JPH0318977B2 - - Google Patents

Info

Publication number
JPH0318977B2
JPH0318977B2 JP58103986A JP10398683A JPH0318977B2 JP H0318977 B2 JPH0318977 B2 JP H0318977B2 JP 58103986 A JP58103986 A JP 58103986A JP 10398683 A JP10398683 A JP 10398683A JP H0318977 B2 JPH0318977 B2 JP H0318977B2
Authority
JP
Japan
Prior art keywords
hydroperoxide
weight
parts
oxidizing agent
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58103986A
Other languages
Japanese (ja)
Other versions
JPS59227943A (en
Inventor
Mitsuru Sakai
Hiromi Kanekawa
Yasuyuki Kawakatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAO KUEEKAA KK
Original Assignee
KAO KUEEKAA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAO KUEEKAA KK filed Critical KAO KUEEKAA KK
Priority to JP10398683A priority Critical patent/JPS59227943A/en
Publication of JPS59227943A publication Critical patent/JPS59227943A/en
Publication of JPH0318977B2 publication Critical patent/JPH0318977B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は改良された硬化性鋳型組成物に関する
ものである。 鋳物工場において鋳物砂を硬化せしめる方法と
してコールドボツクス法がある。コールドボツク
ス法において酸硬化性樹脂を酸で硬化させる時の
硬化時間を短縮し、又硬化反応の作業性を高める
ために鋳物砂へ酸硬化性樹脂及び酸化剤を配合し
た混練砂を模型に型込めし、後に二酸化硫黄を通
じて硬化せしめるという方法がある。この方法は
二酸化硫黄が酸化剤により酸化され酸触媒とな
り、酸硬化性樹脂の硬化反応を開始せしめ、硬化
反応が進行し、鋳型が製造されるという方法であ
る。この方法において使用される酸化剤は酸硬化
性樹脂と共に鋳型の強度及び注湯後の鋳物製品の
品質に大きな影響を与える。 通常酸化剤としはメチルエチルケトンパーオキ
サイドのような脂肪族ケトンパーオキサイド、ジ
イソプロピルベンゼンハイドロパーオキサイドの
ような芳香族ハイドロパーオキサイド、あるいは
メンタンハイドロパーオキサイドのような脂環族
ハイドロパーオキサイドが単独で使用されてい
る。 ここで、本発明者らは、酸化剤として種々の有
機過酸化物にて鋭意研究した結果、特定の芳香族
ハイドロパーオキサイドもしくは脂環族ハイドロ
パーオキサイドの少なくとも一種と、特定の脂肪
族ハイドロパーオキサイドとを混合して使用すれ
ば脂肪族ハイドロパーオキサイド、芳香族ハイド
ロパーオキサイドあるいは脂環族ハイドロパーオ
キサイドを単独で使用するよりも鋳型強度が飛躍
的に改良されることがわかり、本発明を完成する
に到つた。 即ち本発明は耐火性骨材と酸硬化性樹脂と酸化
剤とよりなり、混練造型した鋳型に二酸化硫黄を
吹込んで硬化する組成物であつて、酸化剤が
This invention relates to improved curable mold compositions. There is a cold box method as a method of hardening foundry sand in a foundry. In order to shorten the curing time when acid-curing resin is cured with acid in the cold box method, and to improve the workability of the curing reaction, kneaded sand mixed with foundry sand and acid-curable resin and oxidizing agent is used as a model. There is a method of encasing the material and then hardening it using sulfur dioxide. In this method, sulfur dioxide is oxidized by an oxidizing agent to become an acid catalyst, which initiates the curing reaction of the acid-curable resin, and the curing reaction progresses to produce a mold. The oxidizing agent used in this method, together with the acid-curing resin, greatly affects the strength of the mold and the quality of the cast product after pouring. Usually, as an oxidizing agent, an aliphatic ketone peroxide such as methyl ethyl ketone peroxide, an aromatic hydroperoxide such as diisopropylbenzene hydroperoxide, or an alicyclic hydroperoxide such as menthane hydroperoxide is used alone. ing. Here, as a result of intensive research on various organic peroxides as oxidizing agents, the present inventors discovered that at least one of a specific aromatic hydroperoxide or alicyclic hydroperoxide and a specific aliphatic hydroperoxide It has been found that the mold strength is dramatically improved by using a mixture of aliphatic hydroperoxide, aromatic hydroperoxide, or alicyclic hydroperoxide compared to using aliphatic hydroperoxide, aromatic hydroperoxide, or alicyclic hydroperoxide alone. It has come to completion. That is, the present invention is a composition that is composed of a fire-resistant aggregate, an acid-curable resin, and an oxidizing agent, and is cured by blowing sulfur dioxide into a kneaded mold.

【式】(R;H,−CH3[Formula] (R; H, -CH 3 ,

【式】を示す)で表わされる芳香族ハイドロパ ーオキサイドもしくは で表わされる脂環族ハイドロパーオキサイドの少
なくとも一種と、
Aromatic hydroperoxide represented by [formula] or At least one kind of alicyclic hydroperoxide represented by

【式】(R; H,[Formula](R; H,

【式】を示す)で表わされる脂肪族ハ イドロパーオキサイドとの混合物であることを特
徴とする硬化性鋳型組成物を提供するものであ
る。 本発明の酸化剤として用いる前記芳香族ハイド
ロパーオキサイド又は脂環族ハイドロパーオキサ
イドと脂肪族ハイドロパーオキサイドとの配合割
合は重量比で90〜10:10〜90の範囲で選択され
る。この範囲以外では夫々の酸化剤の単独使用の
場合に対して、両者の併用による鋳型強度の顕著
な改良効果が認められない。 更に、脂肪族ハイドロパーオキサイドとしてタ
ーシヤリーブチルハイドロパーオキサイドを酸化
剤中20〜70重量%の比率で混合して使用するのが
好ましい。又、酸化剤の配合量は耐火性骨材100
重量部に対して活性酸素量で0.01〜0.3重量部が
好ましい。 本発明において用いられる酸硬化性樹脂として
は尿素−ホルムアルデヒド樹脂、フエノール−ホ
ルムアルデヒド樹脂及びフラン樹脂等が挙げられ
るが、フラン樹脂もしくはフラン樹脂を主成分と
する変成樹脂が好んで用いられる。又、酸硬化性
樹脂の配合量は耐火性骨材100重量部に対して0.4
〜3.0重量部が好ましい。 本発明に係る酸化剤を使用することにより鋳型
強度は高くなる。従つて複雑な中子及び肉薄な中
子の造型も容易になる。又、従来の鋳型強度で充
分な場合は本発明の酸化剤を用いることにより酸
化剤の添加量を低減させられるというコスト上の
利益を生み出す事も可能になる。 本発明において酸化剤として使用される前記過
酸化物についてはその標準的な構造式を示したも
のである。これらの過酸化物として通常市販され
ているものは、より酸化の進んだ化合物や未反応
物を含有しているものであることは勿論である。
本発明においてもかかる工業的な製品を過酸化物
として使用するのが通常である。 更に本発明を詳細に説明するため以下に実施例
を記載するが、実施例により、本発明の範囲を制
限するものではない。 実施例 1 混練機にフラタリーサンド100重量部を入れ、
フラン系樹脂を1.2重量部加えて45秒間充分に混
練し、次いで酸化剤(ジイソプロピルベンゼンハ
イドロパーオキサイド70重量部とターシヤリーブ
チルハイドロパーオキサイド30重量部の混合物)
を活性酸素量で0.06重量部加えて同じく45秒間混
練した。得られた鋳物砂混練物を50mmφ×50mmの
円筒状に造型しガス状又はエロゾル状の二酸化硫
黄を通して硬化した後脱型し、テストピースをつ
くつた。硬化後、24時間放置して、抗圧力をジヨ
ージ・フイーシヤー抗圧力試験機を用いて測定し
た。酸化剤としてジイソプロピルベンゼンハイド
ロパーオキサイド(比較例−1)及びターシヤリ
ーブチルハイドロパーオキサイド(比較例−2)
の各々の単独についても同一活性酸素量にて同じ
ように測定した。結果は表−1の通りである。
The present invention provides a curable mold composition characterized in that it is a mixture with an aliphatic hydroperoxide represented by the formula: The blending ratio of the aromatic hydroperoxide or alicyclic hydroperoxide to the aliphatic hydroperoxide used as the oxidizing agent in the present invention is selected in a weight ratio of 90 to 10:10 to 90. Outside this range, compared to the case where each oxidizing agent is used alone, the combination of both oxidizing agents does not significantly improve mold strength. Furthermore, it is preferable to use tertiary butyl hydroperoxide as the aliphatic hydroperoxide mixed in the oxidizing agent at a ratio of 20 to 70% by weight. In addition, the amount of oxidizing agent is 100% of the fire-resistant aggregate.
The amount of active oxygen is preferably 0.01 to 0.3 parts by weight. Examples of acid-curable resins used in the present invention include urea-formaldehyde resins, phenol-formaldehyde resins, and furan resins, but furan resins or modified resins containing furan resins as a main component are preferably used. In addition, the amount of acid-curing resin blended is 0.4 parts by weight per 100 parts by weight of fire-resistant aggregate.
~3.0 parts by weight is preferred. By using the oxidizing agent according to the present invention, mold strength is increased. Therefore, it becomes easy to mold complex cores and thin cores. Further, when the strength of the conventional mold is sufficient, the use of the oxidizing agent of the present invention makes it possible to reduce the amount of the oxidizing agent added, thereby producing a cost advantage. The standard structural formula of the peroxide used as an oxidizing agent in the present invention is shown below. It goes without saying that these commercially available peroxides contain more oxidized compounds and unreacted substances.
In the present invention, such industrial products are usually used as peroxides. Examples will be described below to further explain the present invention in detail, but the scope of the present invention is not limited by the Examples. Example 1 100 parts by weight of flattery sand was put into a kneader,
Add 1.2 parts by weight of furan resin and thoroughly knead for 45 seconds, then add an oxidizing agent (a mixture of 70 parts by weight of diisopropylbenzene hydroperoxide and 30 parts by weight of tert-butyl hydroperoxide).
0.06 parts by weight of active oxygen was added and kneaded for 45 seconds. The obtained molding sand mixture was molded into a cylindrical shape of 50 mmφ x 50 mm, cured by passing gaseous or aerosol sulfur dioxide, and then demolded to make a test piece. After curing, it was left to stand for 24 hours, and the resistance pressure was measured using a George Fischer resistance pressure tester. Diisopropylbenzene hydroperoxide (Comparative Example-1) and tertiary-butyl hydroperoxide (Comparative Example-2) as oxidizing agents
Each of these alone was also measured in the same manner using the same amount of active oxygen. The results are shown in Table-1.

【表】 実施例 2 混練機にフラタリーサンド100重量部を入れ、
フラン系樹脂を1.2重量部加えて45秒間充分に混
練し、次いで酸化剤(メンタンハイドロパーオキ
サイド50重量部とターシヤリーブチルハイドロパ
ーオキサイド50重量部の混合物)を活性酸素量で
0.04重量部加えて同じく45秒間混練した。得られ
た鋳物砂混練物を50mmφ×50mmの円筒状に造型
し、ガス状又はエロゾル状の二酸化硫黄を通して
硬化した後、24時間放置して、抗圧力をジヨー
ジ・フイーシヤー抗圧力試験機を用いて測定し
た。酸化剤としてメンタンハイドロパーオキサイ
ド(比較例−3)及びターシヤリーブチルハイド
ロパーオキサイド(比較例−4)の各々の単独に
ついても同一活性酸素量にて同じように測定し
た。結果は表−2の通りである。
[Table] Example 2 Put 100 parts by weight of flattery sand into a kneader,
Add 1.2 parts by weight of furan resin and thoroughly knead for 45 seconds, then add an oxidizing agent (a mixture of 50 parts by weight of menthane hydroperoxide and 50 parts by weight of tert-butyl hydroperoxide) in an amount of active oxygen.
0.04 part by weight was added and kneaded for 45 seconds. The obtained foundry sand mixture was molded into a cylindrical shape of 50 mmφ x 50 mm, and after being cured by passing gaseous or aerosol sulfur dioxide, it was left to stand for 24 hours, and the anti-pressure was measured using a George Fischer anti-pressure tester. It was measured. Menthane hydroperoxide (Comparative Example 3) and tert-butyl hydroperoxide (Comparative Example 4) were used alone as oxidizing agents and were measured in the same manner using the same amount of active oxygen. The results are shown in Table-2.

【表】 実施例 3 混練機にフラタリーサンド100重量部を入れ、
フラン系樹脂を1.2重量部加えて45秒間充分に混
練し、次いで酸化剤(ジイソプロピルベンゼンハ
イドロパーオキサイド30重量部とターシヤリーブ
チルハイドロパーオキサイド70重量部の混合物)
を活性酸素量で0.06重量部加えて同じく45秒間混
練した。得られた鋳物砂混練物を50mmφ×50mmの
円筒状に造型しガス状又はエロゾル状の二酸化硫
黄を通して硬化した後脱型し、テストピースをつ
くつた。硬化後24時間放置して、抗圧力をジヨー
ジフイーシヤー抗圧力試験機を用いて測定した。
酸化剤として、ジイソプロピルベンゼンハイドロ
パーオキサイド(比較例−5)及びターシヤリー
ブチルハイドロパーオキサイド(比較例−6)の
各々の単独についても同一活性酸素量にて同じよ
うに測定した。結果は表−3の通りである。
[Table] Example 3 Put 100 parts by weight of flattery sand into a kneader,
Add 1.2 parts by weight of furan resin and thoroughly knead for 45 seconds, then add an oxidizing agent (a mixture of 30 parts by weight of diisopropylbenzene hydroperoxide and 70 parts by weight of tert-butyl hydroperoxide).
0.06 parts by weight of active oxygen was added and kneaded for 45 seconds. The obtained molding sand mixture was molded into a cylindrical shape of 50 mmφ x 50 mm, cured by passing gaseous or aerosol sulfur dioxide, and then demolded to make a test piece. After curing, it was left to stand for 24 hours, and the resistance pressure was measured using a Jiyoji Fisher resistance pressure tester.
As the oxidizing agent, diisopropylbenzene hydroperoxide (Comparative Example-5) and tertiary-butyl hydroperoxide (Comparative Example-6) were used alone and were measured in the same manner using the same amount of active oxygen. The results are shown in Table-3.

【表】 実施例 4 混練機にフラタリーサンド100重量部を入れ、
フラン系樹脂を1.2重量部加えて45秒間充分に混
練し、次いで酸化剤(ジイソプロピルベンゼンハ
イドロパーオキサイド50重量部と1,1,3,3
−テトラメチルブチルハイドロパーオキサイド50
重量部の混合物)を活性酸素量で0.06重量部加え
て同じく45秒間混練した。得られた鋳物砂混練物
を50mmφ×50mmの円筒状に造型しガス状又はエロ
ゾル状の二酸化硫黄を通して硬化した後脱型し、
テストピースをつくつた。硬化後24時間放置し
て、抗圧力をジヨージ・フイーシヤー抗圧力試験
機を用いて測定した。酸化剤として、ジイソプロ
ピルベンゼンハイドロパーオキサイド(比較例−
7)及び1,1,3,3−テトラメチルブチルハ
イドロパーオキサイド(比較例−8)の各々の単
独についても同一活性酸素量にて同じように測定
した。結果は表−4の通りである。
[Table] Example 4 Put 100 parts by weight of flattery sand into a kneader,
Add 1.2 parts by weight of furan resin and thoroughly knead for 45 seconds, then add oxidizing agent (50 parts by weight of diisopropylbenzene hydroperoxide and 1,1,3,3
-Tetramethylbutyl hydroperoxide 50
A mixture of 0.06 parts by weight of active oxygen was added and kneaded for 45 seconds. The obtained foundry sand mixture was molded into a cylindrical shape of 50 mmφ x 50 mm, hardened through gaseous or aerosol sulfur dioxide, and then demolded.
I made a test piece. After curing, it was left to stand for 24 hours, and the resistance pressure was measured using a George Fischer resistance pressure tester. As an oxidizing agent, diisopropylbenzene hydroperoxide (comparative example -
7) and 1,1,3,3-tetramethylbutylhydroperoxide (Comparative Example-8) were also measured in the same manner using the same amount of active oxygen. The results are shown in Table-4.

【表】 実施例 5 混練機にフラタリーサンド100重量部を入れ、
フラン系樹脂を1.2重量部加えて45秒間充分に混
練し、次いで酸化剤(シメンハイドロパーオキサ
イド50重量部とターシヤリブチルハイドロパーオ
キサイド50重量部の混合物)を活性酸素量で0.06
重量部加えて同じく45秒間混練した。得られた鋳
物砂混練物を50mmφ×50mmの円筒状に造型しガス
状又はエロゾル状の二酸化硫黄を通して酸化した
後脱型し、テストピースをつくつた。硬化後24時
間放置して、抗圧力をジヨージ・フイーシヤー抗
圧力試験機を用いて測定した。酸化剤として、シ
メンハイドロパーオキサイド(比較例−9)及び
ターシヤリーブチルハイドロパーオキサイド(比
較例−10)の各々の単独についても同一活性酸素
量にて同じように測定した。結果は表−5の通り
である。
[Table] Example 5 Put 100 parts by weight of flattery sand into a kneader,
Add 1.2 parts by weight of furan-based resin and thoroughly knead for 45 seconds, then add an oxidizing agent (a mixture of 50 parts by weight of cymene hydroperoxide and 50 parts by weight of tertiary butyl hydroperoxide) to an amount of 0.06 parts by weight of active oxygen.
Parts by weight were added and kneaded for 45 seconds. The obtained molding sand mixture was molded into a cylindrical shape of 50 mmφ x 50 mm, oxidized through gaseous or aerosol sulfur dioxide, and then demolded to prepare a test piece. After curing, it was left to stand for 24 hours, and the resistance pressure was measured using a George Fischer resistance pressure tester. As oxidizing agents, cymene hydroperoxide (Comparative Example-9) and tert-butyl hydroperoxide (Comparative Example-10) were used alone and were measured in the same manner using the same amount of active oxygen. The results are shown in Table-5.

【表】【table】

Claims (1)

【特許請求の範囲】 1 耐火性骨材と酸硬化性樹脂と酸化剤とよりな
り、混練造型した鋳型に二酸化硫黄を吹込んで硬
化する組成物であつて、耐火性骨材100重量部に
対し酸硬化性樹脂0.4〜3.0重量部及び酸化剤0.01
〜0.3重量部(活性酸素量として)からなり、酸
化剤が、【式】(R;H, −CH3,【式】を示す)で表わされる芳香族ハ イドロパーオキサイド若しくは、 で表わされる脂環族ハイドロパーオキサイドの少
なくとも一種と、【式】(R; H,【式】を示す)で表わされる脂肪族ハ イドロパーオキサイドとの重量比で90〜10:10〜
90の混合物であることを特徴とする硬化性鋳型組
成物。
[Scope of Claims] 1. A composition comprising a fire-resistant aggregate, an acid-curing resin, and an oxidizing agent, which is cured by blowing sulfur dioxide into a kneaded and molded mold, which Acid curing resin 0.4-3.0 parts by weight and oxidizing agent 0.01
~0.3 parts by weight (as the amount of active oxygen), and the oxidizing agent is an aromatic hydroperoxide represented by [formula] (R; H, -CH 3 , [formula]), The weight ratio of at least one kind of alicyclic hydroperoxide represented by: and the aliphatic hydroperoxide represented by [formula] (R; H, [formula]) is 90 to 10:10 to
A curable mold composition characterized in that it is a mixture of 90.
JP10398683A 1983-06-10 1983-06-10 Curable mold composition Granted JPS59227943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10398683A JPS59227943A (en) 1983-06-10 1983-06-10 Curable mold composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10398683A JPS59227943A (en) 1983-06-10 1983-06-10 Curable mold composition

Publications (2)

Publication Number Publication Date
JPS59227943A JPS59227943A (en) 1984-12-21
JPH0318977B2 true JPH0318977B2 (en) 1991-03-13

Family

ID=14368627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10398683A Granted JPS59227943A (en) 1983-06-10 1983-06-10 Curable mold composition

Country Status (1)

Country Link
JP (1) JPS59227943A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137051A (en) * 1981-02-17 1982-08-24 Kao Corp Production of gas hardenable mold

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137051A (en) * 1981-02-17 1982-08-24 Kao Corp Production of gas hardenable mold

Also Published As

Publication number Publication date
JPS59227943A (en) 1984-12-21

Similar Documents

Publication Publication Date Title
EP0084689B1 (en) Process for the manufacture of a foundry core or mould
JP2831794B2 (en) Method of manufacturing sand mold for castings
JPH0318977B2 (en)
KR840001600A (en) Curable composition
JPS60121033A (en) Peroxide composition for casting mold
JP3131640B2 (en) Binder composition for mold production and method for producing mold
SU1600905A1 (en) Sand for making cores and moulds hardened in cold tooling by blow-out with sulfurous acid anhydride
JPH0325255B2 (en)
JPS6182946A (en) Peroxide composition for casting mold
SU1748916A1 (en) Binder for manufacturing casting bars and heat hardening molds
RU2038182C1 (en) Self-hardening mixture for manufacturing of casting molds and rods
JPS6152953A (en) Binder composition for casting mold
JPH06179044A (en) Binder composition for gas curing casting mold and production of casting mold
JPS60154844A (en) Hydrogen peroxide composition for casting mold
JPH0433533B2 (en)
JPS60124436A (en) Production of molding sand composition for cold box
JPS57137051A (en) Production of gas hardenable mold
JPS60154846A (en) Production of curable casting mold
RU1799658C (en) Clad mixture for manufacture of casting molds and cores
JPS62252635A (en) Binder composition for casting mold
JPS6152955A (en) Binder composition for casting mold
JPH0438497B2 (en)
JPS6352738A (en) Binder composition for casting mold
JPS60154843A (en) Hydrogen peroxide composition for casting mold
JPS61137645A (en) Peroxide composition for casting mold