present invention, a light-diffusing layer, a transparent light-guiding layer having at least one edge serving as a light incident surface, and a reflective layer are sequentially laminated from the viewing direction, and at least one edge of the transparent light-guiding layer is laminated. A light source and a reflective layer for the light source are installed on at least one of the reflective layer side of the transparent light guide layer or the transparent light guide layer side of the reflective layer,
Alternatively, the planar light source device is characterized in that a diffusion pattern is provided between the reflective layer and the transparent light guide layer, in which diffusion and scattering increase as the distance from the light source increases.

〔作 用〕[For production]

本発明の面状光源装置では、光の反射拡散効率を上げ、
面輝度を向上させるために透明性導光層の反射層側若し
くは反射層の透明性導光層側の少なくとも一方に、或い
は反射層と透明性導光層の間に、前記光源からの距離が
大となるにつれて拡散・散乱が大となる拡散模様を備え
ているので、光入射面から透明性導光板に入射した光は
、前記透明性導光層と反射層もしくは光拡散層との間に
存在する導光層よりも屈折率の小さい空気や接着剤層ま
たは他の透明性部材のために、その入射角により透過も
しくは全反射を繰り返しつつ導光層内を進み、前記拡散
・散乱模様を設けた部分で散乱し、進行方向を変えられ
、視野方向に透過するようになり、かつ拡散・散乱模様
は光源からの距離が大となるにつれてその配置を密に変
化させたり、或いは拡散・散乱模様自体の拡散散乱率を
変化させであるために拡散・散乱が大となって視野方向
への透過光量が制御され、結果として比較的薄い導光層
にて輝度の高(、かつ均一な輝度分布を有する面状光源
を得ることができる。
In the planar light source device of the present invention, the reflection and diffusion efficiency of light is increased,
In order to improve surface brightness, a distance from the light source is provided on at least one of the reflective layer side of the transparent light guide layer, the transparent light guide layer side of the reflective layer, or between the reflective layer and the transparent light guide layer. Since it has a diffusion pattern in which the diffusion and scattering increases as the size increases, the light incident on the transparent light guide plate from the light incident surface is transmitted between the transparent light guide layer and the reflective layer or the light diffusion layer. Due to air, an adhesive layer, or other transparent material having a refractive index lower than that of the existing light guide layer, the light propagates through the light guide layer while repeating transmission or total reflection depending on the incident angle, and creates the above-mentioned diffusion/scattering pattern. It is scattered at the provided part, the direction of travel can be changed, and it is transmitted in the viewing direction, and the diffused/scattering pattern changes its arrangement densely as the distance from the light source increases, or the diffused/scattering pattern changes densely as the distance from the light source increases. Because the pattern itself changes the diffusion and scattering rate, the diffusion and scattering becomes large and the amount of transmitted light in the viewing direction is controlled, resulting in high brightness (and uniform brightness) with a relatively thin light guiding layer. A planar light source with a distribution can be obtained.

〔実施例〕〔Example〕

本発明の実施例を第1〜3図例について説明すると、光
拡散層1が管状光源5.5間全面にわたって備えられ、
その下層に透明性導光rgj2及び反射層4が順次積層
されている。
Embodiments of the present invention will be described with reference to FIGS. 1 to 3. A light diffusing layer 1 is provided over the entire surface between the tubular light sources 5.5,
A transparent light guiding rgj 2 and a reflective layer 4 are sequentially laminated under the layer.

この光拡散層lとしては、前記透明性導光層2より出射
する光を更に面全体に均一に拡散させ、また液晶等の裏
面照明として白色面光源を要求されることから一般には
アクリル樹脂、ポリエステル樹脂もしくはポリカーボネ
ート樹脂に適宜の光拡散剤を含存した乳白色のシートも
しくはプレートが用いられる。この場合、含有される光
拡散剤の種類と量によっては、拡散効果が低下したり、
また透過率が小さく結果的に面輝度を低下させることに
なるので装置の要求特性に適したものを選択することが
望ましい。
The light diffusion layer 1 is generally made of acrylic resin, because it further uniformly diffuses the light emitted from the transparent light guide layer 2 over the entire surface, and because a white surface light source is required for backside illumination of liquid crystals, etc. A milky white sheet or plate made of polyester resin or polycarbonate resin containing an appropriate light diffusing agent is used. In this case, depending on the type and amount of the light diffusing agent contained, the diffusion effect may decrease or
Furthermore, since the transmittance is low and the surface brightness is reduced as a result, it is desirable to select a material suitable for the required characteristics of the device.

透明性導光層2としは、例えば260 X 17.Ox
3m5(厚さ)もしくは4ミリのアクリル樹脂板(アク
リライト(商品名)、三菱レイヨン■製)の反射層側の
片面に第3図に示すような格子目状の拡散・散乱模様を
受光面から導光層の中央に進むにつれ格子状の正方形の
面積がピンチ毎に大きくなっていく様にスクリーン印刷
の手法を用いて形成したものを使用した。
The transparent light guide layer 2 has a size of, for example, 260×17. Ox
On one side of the reflective layer side of a 3m5 (thickness) or 4mm acrylic resin plate (Acrylite (product name), manufactured by Mitsubishi Rayon ■), a lattice-like diffusion/scattering pattern as shown in Figure 3 is placed on the light-receiving surface. A screen printing method was used to form a grid-like square in which the area of the grid-like squares increased with each pinch as the light guide layer progressed from the center to the center of the light guide layer.

この場合は、拡散・散乱模様の各ピッチ毎の面積は、光
の透過量が距離に反比例することから対数式を考慮し、
種々の試験結果より、受光面からの距離をχとし、拡散
・散乱模様の縦・横方向のピンチを0.5龍とした場合
に(a + b l nχ)2の式を用いることで、全
体的に均一で高い輝度を得られる事が判明した。尚、面
積が変化するのは光源に対して垂直な方向のみであり、
平行方向では一定である。
In this case, the area for each pitch of the diffusion/scattering pattern is calculated using a logarithmic formula, since the amount of light transmitted is inversely proportional to the distance.
From various test results, by using the formula (a + b l nχ)2, where the distance from the light receiving surface is χ and the vertical and horizontal pinch of the diffused/scattering pattern is 0.5 yen, It was found that uniform and high brightness could be obtained overall. Note that the area changes only in the direction perpendicular to the light source,
It is constant in the parallel direction.

ピッチは0.51より大きくても小さくても良いが、ピ
ンチをPとした場合、拡散・散乱模様のIする必要があ
る。又、タテとヨコでピッチa、  bを変更しても良
いが、ピッチが0.5IIImの場合の(a + b 
1 nχ)2の式に当てはまる様に面積を調整するべき
である0本実施例ではピンチ−1+u+a −0,18
4、b ” 0.077とし、第1図に示す様に光源を
両側に2本使用したため、前記アクリル板の170m+
a方向の中心、すなわち端部(受光面)から85mmの
位置で面積が最大となる様に拡散・散乱模様3を形成し
た。
The pitch may be larger or smaller than 0.51, but when the pinch is P, it is necessary to have a diffused/scattering pattern. Also, pitches a and b may be changed vertically and horizontally, but when the pitch is 0.5IIIm, (a + b
The area should be adjusted to fit the formula of 1 nχ)2.0 In this example, pinch -1+u+a -0,18
4.b” 0.077, and two light sources were used on both sides as shown in Figure 1, so the length of the acrylic board was 170m+
The diffusion/scattering pattern 3 was formed so that the area was maximized at the center in the direction a, that is, at a position 85 mm from the end (light receiving surface).

また(a+b1nx)”の式においてa値を0.05I
III11より小さくすると、全体にわたり、拡散・散
乱模様が小さくなるため表1に示す通り十分な輝度が得
られなかった。また、0.5mmより大きくすると、受
光部近辺での拡散・散乱模様が大きくなりすぎるため、
必要以上の光量が受光部近辺で視野方向に通過してしま
い、結果的に均一な輝度分布が得られなかった。
In addition, in the formula “(a+b1nx)”, the a value is 0.05I
If the value is smaller than III11, the diffusion/scattering pattern becomes smaller over the entire area, so as shown in Table 1, sufficient brightness could not be obtained. Also, if it is larger than 0.5 mm, the diffusion/scattering pattern near the light receiving part will become too large.
A larger amount of light than necessary passed in the viewing direction near the light receiving section, and as a result, a uniform brightness distribution could not be obtained.

また、(a+blnZ)”のb値を0.1より大きくす
ると、受光部近辺の面積が急激に変化するため、光量が
制御しきれず均一な輝度分布が得られなかった。よって
、a、b値はそれぞれ0.05≦a≦0.5.0≦b≦
0.1の範囲が良い、また、ピッチは0.1 anより
小さくすると、拡散・散乱模様3.3間に存在する透明
部が小さくなりすぎるため、反射層と透明導光層の間で
の全反射や反射による導光効率が低下し、結果として全
体の輝度が低下してしまう。またピッチを2mmより大
きくすると、拡散・散乱模様の数が減るため、均一な輝
度分布を得るための調光効果が不十分となり、輝度ムラ
の不具合が発生した。よってピッチは0.1〜2.01
の範囲が良い。
Furthermore, when the b value of (a+blnZ)'' was larger than 0.1, the area near the light receiving part changed rapidly, making it impossible to control the light amount and achieving a uniform brightness distribution.Thus, the a and b values are 0.05≦a≦0.5.0≦b≦, respectively.
A range of 0.1 is good. Also, if the pitch is smaller than 0.1 an, the transparent part existing between the diffusion/scattering pattern 3.3 will become too small, so the pitch between the reflective layer and the transparent light guiding layer will Light guiding efficiency decreases due to total internal reflection and reflection, resulting in a decrease in overall brightness. Moreover, when the pitch was made larger than 2 mm, the number of diffusion/scattering patterns decreased, so that the dimming effect for obtaining a uniform brightness distribution became insufficient, resulting in the problem of uneven brightness. Therefore, the pitch is 0.1 to 2.01
Good range.

なお透明性導光層2としては、ガラスやエポキシ樹脂、
シリコン樹脂等の熱硬化性樹脂、アクリル樹脂、ポリカ
ーボネート樹脂、ポリプロピレン、ポリスチレン、ポリ
エチレン等の熱可塑性樹脂など問わないが、透過率や加
工性、耐熱性の点からアクリル樹脂やポリカーボネイト
樹脂やポリスチレン樹脂或いはシリコンゴムあるいは、
これらのポリマーアロイなどが望ましい。
Note that the transparent light guide layer 2 may be made of glass, epoxy resin,
Thermosetting resins such as silicone resins, acrylic resins, polycarbonate resins, thermoplastic resins such as polypropylene, polystyrene, polyethylene, etc. are acceptable, but from the viewpoint of transmittance, processability, and heat resistance, acrylic resins, polycarbonate resins, polystyrene resins, silicone rubber or
These polymer alloys are desirable.

以下余白 21 また、透明性導光112もしくは反射N4への拡散・散
乱模様の付与はどのような方法でも良く、スクリーン印
刷、グラビア印刷、タンポ印刷、オフセント印刷等の印
刷手法の他にマスキングしてのブラスト加工や、エツチ
ング機械加工による切削された拡散・散乱部を設けても
良い。
Margin below 21 Furthermore, any method may be used to impart a diffusion/scattering pattern to the transparent light guide 112 or the reflective N4, and in addition to printing methods such as screen printing, gravure printing, pad printing, and offset printing, masking may be used. The diffusion/scattering portion may be cut by blasting or etching machining.

また、印刷で用いるインクは拡散・散乱反射の効果があ
ればどの襟なものでもよく、本実施例で(商品名)を用
いたが、アクリル系のメジュームにエアロジル(Si(
h)を一定量混入し、拡散効果を与えたものや、これに
TiO□を加え反射効果を付与したものでもよい。また
インクの塗り厚は選定したインクで十分に拡散・散乱反
射の効果が得られれば特に限定なく、本実施例では10
μm以上が良い。
In addition, the ink used for printing may be any type of ink as long as it has a diffused/scattering reflection effect, and (trade name) was used in this example, but acrylic medium and Aerosil (Si(
h) may be mixed in a certain amount to give a diffusion effect, or TiO□ may be added thereto to give a reflection effect. Furthermore, the coating thickness of the ink is not particularly limited as long as the selected ink provides sufficient diffuse and scattering reflection effects, and in this example, it is 10
μm or more is better.

さらに前記反射層4としては、例えばアルミニウムの蒸
着シートや拡散剤を含有したPET、アクリルやABS
等の合成樹脂板でも良いが、本実施例はPET基材上に
銀を蒸着、更にトップコート処理を行った「テトライト
」(商品名、東京尾池産業■製)を用いた。
Furthermore, the reflective layer 4 may be made of, for example, an aluminum vapor-deposited sheet, PET containing a diffusing agent, acrylic, or ABS.
Although a synthetic resin plate such as ``Tetrite'' (trade name, manufactured by Tokyo Oike Sangyo ■), which is a PET base material on which silver is vapor-deposited and then top-coated, was used in this example.

図中5は光源であり、管径φ5.8mm、有効発光長2
40+uw、管電流13 m A %管輝度12.00
0cd / m2の三波長白色冷陰極管(ハリソン電気
■製)2本を透明性導光層の長辺方向に2本対向させて
設置した。6は光源用反射層であり、前記光源5より発
する光のロスは少なくし、かつ透明性導光層3の入射端
面に効率良く光が導かれるよう指向性をもたせるために
設けたもので、前記反射11!i4と同部材を使用した
5 in the figure is a light source, which has a tube diameter of φ5.8 mm and an effective light emission length of 2.
40+uw, tube current 13 mA % tube brightness 12.00
Two 0 cd/m 2 three-wavelength white cold cathode tubes (manufactured by Harrison Electric) were placed opposite each other in the long side direction of the transparent light guiding layer. 6 is a reflective layer for the light source, which is provided to reduce the loss of light emitted from the light source 5 and to provide directionality so that the light is efficiently guided to the incident end surface of the transparent light guide layer 3; Said reflection 11! The same parts as i4 were used.

なお各層は積層状態で照光面の外周を接着剤として両面
粘着テープ、接着剤又は溶着若しくは型枠その他のフレ
ームに嵌装などの固着手段で構成すると共に、また光ロ
スを少なくするため光源5を設置していない端辺部には
反射層4と同様の反射シート(図示せず)を貼付けるの
がよく、いずれにしても各部を一括固着又は−括組み込
み構成として用いるのがよい。
Each layer is laminated and the outer periphery of the illumination surface is made of adhesive such as double-sided adhesive tape, adhesive, welding, or fitting into a formwork or other frame, and the light source 5 is attached to reduce light loss. It is preferable to affix a reflective sheet (not shown) similar to the reflective layer 4 to the uninstalled edge portions, and in any case, it is preferable to use a configuration in which each part is fixed together or assembled together.

この実施例による面状光源装置において、電源電圧12
Vにてインバーターを介し光源を点灯させたところ、第
1表の実施例1.2に示すようにアク9114反の4m
mで150cd/+i”、3+m+m厚でも700cd
/m”で有効発光部輝度ムラが10%以下の面状光源が
得られた。
In the planar light source device according to this embodiment, the power supply voltage is 12
When the light source was turned on via an inverter at V, as shown in Example 1.2 of Table 1, 4 m of Aku9114
150cd/+i” for m, 700cd for 3+m+m thickness
/m'', a planar light source with an effective luminance unevenness of 10% or less was obtained.

また、比較例1として透明性導光層2を4m+w厚の平
板(印刷なし)に代えたところ、輝度は150cd/+
m”で有効発光部輝度ムラ30%であり、また、比較例
9として、ピンチ0.5mm、斜面角度456のヘアー
ラインパターンを有する51Im厚のアクリル板を透明
導光層とした場合輝度400cd/m”で有効発光部輝
度ムラ15%となり、本発明の格子状拡散・散乱模様3
の面積を受光部からの距離に応して変化させることによ
り、従来のへアーラインパターンよりも面輝度が上がり
、輝度分布も均一になり、また、より薄い導光層にて従
来以上の輝度を得る事が出来た。
In addition, as Comparative Example 1, when the transparent light guide layer 2 was replaced with a flat plate (without printing) with a thickness of 4 m + w, the brightness was 150 cd/+
In addition, as Comparative Example 9, when a 51 Im thick acrylic plate with a hairline pattern with a pinch of 0.5 mm and a slope angle of 456 was used as a transparent light guiding layer, the luminance was 400 cd/m. ”, the effective light emitting part luminance unevenness is 15%, and the lattice-like diffusion/scattering pattern 3 of the present invention
By changing the area according to the distance from the light-receiving part, the surface brightness is higher than that of the conventional hairline pattern, and the brightness distribution is also more uniform.In addition, the thinner light guiding layer allows for higher brightness than before. I was able to obtain

また、比較例2,3.4,5.6に示す様にa値を0.
05と設定した場合0.5と設定した場合、b値を0.
1と設定した場合、またピッチを0.1 mmと設定し
た場合、2.0go+と設定した場合それぞれについて
、輝度は450,550,550,450゜600cd
/m”で、輝度ムラは10,40,47゜32.28%
であり、拡散・散乱模様による高輝度、均一化の効果は
不十分であった。
Further, as shown in Comparative Examples 2, 3.4, and 5.6, the a value was set to 0.
If set to 05 If set to 0.5, the b value will be set to 0.
When set to 1, when the pitch is set to 0.1 mm, and when set to 2.0go+, the brightness is 450, 550, 550, 450° 600cd, respectively.
/m”, the brightness unevenness is 10, 40, 47°32.28%
Therefore, the effect of high brightness and uniformity due to the diffusion/scattering pattern was insufficient.

なお、拡散・散乱模様3は正方形に限らず、表1に示す
実施例7.8に示す様に丸形、六角形でも良いし、長方
形、網点等の様な形でも良く特に限定はしない。ただし
、(a + b J nχ)2にもとづいて面積を光源
から離れる程に大きくする様にすべきである。第4〜9
図例はそれぞれ拡散・散乱模様3の具体例を示したもの
である。
Incidentally, the diffusion/scattering pattern 3 is not limited to a square shape, but may be a round shape, a hexagonal shape, a rectangular shape, a halftone dot shape, etc. as shown in Example 7.8 shown in Table 1, and is not particularly limited. . However, based on (a + b J nχ)2, the area should be increased as the distance from the light source increases. 4th to 9th
The illustrated examples each show a specific example of the diffusion/scattering pattern 3.

また、ピンチは一定である必要はなく、一定のピッチで
(a + b 1 nχ)8の弐により計算した面積に
もとづいて、拡散・散乱模様が同一の面積比になる様考
慮した上でピンチを変更しても良い。
In addition, the pinch does not need to be constant, and should be done after considering that the diffusion and scattering patterns have the same area ratio based on the area calculated by (a + b 1 nχ) 8 at a constant pitch. may be changed.

また、拡散・散乱模様3は導光層、反射層に直接設ける
方法の他に透明性基材に拡散・散乱模様を付与し、反射
層と導光層の間に設置しても良いが、部材の点数が増え
ることと、それにより先の透過する界面が増える事によ
る光効率のロスがあるため、出来るだけ導光層もしくは
反射層に直接設けるのが好ましい。
Further, in addition to providing the diffusion/scattering pattern 3 directly on the light guide layer and the reflective layer, it is also possible to provide the diffusion/scattering pattern 3 on a transparent base material and place it between the reflective layer and the light guide layer. Since there is a loss in light efficiency due to an increase in the number of members and an increase in the number of interfaces through which the light passes, it is preferable to provide the light directly on the light guiding layer or reflective layer as much as possible.

第8図例に示すように拡散・散乱模様3を円形角形に印
刷した前例とは異なり、これとは逆転印刷パターンとし
たもので円形、角形などの白抜き部分を残して印刷した
ものが用いられる。
Unlike the previous example in which the diffusion/scattering pattern 3 was printed in a circular and square shape as shown in the example in Figure 8, a reverse printing pattern was used, in which white areas such as circles and squares were printed while remaining. It will be done.

また、第9図例に示す様に拡散・散乱模様3の面積は一
定とした上でピッチを変更し、光源から遠い程拡散・散
乱模様3を密に配置し、視野方向への透過光量を制御す
る方法も考えられるこれらの方法を用いた場合も実施例
1.2と同程度の輝度及び均一性が得られた。
In addition, as shown in the example in Fig. 9, the area of the diffusion/scattering pattern 3 is kept constant and the pitch is changed, and the farther from the light source the more densely the diffusion/scattering pattern 3 is arranged to reduce the amount of transmitted light in the viewing direction. Even when these methods, which can also be considered as control methods, were used, the same level of brightness and uniformity as in Example 1.2 was obtained.

更に印刷手法等により、拡散・散乱模様を形成する場合
に用いるインクは拡散・散乱の機能を得るためにTi1
t、ガラスピーズ、SingもしくはA7!やAg等の
金属粉末等が配合され、その配合比や成分により拡散・
散乱の機能が変化する。又、同一のインクでもその塗り
厚により、機能が変化するため、拡散・散乱模様の面積
やピンチ、密度に関係なく、もしくはこれらと併用して
、インク自体の拡散・散乱の機能を塗り厚や成分を変え
る事で制御し、光源からの距離が大きくなるにつれ、拡
散・散乱が大となる事により、装置全体として均一で高
い輝度を得られることも考えられる。
Furthermore, the ink used when forming a diffusion/scattering pattern by printing method etc. is Ti1 in order to obtain the diffusion/scattering function.
t, Glass Peas, Sing or A7! Metal powders such as Ag and Ag are mixed, and diffusion and
The scattering function changes. In addition, the function of the same ink changes depending on the coating thickness, so regardless of the area, pinch, or density of the diffusion/scattering pattern, or in combination with these, the diffusion/scattering function of the ink itself changes depending on the coating thickness. It is conceivable that uniform and high brightness can be obtained as a whole of the device by controlling by changing the components and increasing the diffusion and scattering as the distance from the light source increases.

実際に前述のアクリル板にインクとして、アクリル系イ
ンク (PAL 2500シリーズ800メジユーム(
商品名)、■セイコーアドバンス製)に反射効果を得る
ためにTi0z (蛍光顔料臼(商品名)、■ミノグル
ープ製)を35%〜5%、拡散効果を得るためにSin
g (エアロジルR972(商品名)、日本エアロジル
■製)を10%〜3%の割合で光源に最も遠い部分を最
大の配合比として順次配合比を小さくし、拡散・散乱機
能を変化させて印刷した導光板を用いた場合も実施例1
.2と同程度の均一で高輝度な面状光源が得られた。
Actually, acrylic ink (PAL 2500 series 800 medium) was used as ink on the acrylic board mentioned above.
35% to 5% of Ti0z (fluorescent pigment mortar (product name), ■Mino Group) to obtain a reflective effect, and Sin to obtain a diffusion effect.
g (Aerosil R972 (trade name), manufactured by Nippon Aerosil ■) at a ratio of 10% to 3%, with the part farthest from the light source having the highest blending ratio, and gradually decreasing the blending ratio to change the diffusion/scattering function and print. Example 1 also applies when a light guide plate is used.
.. A planar light source with the same level of uniformity and high brightness as in Example 2 was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明は、透明性導光層の反射層側若しくは反射層の透
明性導光層側の少なくとも一方に、或いは反射層と透明
性導光層の間に、前記光源からの距離が大となるにつれ
て拡散・散乱が大となる拡散模様を備えたことにより、
光入射面から入射した光は、透明性導光層を反射層もし
くは光拡散層との間に存在する透明性導光層よりも屈折
率の小さい空気層、接着層もしくは他の透明性部材のた
めにその入射角により透過もしくは全反射を繰り返して
透明性導光層内を進むうちに拡散・散乱模様にてその進
行方向を代えられ、また、拡散・散乱模様の配置を密に
変化させたり、拡散・散乱模様自体の拡散率、反射率を
変化させることによって視野方向へ透過する光量を制御
されることとなり、従来よりも比較的薄い透明性導光層
にて同等以上の面輝度、面輝度の均一性を得ることがで
き、かつ、装置の薄型化、軽量化と大巾なコストダウン
をはかることが可能である。
The present invention provides a structure in which at least one of the reflective layer side of the transparent light guide layer, the transparent light guide layer side of the reflective layer, or between the reflective layer and the transparent light guide layer is located at a large distance from the light source. By having a diffusion pattern that increases diffusion and scattering as the color increases,
The light incident from the light incident surface passes between the transparent light guiding layer and the reflective layer or light diffusing layer through an air layer with a lower refractive index than the transparent light guiding layer, an adhesive layer or other transparent material. Therefore, as the light passes through the transparent light guide layer by repeating transmission or total reflection depending on the angle of incidence, its direction of travel is changed by a diffusion/scattering pattern, and the arrangement of the diffusion/scattering pattern changes densely. By changing the diffusivity and reflectance of the diffusion/scattering pattern itself, the amount of light transmitted in the viewing direction can be controlled. Uniformity of brightness can be obtained, and it is also possible to make the device thinner and lighter, and to significantly reduce costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による面状光源装置で組立説明
斜面図、第2図は縦断面図、第3図は一部切欠底面図、
第4図乃至第9図は透明性導光板の他側の一部の拡大平
面図である。 1・・・光拡散層、2・・・透明性導光層、3・・・拡
散・散乱模様、4・・・反射層、5・・・光源、6・・
・光源用反射層。 特許出願1人
FIG. 1 is a perspective view for explaining assembly of a planar light source device according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional view, and FIG. 3 is a partially cutaway bottom view.
4 to 9 are enlarged plan views of a portion of the other side of the transparent light guide plate. DESCRIPTION OF SYMBOLS 1... Light diffusion layer, 2... Transparent light guide layer, 3... Diffusion/scattering pattern, 4... Reflection layer, 5... Light source, 6...
・Reflection layer for light source. 1 patent applicant

Claims (1)

【特許請求の範囲】[Claims] (1)視野方向より、光拡散層と、少なくとも一端縁を
光の入射面となした透明性導光層と、反射層とを順次積
層し、前記透明性導光層の少なくとも一端縁に光源と光
源用反射層を設置し、前記透明性導光層の反射層側若し
くは反射層の透明性導光層側の少なくとも一方に、或い
は反射層と透明性導光層の間に、前記光源からの距離が
大となるにつれて拡散・散乱が大となる拡散模様を備え
たことを特徴とする面状光源装置。
(1) A light diffusing layer, a transparent light guide layer with at least one edge serving as a light incident surface, and a reflective layer are sequentially laminated from the viewing direction, and a light source is placed on at least one edge of the transparent light guide layer. and a light source reflective layer, and a reflective layer for the light source is provided on at least one of the reflective layer side of the transparent light guide layer, the transparent light guide layer side of the reflective layer, or between the reflective layer and the transparent light guide layer. A planar light source device characterized by having a diffusion pattern in which diffusion and scattering increase as the distance between the two increases.
JP1328230A 1989-12-20 1989-12-20 Plane light source device Pending JPH03190004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1328230A JPH03190004A (en) 1989-12-20 1989-12-20 Plane light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1328230A JPH03190004A (en) 1989-12-20 1989-12-20 Plane light source device

Publications (1)

Publication Number Publication Date
JPH03190004A true JPH03190004A (en) 1991-08-20

Family

ID=18207896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1328230A Pending JPH03190004A (en) 1989-12-20 1989-12-20 Plane light source device

Country Status (1)

Country Link
JP (1) JPH03190004A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550433U (en) * 1991-12-11 1993-07-02 オーツタイヤ株式会社 Edge light type light guide plate device
US5450292A (en) * 1992-03-16 1995-09-12 Enplas Corporation Surface light source device
JPH0990890A (en) * 1995-09-22 1997-04-04 Matsushita Shokai:Kk Surface light emission device
WO1997040517A1 (en) * 1996-04-19 1997-10-30 Sharp Kabushiki Kaisha Illuminator and display utilizing the same
US6415531B1 (en) 1995-05-23 2002-07-09 Sharp Kabushiki Kaisha Plane-shaped lighting device and a display using such a device
JP2007047226A (en) * 2005-08-05 2007-02-22 Fujitsu Ten Ltd Electronic device and panel structure of same
US7490961B2 (en) 2004-02-17 2009-02-17 Focal Point, Llc System of, and method for, indirect lighting
ITAN20090089A1 (en) * 2009-11-11 2011-05-12 Adriano Cardinali LUMINOUS PANEL.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550433U (en) * 1991-12-11 1993-07-02 オーツタイヤ株式会社 Edge light type light guide plate device
JP2548847Y2 (en) * 1991-12-11 1997-09-24 オーツタイヤ株式会社 Edge light type light guide plate device
US5450292A (en) * 1992-03-16 1995-09-12 Enplas Corporation Surface light source device
US6415531B1 (en) 1995-05-23 2002-07-09 Sharp Kabushiki Kaisha Plane-shaped lighting device and a display using such a device
JPH0990890A (en) * 1995-09-22 1997-04-04 Matsushita Shokai:Kk Surface light emission device
WO1997040517A1 (en) * 1996-04-19 1997-10-30 Sharp Kabushiki Kaisha Illuminator and display utilizing the same
US7490961B2 (en) 2004-02-17 2009-02-17 Focal Point, Llc System of, and method for, indirect lighting
JP2007047226A (en) * 2005-08-05 2007-02-22 Fujitsu Ten Ltd Electronic device and panel structure of same
ITAN20090089A1 (en) * 2009-11-11 2011-05-12 Adriano Cardinali LUMINOUS PANEL.

Similar Documents

Publication Publication Date Title
US5442523A (en) Backlighting device
KR100309850B1 (en) Backlighting device
US5647655A (en) Back lighting device
WO2016185805A1 (en) Light-emitting device, display device and lighting device
EP0828113A1 (en) Backlighting device
JPH04356015A (en) Back light
JPH03189679A (en) Surface light source device
JP2974400B2 (en) Surface emitting device and method of manufacturing the same
JPH03190004A (en) Plane light source device
JPH039304A (en) Backlight device
JPH03208205A (en) Lighting device
JPH02269382A (en) Surface light source panel for one-side light source
JPH035726A (en) Backlighting device
JPH04136977A (en) Small-sized flat light source device
JP3306792B2 (en) Backlight for LCD panel
JPH1164645A (en) Plane illuminant
JPH08101311A (en) Back light
JP2848713B2 (en) Backlight for panel
TWI232603B (en) LED backlight module
JP2937291B2 (en) Light guide plate
CN220488989U (en) Astigmatic component and panel light
JPH11264973A (en) Surface light emission device and liquid crystal display using the same
JPH04267222A (en) Backlight for panel
JP2776603B2 (en) Backlight for panel
JPH04269702A (en) Back light for panel