JPH03189416A - Direct-acting rolling guide - Google Patents

Direct-acting rolling guide

Info

Publication number
JPH03189416A
JPH03189416A JP1327148A JP32714889A JPH03189416A JP H03189416 A JPH03189416 A JP H03189416A JP 1327148 A JP1327148 A JP 1327148A JP 32714889 A JP32714889 A JP 32714889A JP H03189416 A JPH03189416 A JP H03189416A
Authority
JP
Japan
Prior art keywords
bearing
rollers
rolling
cage
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1327148A
Other languages
Japanese (ja)
Other versions
JP2952500B2 (en
Inventor
Minoru Suda
稔 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1327148A priority Critical patent/JP2952500B2/en
Publication of JPH03189416A publication Critical patent/JPH03189416A/en
Application granted granted Critical
Publication of JP2952500B2 publication Critical patent/JP2952500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/37Loose spacing bodies
    • F16C33/3706Loose spacing bodies with concave surfaces conforming to the shape of the rolling elements, e.g. the spacing bodies are in sliding contact with the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0652Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are at least partly defined by separate parts, e.g. covers attached to the legs of the main body of the U-shaped carriage
    • F16C29/0666Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are at least partly defined by separate parts, e.g. covers attached to the legs of the main body of the U-shaped carriage with rollers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PURPOSE:To facilitate a circulating travel by supplying rollers together with the retainers thereof to the inside of a circulation passage formed within a bearing with the axial centers of the rollers made to cross each other for constituting a close roller type direct-acting roller bearing of rolling element circulation system. CONSTITUTION:Rollers 5 and 5' in a circulation route are made to cross each other orthogonally in a moving direction, and so positioned as to match the inner shape 8 of the route 8 formed with a V-groove 6 on a guide axis and another V-groove 7 of a bearing side opposite thereto. Also, the rollers 5 and 5' are fed to a cylindrical roller retaining hole 1c within respective adjacent retainers 1 and 1', and match the rectangular board surface of the route in a guide surface 1b formed on the external surface of the retainers 1 and 1'. Also, the retainers 1 and 1' are kept in contact with each other via a cylindrical surface 1a formed on the external surface thereof. According to the aforesaid construction, no constraint occurs between the retainers 1 and 1', and relative slip friction due to rolling contact can be avoided. Also, smooth travel for circulation can be embodied.

Description

【発明の詳細な説明】 本願直動ころがり案内は、従来品における直動ころがり
軸受のなかで、直動案内精度、耐久性、i4荷重性、静
・動剛性等のころがり軸受に必要とされる諸性能が最も
勝れていると考えられている、非循環式クロスローラ形
直動ころがり軸受に着目し、新たに軸受内ころ用の保持
器を考案し、該保持器と共にころを軸受内に形成した循
環径路内に、ころの軸心を相互に交差して供給し、転動
体循環式のクロスローラ形直動ころがり軸受を構成し、
銭直動ころがり軸受ところの転走面を成形した案内用軸
とで高性能直動ころがり案内を実現したもので、 添付第1図において、図中の (A)〜(D1. (B
)、 (C)は、上記循環式クロスローラ形軸受内循環
径路に適応させ、各々図中の記号1.2.3で示したよ
うに、形状を異にして成形したころの保持器を斜視図に
よって示したもので。
[Detailed Description of the Invention] The linear motion rolling guide of the present application has the linear motion guide accuracy, durability, i4 load resistance, static and dynamic rigidity, etc. required for a rolling bearing among conventional linear motion rolling bearings. Focusing on the non-circulating cross-roller direct-acting rolling bearing, which is considered to have the best performance, we devised a new cage for the inner rollers of the bearing, and installed the rollers together with the cage inside the bearing. In the formed circulation path, the axes of the rollers are fed so as to cross each other, thereby forming a cross-roller type direct-acting rolling bearing with rolling element circulation.
A high-performance linear motion rolling guide is achieved using a guide shaft with a molded raceway surface.In the attached Figure 1, (A) to (D1.
) and (C) are perspective views of roller cages that are adapted to the circulation path in the above-mentioned circulating cross-roller type bearing and are molded with different shapes as indicated by symbols 1.2.3 in the figure. As shown in the diagram.

図(A)〜(D)に示した保持器lでは、循環径路内の
隣接保持器1mの接触を円筒面1aにおいて、また図(
B)、図(C1に示した保持器2,3では何れも球面2
b、 3bで接触するように成形したものである。 ま
た図(A)〜(D)、 TB)、 Ic)におけるlb
、2b、3bは、何れも上記クロスローラ形軸受の軸と
軸受に成形した、角度90°のV溝形状のころの転走面
によって形成した、ころの転走面径路に適応させ、図示
のように1〜3の保持器において、図中の矢印に示した
保持器の移動方向の、上記ころの転走径路内周面間に、
僅かの隙間を保ち走行することができるように、各々の
保持器外周面の4か所において転走方向に平行に、また
相互間では直角に、保持器中心に対し等間隔に成形した
保持21外周面に形成した保持器内ころの走行案内面で
ある。  同じく図(A)〜(D)〜(C1におけるl
c、 2c、 3cは、各々の保持器内に成形したころ
保持部用孔で、1Cと2cにおいてはころはころの軸方
向に収納され、ころの外周面との間に作かの隙間を保ち
、保持器に対するころの相対的位置ぎめがなされる。 
図(C)のこる保持器に対するころの保持部は図中の3
cに示したように、主としてころの軸方向両端面で保持
器との位置ざめがなされるように、ころの軸心を含む断
面形状にあわせ、挿入口を図示のように長方形状に成形
したものである。
In the cage l shown in Figures (A) to (D), the contact between adjacent cages 1m in the circulation path is made on the cylindrical surface 1a, and
B), Fig. (C1) Both cages 2 and 3 have a spherical surface 2.
b, 3b are molded so that they are in contact with each other. Also, lb in Figures (A) to (D), TB), Ic)
, 2b, and 3b are all adapted to the raceway of the rollers formed by the shaft of the crossed roller type bearing and the raceway of the rollers formed in the V-groove shape with an angle of 90°, as shown in the figure. As shown, in cages 1 to 3, between the inner peripheral surfaces of the rolling paths of the rollers in the moving direction of the cage shown by the arrow in the figure,
In order to allow the cage to run while maintaining a slight gap, retainers 21 are formed at four locations on the outer peripheral surface of each cage, parallel to the rolling direction and at right angles to each other, at equal intervals with respect to the center of the cage. This is a running guide surface of the inner roller of the cage formed on the outer peripheral surface. Similarly, Figures (A) to (D) to (l in C1
c, 2c, and 3c are roller holding holes formed in each cage, and in 1C and 2c, the rollers are housed in the axial direction of the rollers, leaving a gap between them and the outer peripheral surface of the rollers. and the relative positioning of the rollers to the cage.
The roller holding part for the cage shown in figure (C) is 3 in the figure.
As shown in c, the insertion opening was formed into a rectangular shape as shown in the figure to match the cross-sectional shape including the roller axis so that the rollers are aligned with the cage mainly at both end faces in the axial direction. It is something.

また図(H)に示した実施例は、転動体に球を用いる直
動ころがり軸受内に、上記案内用軸に成形した転走面と
の間で形成される負荷域を含めて形成される転動体の循
環径路が、転動体の進行方向に直角な断面が長方形状に
成形される際に、上記図(A)〜(D)〜(C)に示し
たころの保持器と類似して、循環径路内法への適用が認
められる保持器の実施例を示したもので、図中の4a〜
4cは上記のころの場合と同じく、4aについては隣接
保持器間の接触面を形成する球面、 4bは上記保持器
の循環径路の内周面形状に適応させて、保持器外周面に
おいて保持器の移動方向と平行な2対の平行平面によっ
て、径路内における保持器の案内面を形成したものであ
り、また4Cは保持器内保持部への球の挿入口である。
Further, the embodiment shown in Figure (H) is formed in a linear motion rolling bearing using balls as rolling elements, including a load area formed between the rolling surface formed on the guide shaft. When the circulation path of the rolling element is formed into a rectangular cross section perpendicular to the direction of movement of the rolling element, it is similar to the roller cage shown in the above figures (A) to (D) to (C). , shows an example of a cage that can be applied to the circulation path method, and 4a to 4 in the figure
4c is a spherical surface that forms a contact surface between adjacent cages as in the case of the rollers described above, and 4b is a spherical surface that forms a contact surface between adjacent cages; 4b is a spherical surface that forms a contact surface between adjacent cages; Two pairs of parallel planes parallel to the moving direction of the cage form a guide surface for the cage in the path, and 4C is an insertion port for inserting the ball into the holding section in the cage.

第2図は第1図(A)〜(D)の斜視図で示した、本願
直動ころ軸受用ころ保持器の投影図で、図中の (A)
は平面図、(B)は正面図、(C)は側面図、(D)は
正面図(Blに示した断面線E−Hにおける断面図、(
E)は同じく図(B)に示したF−Fにおける断面図で
ある。 図中における1a〜lcは、第1図(A)と同
じ< laは循環径路内での隣接保持器間で接触面とな
る円筒面、1bはころの循環径路における保持器の案内
面で。
Figure 2 is a projected view of the roller retainer for the direct acting roller bearing of the present invention shown in the perspective views of Figures 1 (A) to (D).
is a plan view, (B) is a front view, (C) is a side view, (D) is a front view (sectional view taken along the cross-sectional line E-H shown in Bl,
E) is a sectional view taken along line FF shown in Figure (B). 1a to lc in the figure are the same as in FIG. 1(A). la is a cylindrical surface that becomes a contact surface between adjacent cages in the circulation path, and 1b is a guide surface of the cage in the roller circulation path.

上記第1図とこれら図中のTA) 、 (B) 、 T
C)で明らかなように、荷重負荷域の保持器移動方向に
対応して、保持器周辺において各々隣接2面と直角を保
ち、全体として方形に成形されている。 また保持器内
でころを保持する円筒面1cは保持器内を角度45°で
貫通し、また上記平行4面で形成される案内面のうち、
保持器内円筒面に平行な図示の平行2面に対して、保持
器内に挿入したころの外周面が荷重負荷域で、案内用軸
と軸受内の転走面との同時接触を保つための孔1dが成
形されている。 また図中において、上記案内用軸と、
軸受に形成された1対のV形ころの転走面の各面に対応
°して、保持器の外周面に方形に成形された面1bが、
相互に交差して形成される保持器周辺の4隅の位置に成
形された凸部1eは、保持器内にころを挿入するための
、円筒形内周面の孔1cの成形によって生じる、保持器
の強度低下を補うためのもので、循環径路内でのこれら
の凸部が介在する空間は、荷重支持範囲においては、案
内用軸と軸受側の各V溝形状転走面を成形する際に必要
とされる。V溝底における逃げ曲用の角溝と軸と軸受に
おけるV満を対置する際に設定される、通常の遊隙値に
対応して定めることができる。
Figure 1 above and TA), (B), T in these figures
As is clear from C), the cage is formed into a rectangular shape as a whole, keeping at right angles to two adjacent surfaces around the cage, corresponding to the direction of cage movement in the load area. Further, the cylindrical surface 1c that holds the rollers in the cage passes through the cage at an angle of 45°, and among the guide surfaces formed by the four parallel surfaces,
In order to maintain simultaneous contact between the guide shaft and the rolling surface in the bearing in the load bearing area, the outer circumferential surface of the roller inserted in the cage is against the two parallel planes shown that are parallel to the cylindrical surface inside the cage. A hole 1d is formed. In addition, in the figure, the above-mentioned guide shaft and
A rectangular surface 1b is formed on the outer peripheral surface of the cage, corresponding to each rolling surface of a pair of V-shaped rollers formed on the bearing.
The convex portions 1e formed at the four corners of the periphery of the cage, which are formed so as to intersect with each other, are the retaining portions created by forming the holes 1c on the cylindrical inner circumferential surface for inserting rollers into the cage. This is to compensate for the decrease in strength of the container, and the space in which these convex parts interpose in the circulation path is required. It can be determined in accordance with the normal clearance value that is set when the rectangular groove for relief bending in the V-groove bottom is opposed to the V-shaped groove in the shaft and bearing.

第3図は第1図+Blに示した、外周面が球形で、これ
に上述した第1図(A)〜(D)と第2図に示した保持
器と同じく、循環径路の形状に順応させ、循環方向に方
形状にころの案内面を形成した、本願直動ころがり軸受
用ころ保持器を、投影図によって示したもので、図中の
I八) 、 [8) 、 (C)は各々該保持器の平面
図、正面図1gS面図であり、ゆ)、(E)は正面図(
B)中に示した断面線ε−EとF−Fに位置した断面図
である。 また上記各々の図において、2aはaIi環
径路内で隣接保持器が接触を保つ球面、2bは上記循環
経路内周面形状に順応して保持器周辺の4か所に成形し
たころの転走案内面、2cは上記外周面の4か所に成形
したころの案内面のうち、互に相対する1対の面に直交
して成形した、保持器内ころ保持用円筒面、 2dは上
記保持器内ころ保持用円筒面に供給したころの周辺と転
走面との接触を保つように、上記保持器内円筒面2cと
、保持器外周面に成形したころの案内面2b間に成形さ
れた長孔、2eは上記保持器外周面4か所における、互
に直交してM tiするころの案内面間の角の4か所に
、第1図(A)と第2図で説明した保持器における凸F
IS10と同じく、保持器の補強を目的として、外周面
に形成された凸部である。
In Figure 3, the outer peripheral surface is spherical, as shown in Figure 1+Bl, and like the cage shown in Figures 1 (A) to (D) and Figure 2, it adapts to the shape of the circulation path. This is a projected view of the roller retainer for a direct acting rolling bearing of the present application, in which the roller guide surface is formed in a rectangular shape in the circulation direction, and I8), [8), and (C) in the figure are They are a plan view, a front view and a 1gS side view of the cage, respectively, and (Y) and (E) are a front view (
It is a cross-sectional view located at the cross-sectional lines ε-E and F-F shown in B). In each of the above figures, 2a is a spherical surface with which adjacent cages maintain contact within the aIi annular path, and 2b is a rolling surface of rollers formed at four locations around the cage to conform to the shape of the inner peripheral surface of the circulation path. The guide surface 2c is a cylindrical surface for holding rollers in the cage, which is formed orthogonally to a pair of mutually opposing surfaces among the roller guide surfaces formed at four locations on the outer circumferential surface; 2d is a cylindrical surface for holding the rollers in the cage; A roller is formed between the cage inner cylindrical surface 2c and the roller guide surface 2b formed on the outer peripheral surface of the cage so as to maintain contact between the periphery of the rollers supplied to the inner roller holding cylindrical surface and the rolling surface. The elongated holes 2e are located at four corners of the outer circumferential surface of the cage, between the guide surfaces of the rollers that are perpendicular to each other and have Mti, as explained in FIGS. 1(A) and 2. Convex F in cage
Like IS10, this is a convex portion formed on the outer peripheral surface for the purpose of reinforcing the cage.

第4図は第1図(C)の斜視図により示した本願直動こ
ろがり軸受用保持器の投影図で、図中の +A)は平面
図、(B)は正面図、(C)は側面図、(0)は図(八
)に示す断面線E−Hにおける断面図、(E)は図(D
J中の断面線F−Fにおける断面図、(F)は図(C)
に示す断面線G−Gにおける断面図である。 また(A
)〜(D)〜(F)の各図中において、3aは循環経路
中の隣接保持器の接触面となる球面、3bは保持器外周
面の4か所に成形した。循環径路中における保持器内こ
ろの案内面、 3cは図(B) 、 (DJ 、 (E
l 、 (F)中に示したように、第2図、第3図に示
した保持の場合と異り、保持器内で主としてころを、こ
ろの軸方向両端面で位置ぎめ拘束し、 また図(Elの
断面図に示すように、ころ周辺の半ばにおいても、保持
器に対するころの位置ぎめに関与することができる。 
また保持器自体においても、第2図、第3図で述べた保
持器補強のための凸部型e、および2eの形成を必要と
しないので、ころの循環径路と保持器の形成は容易にな
るが、ころの軸方向の長さが制約され、旧習と比較して
ころの負荷容量も幾分減少する。 図(E) 、 (F
)中における3dは。
Figure 4 is a projected view of the cage for the linear rolling bearing of the present application shown in the perspective view of Figure 1 (C), in which +A) is a plan view, (B) is a front view, and (C) is a side view. Figure (0) is a sectional view taken along the cross-sectional line E-H shown in Figure (8), (E) is Figure (D
Cross-sectional view along cross-sectional line F-F in J, (F) is figure (C)
FIG. Also (A
) to (D) to (F), 3a is a spherical surface that becomes the contact surface of the adjacent cage in the circulation path, and 3b is molded at four locations on the outer peripheral surface of the cage. The guide surface of the cage inner roller in the circulation path, 3c is shown in Figures (B), (DJ, (E)
l, As shown in (F), unlike the holding cases shown in Figs. 2 and 3, the rollers are mainly positioned and restrained within the cage at both end faces in the axial direction of the rollers, and As shown in the cross-sectional view of Figure (El), even the middle of the roller periphery can be involved in positioning the roller with respect to the cage.
Also, in the cage itself, it is not necessary to form the convex parts e and 2e for reinforcing the cage as described in Figs. 2 and 3, so it is easy to form the roller circulation path and the cage. However, the axial length of the rollers is restricted, and the load capacity of the rollers is also somewhat reduced compared to the old method. Figure (E), (F
) is 3d.

保持器のころが荷重支持範囲の片側転走面との接触を保
つために形成された孔である。
This hole is formed to maintain contact between the rollers of the cage and the raceway surface on one side of the load-bearing area.

第5図は、転動体に球を用いて構成した従来の直動ころ
がり軸受においても、球に保持器を適応して構成した、
高精度、高性能軸受が見受けられないことから、本願ク
ロスローラ形直動ころ軸受に類似して、案内用軸と軸受
に成形するころのV jNI形転走転走、球を用いた直
動輪受に形成される際に適応が可能な球の保持器を、上
記第4図に示したころ用保持器の成形法を準用して形成
し、上記した第1図(DJに斜視図によって示した球保
持器を投影図により再び図示したものである。
FIG. 5 shows that even in a conventional linear motion rolling bearing constructed using balls as rolling elements, a retainer is adapted to the balls.
Since high-precision, high-performance bearings are not available, we have developed a linear-driving wheel using VjNI-type rollers and balls, similar to the cross-roller type linear-acting roller bearing of the present application, with VjNI-type rolling and rolling rollers molded into the guide shaft and bearing. A spherical cage that can be adapted to be formed into a receiver is formed by applying the molding method for the roller cage shown in FIG. The ball holder is again illustrated in a projection view.

すなわち図中の(A)〜(D)は該保持器の平面図、(
B)は正面図、(C)は側面図、(ロ)はiB)図中の
断面線ε−Eにおける断面、(E)は(C1図中の断面
線F−Fにおける断面図である。 またこれらの図中に
おいて、4日は循環径路に形成される円弧状湾曲部で、
隣接保持器との間でころがり接触によって順応して、循
環径路内での保持器相互間に生じる摩擦抵抗を減少する
ことができるように形成された球面、4bは第2〜第4
図で述べたように、長方形状に形成される循環径路の断
面形状に順応し、保持器内転動体の移動を円滑に行うた
めに保持器外周面に形成された案内面、4cは保持器内
に成形した円筒面と球面とにより形成した球保持用の孔
である。
That is, (A) to (D) in the figure are plan views of the cage, (
B) is a front view, (C) is a side view, (b) is a cross section taken along the cross-sectional line ε-E in the iB) figure, and (E) is a cross-sectional view taken along the cross-sectional line F-F in the (C1) figure. Also, in these figures, 4th is an arcuate curved part formed in the circulation path,
4b is a spherical surface formed so as to be able to adapt by rolling contact with an adjacent cage to reduce the frictional resistance generated between the cages in the circulation path;
As mentioned in the figure, the guide surface 4c is formed on the outer peripheral surface of the cage in order to conform to the cross-sectional shape of the rectangular circulation path and to smoothly move the rolling elements inside the cage. This is a hole for holding a ball formed by a cylindrical surface and a spherical surface molded inside.

第6図は上記第1図(A)〜(D)と、第2図に示した
本願直動ころ軸受用転動体保持器を軸受内閉Ell (
%路内へ配置した場合の説明図で、図示のように軸受内
に形成される、通常軸の作動方向の直動範囲と、循環の
ための円弧状径路とにより、軸方向長円形状に形成され
る循環径路の、軸方向片側端部の部分に対応し、斜視図
によって示したもので、図においてl。
FIG. 6 shows the rolling element retainer for the direct acting roller bearing of the present application shown in FIGS. 1(A) to (D) above and shown in FIG.
This is an explanatory diagram when it is placed in the bearing. As shown in the figure, the bearing has an elliptical shape in the axial direction due to the linear motion range in the operating direction of the normal shaft and the circular arc path for circulation. This corresponds to one end in the axial direction of the circulation path to be formed, and is shown in a perspective view.

1′は上記ころの保持器、5.5′はころ、6は軸と軸
受間で相対的な往復動を繰り返す作動軸に成形した、■
溝形ころの転走面、7は該作動軸・の転走面に対応して
軸受に形成したV溝形ころの転走面、8は軸受内に形成
される循環径路の断面形状を示す、 図示のように本願
クロスローラ形の直動ころ軸受においては、循環径路中
のころは、図中の5,5′に示すように、ころの転走方
向で相互に90°交差して、案内用軸に形成したV形溝
6と、これに相対する軸受側のV形溝7とで形成される
径路内形状に順応させて配置される。 従って(Y路内
でころが接触して走行する際には。
1' is a cage for the rollers, 5' is a roller, 6 is an operating shaft that repeats relative reciprocating motion between the shaft and the bearing,
The rolling surface of the grooved rollers, 7 shows the rolling surface of the V-shaped roller formed in the bearing corresponding to the rolling surface of the operating shaft, and 8 shows the cross-sectional shape of the circulation path formed in the bearing. As shown in the figure, in the cross-roller type direct-acting roller bearing of the present invention, the rollers in the circulation path cross each other at 90 degrees in the rolling direction of the rollers, as shown at 5 and 5' in the figure. It is arranged to conform to the internal shape of the path formed by the V-shaped groove 6 formed on the guide shaft and the V-shaped groove 7 on the bearing side opposite thereto. Therefore, (when the rollers touch each other and travel on the Y road.

こる相互間では各々のころ外周面における母線が交差し
て点接触となり、僅かの接触圧においても相互間接触圧
は過大になり、ころ外周面に損傷を生じると共に、ころ
の転走方向に片寄りを生じ、いわゆるスキュー現象によ
って、軸受巾におけるころの円滑な転走が阻1qされる
。  従って従来の非循環式この種軸受においては、転
走中のころを相互に隔離して作動させるための保持器が
種々に工夫されて適用されている。 しかしころの循環
式この峠軸受においては、上記作動方向長円形状に形成
される径路中の循環のために湾曲して形成される径路範
囲と、直動範囲との全域にわたって適用することのでき
る保持器の形成は困難で、未だ機能上合理的に形成され
た保持器の適用はみうけられない。
The generating lines on the outer circumferential surfaces of each roller intersect, resulting in point contact, and even if the contact pressure is small, the mutual contact pressure becomes excessive, causing damage to the outer circumferential surfaces of the rollers, and causing unevenness in the rolling direction of the rollers. This causes a so-called skew phenomenon, which impedes smooth rolling of the rollers across the bearing width. Therefore, in conventional non-circulating type bearings of this type, various cages have been devised and applied to operate the rolling rollers in isolation from each other. However, in this roller circulation type pass bearing, it can be applied over the entire range of the linear motion range and the curved path range for circulation in the elliptical path in the operating direction. It is difficult to form a cage, and the application of a cage that is functionally rational has not yet been found.

本願直動ころがり軸受用保持器では、上記図中に示した
ころ5.5′は、各々図示の隣接保持器1.1’中のこ
る保持器内の上記1cに形成した内周面が円筒形状ころ
保持部に供給され、外周面に形成した上記ころの案内面
1bにおいて、循環径路の方形壁面に順応し、また隣接
する保持器相互間では、同じく保持器外周面に形成した
円筒面1aで接触を保ち、径路内の全域において保持器
相互間の拘束を生じることなく、また径路中の円弧状の
湾曲部においても、上記保持器外周面の円筒面間におけ
るころがり接触によって相対すべり摩擦を避けて、循環
のための円滑な走行を実現することができる。
In the cage for a linear rolling bearing of the present invention, the rollers 5.5' shown in the above figure have a cylindrical inner peripheral surface formed in the above 1c of the rolling cage in the adjacent cage 1.1' shown. The guide surface 1b of the roller supplied to the roller holding section and formed on the outer peripheral surface conforms to the rectangular wall surface of the circulation path, and between adjacent cages, the cylindrical surface 1a also formed on the outer peripheral surface of the cage conforms to the rectangular wall surface of the circulation path. Contact is maintained, and the cages are not restrained with each other throughout the entire path, and relative sliding friction is avoided by rolling contact between the cylindrical surfaces of the outer circumferential surface of the cage, even in the arcuate curved portion of the path. This makes it possible to realize smooth running for circulation.

第7図は上記第1図(Bl と第3図に示した本願直動
ころ軸受用保持器を、軸受円循環径路に配置した場合の
説明図で、上記第6図の場合と比較し、上記ころの走行
案内面を除く保持器外周面を円筒面から球面にかえたも
ので、図中において2,2′はころの保持器、5.5′
はころ、6は軸受案内用軸に形成した90°V tll
形ころの転走案内面、7は同じく軸受に成形した90″
V溝形ころの転走面、8は軸受内ころの循環走行用径路
における保持器の案内方向に直角な方形断面形状、2a
は保持器の球形外周面、 2bは同じく保持器外周面に
おけるころの案内面、2cは保持器内のこる挿入用円筒
面である。 上記第6図の場合と同じく、ころ5.5′
の軸心は各々循環方向に直交し、また相互間において直
角に交差してそれぞれの保持器2、グ内の円筒形状の孔
2cに配置されて循環径路内を走行する。 その陣容々
の保持器は隣接保持器間において、相互に外周面におけ
る球面間において点接触を保ち、上記第6図における保
持器外周面の円筒面間の接触と同じく、循環径路内の全
域において、保持器相互間の拘束を生じることなく、円
滑な循環走行を実現することができる。 また上記した
第1図の(Al と(B)に示した保持器外周面におけ
る。隣接保持器相互間の接触面を円筒形状にしたものと
、球面状に形成した保持器間の比較においては1円筒面
よりも球面で形成した場合の方が、保持器全体としての
形状が簡略になり、保持器の成形が容易になると共に、
外周面において循環径路の形状に順応し成形した。各々
の保持器lと保持器2におけるころの案内面1bと、上
記外周面の円筒面la間の交差角度と、同じくころの案
内面zbと、球面2aT:mの交差角度との比較におい
て、保持器lにおける交差角よりも保持器2における角
度の方が鈍化し、保持器が循環径路内で走行する場合の
、上記ころの保持器案内面と径路壁間の円滑な摺動をは
かることができる。
FIG. 7 is an explanatory diagram of the case where the cage for the linear acting roller bearing of the present application shown in FIG. 1 (Bl) and FIG. The outer circumferential surface of the cage, excluding the roller running guide surface, has been changed from a cylindrical surface to a spherical surface. In the figure, 2 and 2' are roller cages, and 5.5'
Roller 6 is a 90°V tll formed on the bearing guide shaft.
Rolling guide surface of shaped rollers, 7 is 90" which is also molded into the bearing.
The raceway surface of the V-groove rollers, 8 is a rectangular cross-sectional shape perpendicular to the guide direction of the cage in the circulating running path of the bearing inner rollers, 2a
is a spherical outer peripheral surface of the cage, 2b is a guide surface for rollers on the outer peripheral surface of the cage, and 2c is a cylindrical surface for inserting rollers in the cage. As in the case of Fig. 6 above, roller 5.5'
The axes thereof are perpendicular to the circulation direction, and intersect with each other at right angles, and are disposed in the cylindrical holes 2c in the respective cages 2 and 2, and travel within the circulation path. The cages in each group maintain point contact between the spherical surfaces on the outer circumferential surface of the adjacent cages, and, like the contact between the cylindrical surfaces of the outer circumferential surface of the cage in FIG. 6 above, throughout the entire circulation path. , it is possible to realize smooth circulation without causing restraint between the cages. In addition, in the cage outer peripheral surfaces shown in (Al and (B) in Fig. 1 above), in a comparison between cages in which the contact surfaces between adjacent cages are formed into a cylindrical shape and those in which the contact surfaces are formed into a spherical shape, When the cage is formed with a spherical surface rather than a cylindrical surface, the shape of the cage as a whole becomes simpler, and the cage is easier to mold.
The outer peripheral surface was molded to conform to the shape of the circulation path. In comparing the intersection angle between the roller guide surface 1b and the cylindrical surface la of the outer circumferential surface of each cage l and cage 2, and the intersection angle between the roller guide surface zb and the spherical surface 2aT:m, The angle at the cage 2 is blunter than the intersection angle at the cage l, and when the cage runs in the circulation path, smooth sliding between the cage guide surface of the roller and the path wall is achieved. I can do it.

第8図は、上記添付第1図(C)と、第4図に示した本
願直動ころ軸受用ころの保持器について、図示のxy平
面に対し角度aだけ傾斜した平面内に、軸受内ころの循
環径路を形成し、該径路内に上記ころを供給して形成す
る軸受の構成例を示し、図において3.3′はころの保
持器、 3aは隣接保持器の接触面として形成した球形
外周面、3bは保持器における径路内ころの案内面、 
3cは同じく保持器内へのころの挿入口、5.5′はこ
ろ、6は案内用軸に成形した角度90゛のV溝形ころの
転走面、7は軸受に成形し、上記のV形溝6と共にころ
の荷重支持範囲を形成するV溝形ころの転走面、8はこ
ろの軸受円循環用径路、また図中の1.は上記ころの循
環径路を、上記第6図、第7図のように、通常の案内用
軸の取付面と平行なxy面内に、荷重支持範囲の径路と
平行に、図中のX軸に成形される軸受円直動循環径路範
囲との隔り−heは上記軸取付部と平行なxy平面に直
交するxz平面内に、X軸に平行に形成される、軸受内
転定範囲の循環径路とX軸間の隔り、ノ、L!上記の軸
受内ころの循環径路の中心線を含み、X軸とは下行に、
またxy平面と角度αでxz平面と交わる平面内におけ
る、図示の荷重支持範囲における径路の中心線と、軸受
内直動範囲の循環径路の中心線間の隔り、θは上記xy
γ面と角度αで交わる平面内の循環のための片側半円弧
上循環径路内における、保持器中心の旋回角度を示して
いる0図示のように本願直動ころ軸受においては、上記
した第1図中に示したころと球の2〜4の保持器を用い
ることにより、3次元空間においてa=0〜90°の範
囲の任意の角度範囲において、軸受内ころの循環径路を
形成することができ、径路内の隣接保持器は常に球面に
おいて相互の接触を保ち、円滑な循環運動を確保するこ
とができる。 従って各種高性能機械において、この種
ころがり直動案内の採用をはかる場合、軸受内に循環径
路を形成するための空間的な制約を生じた際1例えば循
環径路内で転動体循環のための半円弧状径路を形成する
際に、該円弧状径路内に配置される上記保持器の数は、
少くとも4個以上が必要とされ、それ以下の保持器数の
軸受構成では、保持器の循環走行に円滑さが欠除し、軸
と軸受の相対速度の上昇に伴って、この傾向は助長され
る。 従って循環径路構成に際して、図示の円弧状径路
の直径の最大値を1.に限定された際、xy平面に対し
て例えば45°傾斜した7面内に形成した場合、上記円
弧状径路の直径!、はノ、の約 1.4倍にすることが
できる。
FIG. 8 shows the inside of the bearing in a plane inclined by an angle a with respect to the xy plane shown in the above-mentioned attached FIG. An example of the configuration of a bearing is shown in which a roller circulation path is formed and the rollers are supplied into the path. In the figure, 3.3' is a roller cage, and 3a is a contact surface of an adjacent cage. A spherical outer circumferential surface, 3b is a guide surface for rollers in the path in the cage,
3c is the roller insertion opening into the cage, 5.5' is the roller, 6 is the raceway surface of the V-groove roller with an angle of 90° formed on the guide shaft, and 7 is formed on the bearing. The raceway surface of the V-groove roller, which together with the V-groove 6 forms the load bearing range of the roller, 8 is a bearing circular circulation path for the roller, and 1. in the figure. As shown in Figures 6 and 7 above, the circulation path of the roller is placed in the xy plane parallel to the mounting surface of the normal guide shaft, and parallel to the path of the load supporting range, along the X axis in the figure. The distance -he from the bearing circular direct motion circulation path range formed in the above-mentioned shaft mounting part is the distance between the bearing internal rotation range formed parallel to the X-axis in the xz plane orthogonal to the xy plane parallel to the shaft mounting part. The distance between the circulation path and the X axis, L! It includes the center line of the circulation path of the inner rollers of the bearing mentioned above, and is directed downward from the X-axis.
In addition, in the plane that intersects the xy plane and the xz plane at an angle α, the distance between the center line of the path in the load support range shown in the figure and the center line of the circulation path in the linear motion range within the bearing, θ is the xy plane mentioned above.
As shown in the drawing, which shows the rotation angle of the cage center in the circulation path on one side semicircular arc for circulation in a plane that intersects with the γ plane at an angle α, in the linear acting roller bearing of the present application, the above-mentioned first By using 2 to 4 cages of rollers and balls shown in the figure, it is possible to form a circulation path for the inner rollers of the bearing in any angular range from a = 0 to 90 degrees in three-dimensional space. Adjacent cages in the path can always maintain mutual contact on the spherical surface to ensure smooth circulation movement. Therefore, when adopting this type of rolling linear motion guide in various high-performance machines, if space constraints arise to form a circulation path within the bearing, for example When forming an arcuate path, the number of retainers arranged in the arcuate path is:
At least four or more cages are required, and in bearing configurations with fewer cages, the cages lack smooth circulation, and this tendency is exacerbated as the relative speed between the shaft and bearing increases. be done. Therefore, when configuring the circulation path, the maximum diameter of the illustrated arcuate path should be set to 1. When limited to , the diameter of the arcuate path is ! , can be made approximately 1.4 times as large as .

第9図は第8図のxy面に対し、上記傾斜平面内に軸−
嚢内の循環転動体径路を形成した際、転動体の走行方向
を 180°変換するための円弧状径路内における転動
体のxy平面内での旋回運動に加えて、xy平面に直交
するZ方向に生じる変位の挙動を示したもので、図中の
(A)の横軸では、傾斜面内における転動体の旋回角度
を、また縦軸には旋回角度に対応して、上記したZ方向
への転動体の変位を示している。 図示のようにZ方向
の変位曲線は円弧状径路への人出時にゆるやかな緩衝曲
線に従った円滑な変位の挙動を示し2両緩衝曲線が連な
る旋回角度gO°近傍において、立ち上り角度はxy平
面に対する傾斜平面の傾き角aに一致する。 図の(8
1は上記Z方向の変位量りに対する目安として径路内に
おける上記転動体の旋回角度を示したものである。
FIG. 9 shows an axis -
When forming the circulating rolling element path in the bag, in addition to the turning movement of the rolling element in the xy plane within the arcuate path to convert the running direction of the rolling element by 180 degrees, the rolling element is rotated in the Z direction perpendicular to the xy plane. This diagram shows the behavior of the resulting displacement. The horizontal axis in (A) in the figure shows the turning angle of the rolling element in the inclined plane, and the vertical axis shows the turning angle in the Z direction mentioned above. It shows the displacement of the rolling elements. As shown in the figure, the displacement curve in the Z direction exhibits a smooth displacement behavior according to a gentle buffer curve when people enter the arcuate route. Near the turning angle gO° where the two buffer curves are connected, the rising angle is on the xy plane. It corresponds to the inclination angle a of the inclined plane with respect to . Figure (8)
1 indicates the turning angle of the rolling element in the path as a reference for the displacement in the Z direction.

第1θ図(Al−(E)は、本願直動ころ軸受作動時に
おける、上記軸受内機環径路中でのこる保持器の循環運
動の説明図で1図中において21〜2.はころの保持器
、5はころ、6は案内用軸に形成したころの転勤面、7
は同じく軸受に成形したころの転勤面、9は案内用軸、
10は直動ころ軸受本体、目は軸受内循環径路、また角
度βは軸受作動時、図示の循環径路の湾曲部で生じる保
持器の断続的な旋回角度である。
Figure 1 θ (Al-(E) is an explanatory diagram of the circulating motion of the cage remaining in the bearing internal ring path during the operation of the direct acting roller bearing of the present application, and 21 to 2 in Figure 1 indicate retention of the rollers. 5 is the roller, 6 is the transfer surface of the roller formed on the guide shaft, 7
9 is the rolling surface of the roller which is also molded into the bearing, 9 is the guide shaft,
Reference numeral 10 denotes the direct-acting roller bearing body, the eye indicates the circulation path within the bearing, and angle β is the intermittent turning angle of the retainer that occurs at the curved portion of the illustrated circulation path when the bearing is operated.

はじめに図(A)〜(D)において添付図中と、軸受1
0とは図中の矢印で示す軸方向に相対的に移動じ、側面
図(El で示したころ5は、上記V形溝6と7の間で
荷重を支持して、軸受と反対方向に転走し、図(A)に
おいてこれらの転走中のころに適用されている保持器2
m、2..2@も軸受の移動方向と反対方向に移動し、
これらの保持器中の2.は、図181に示す位置で保持
器2.どの接触を保ちながら、保持i!8Izs内のこ
ろが、上記した軸と軸受におけるV形溝6と7とに接触
して、荷重負荷域の転勤を継続する間に、図(C1に示
すように保持器21は。
Introduction In Figures (A) to (D), the attached diagrams and bearing 1
The roller 5 shown in the side view (El) supports the load between the V-shaped grooves 6 and 7, and moves in the opposite direction to the bearing. The cage 2 is rolling and is applied to these rolling rollers in Figure (A).
m, 2. .. 2@ also moves in the opposite direction to the direction of movement of the bearing,
2 in these cages. The retainer 2. is in the position shown in FIG. While keeping any contact, hold i! While the rollers in 8Izs contact the V-shaped grooves 6 and 7 in the shaft and bearing described above and continue the transfer of the load bearing area, the cage 21 as shown in Figure (C1).

保持器2.と共に循環径路中の相互接触を保って配置さ
れた保持器2Iに至る一連の保持器を移動させ、同時に
保持器2.により、保持器2゜を上記軸、軸受間に形成
されたV形溝6.7とにより成る荷重支持範囲のころの
転走径路に向けて移動させる。 ついでこれらの保持器
は図(D)において、上記保持器2.は保持器内のころ
が荷重支持範囲の転勤を終えると共に、径路内の移動を
停止し、また保持器2.は保持器内ころの荷重支持範囲
の転勤に伴い、上記軸受の移動と反対方向の移動を継続
して、それぞれ図(A)における各保持器2・と2゜の
位置まで移動し、荷重支持範囲に配置される保持器間距
離に相当した範囲でのころの転走毎に繰り返される径路
内保持器の移動を一巡する。 このような機構によって
、径路内を循環する保持器を適用して構成される、本願
直動クロスローラ形ころがり軸受においては、上記ころ
の保持器を荷重支持範囲の上記v形ころの転走面に対し
、保持器内ころの軸心を、交互に直交させて配列し、荷
重を支持して作動する際には、循環径路中のころが保持
器を介し相互間直接の接触を生じることなく、また上記
保持器外周面に形成した円筒形la、または球面2a、
3aによって保持器間のすべり摩擦接触を避け、また同
じく保持器外周面に循環径路の方形内周面形状に適応し
、高精度に形成した、ころの案内面1b、 2b、3b
とによって、軸受内部環径路内における走行を円滑に行
うことができる。
Cage 2. At the same time, a series of cages up to cage 2I arranged in mutual contact in the circulation path is moved, and at the same time cages 2. As a result, the cage 2° is moved toward the rolling path of the rollers in the load supporting range formed by the shaft and the V-shaped groove 6.7 formed between the bearing. These cages are then shown in Figure (D) as the cage 2. When the rollers in the cage complete the transfer of the load-bearing range, they stop moving in the path, and the cage 2. As the load support range of the cage inner rollers is transferred, the bearings continue to move in the opposite direction to the movement of the bearings mentioned above, and move to the positions 2 and 2 degrees of each cage in Figure (A), and the load support is increased. The movement of the cage in the path is repeated every time the roller rolls in the range corresponding to the distance between the cages arranged in the range. In the direct-acting cross-roller type rolling bearing of the present application, which is constructed by applying a cage that circulates in the path by such a mechanism, the cage of the rollers is connected to the rolling surface of the V-shaped rollers in the load supporting range. On the other hand, when the axes of the inner rollers of the cage are alternately arranged to be orthogonal to each other and the rollers in the circulation path are operated to support a load, there is no direct contact between them through the cage. , and a cylindrical shape la formed on the outer peripheral surface of the cage, or a spherical surface 2a,
3a to avoid sliding frictional contact between the cages, and roller guide surfaces 1b, 2b, and 3b that are also formed with high precision on the outer circumferential surface of the cage to adapt to the rectangular inner circumferential shape of the circulation path.
This allows for smooth running within the bearing inner ring path.

第11図は、本願軸受の荷重負荷域に成形したころのV
 iR形転走面と、該転走面に対応して、軸受案内用軸
に成形したV溝形ころの転走面間で形成される径路と、
これに連なり軸受内に成形する循環径路内に、ころの保
持器を供給して、直動ころがり案内を構成する際、本願
軸受で設定可能な、上記循環径路の形成と、該径路内へ
の保持器の配列方法について示したもので、図中の(A
) 、 (B) 、 (C1、(D)は、上記の軸受と
案内用軸間に形成される、循環径路内に配列した保持器
2と該保持器中のころ5の平面図、 (A) 、 +B
) 、 (C1、(D)は、上記図(A)〜(Dlに対
応して示した、案内用軸と軸受に成形したV形ころの両
側面と7、および該転走面間に形成される径路内におけ
るころ5と、銭ころの回転の軸心とを側面図によって示
したものである。 またこれらの図において(A1、(
A′)は、軸方向の断面が方形状軸の側面に成形したV
溝形両側面と。
Figure 11 shows the V of the rollers formed in the load bearing area of the present bearing.
a path formed between an iR-shaped raceway surface and a raceway surface of a V-groove roller formed on a bearing guide shaft corresponding to the raceway surface;
When a roller retainer is provided in a circulation path formed in the bearing that is connected to this and a linear motion rolling guide is configured, the formation of the circulation path, which can be set with the present bearing, and the formation of the circulation path into the path. This shows how to arrange the cages.
), (B), (C1, (D) are plan views of the cage 2 arranged in the circulation path and the rollers 5 in the cage formed between the above bearing and the guide shaft, (A ), +B
), (C1, (D) are the guide shafts and both sides of the V-shaped rollers formed on the bearings shown in FIGS. The roller 5 and the axis of rotation of the coin roller are shown in a side view in the path where the coin roller rotates.
A') is a V formed on the side of a shaft with a rectangular cross section in the axial direction.
With grooved sides.

該転走面に対応して軸受側面に成形したV満形転走面7
とで形成した径路内に2図示のころの転走方向に交互に
直交して配列した実施例を示す、 図(B) 、 (B
’ lにおいては、上記図(A) 、 (A’ )の場
合と同一に形成された、案内用軸と軸受間ころの循環径
路への保持器内ころの配列を、ころの回転軸心を相互に
交差することな(、何れか片方の回転軸心にそろえ5該
回転軸心が荷重支持範囲の径路中で、該径路中のころの
転走方向に直角に、またころ相互間で平行に配列したも
のである。   図(C1、(C’ )においては、案
内用軸と軸受におけるV溝形ころの両側面と7を、図示
のように方形状軸の側面と各々45°傾斜した側面に成
形し、註転走面間と軸受内のwII!径路内に、保持器
内にころの軸心な交互に直交して配列し、また図(n)
 、 (D’ )においては、上記(C) 、 (C’
 lと同一の軸、軸受間の循環径路の形成において、上
記181 、 +!+’ )の場合と同じく。
A V-shaped raceway surface 7 formed on the side surface of the bearing corresponding to the raceway surface.
Figure (B) and (B
In '1, the arrangement of the cage inner rollers in the circulation path of the guiding shaft and the rollers between the bearings, which are formed in the same way as in the case of the above figures (A) and (A'), is arranged so that the rotation axis of the rollers is (5) The rotational axis should be aligned with either one of the rotational axes, perpendicular to the rolling direction of the rollers in the path within the load-supporting range, and parallel to each other between the rollers. In Figures (C1 and (C')), both side surfaces and 7 of the V-groove rollers in the guide shaft and bearing are arranged at an angle of 45° with respect to the side surface of the rectangular shaft as shown. They are formed on the side surface, and are arranged between the raceway surfaces and in the wII! path in the bearing, in the cage alternately orthogonal to the axis of the rollers, and as shown in Figure (n).
, (D'), the above (C), (C'
In the formation of a circulation path between the same shaft and bearing as l, the above 181, +! Same as +').

上記ころの回転軸心を交差することなく、図+B1、(
[1’ )の実施例と同じく、何れか片側の回転軸心に
あわせて循環径路へ配列した場合の実施例である。
Figure +B1, (
As in the embodiment [1'), this is an embodiment in which they are arranged in the circulation path along the rotation axis on either side.

このように本願軸受においては、ころの転走面用上記V
形溝を、方形状案内用軸外周面に成形する際、該軸の両
側面、または該側面と土面間の角の斜面に成形した。■
溝形ころの転走面に対応して軸受に成形したV溝形転走
面とで、荷重負荷域に形成される方形ころの転走径路と
、該径路の両端に連なり軸受に形成した循環のための径
路とで形成した。上記軸方向長円形状の循環径路中にこ
ろを供給する際、誠径路内において上記図中の(A)。
In this way, in the present bearing, the above-mentioned V
When forming grooves on the outer circumferential surface of the rectangular guiding shaft, they were formed on both sides of the shaft or on the slopes of the corners between the side surfaces and the soil surface. ■
The V-groove raceway surface formed on the bearing corresponds to the raceway surface of the grooved rollers, and the rolling path of the square rollers is formed in the load area, and the circulation path is connected to both ends of the path and formed on the bearing. It was formed with a path for. (A) in the above figure in the Makoto path when feeding the rollers into the axially oval circulation path.

(C1に示したような、ころの回転軸心を相互に直交し
て配列する場合のほか1図中の(B)。
(In addition to the case where the rotational axes of the rollers are arranged perpendicular to each other as shown in C1, (B) in Fig. 1.

(ロ)に示したように、例えば後述する本願軸受実施例
の第16図の実施例のように、案内用軸の両側面で荷重
を支持するように形成した、2対のV溝形ころの転走面
のうち、案内用軸両側面の下側に位置して成形した1対
のV形ころの転走面に対しては、図中の(A)。
As shown in (b), two pairs of V-groove rollers are formed so as to support the load on both sides of the guide shaft, as in the example shown in FIG. 16 of the bearing example of the present invention described later. (A) in the figure for the raceway surfaces of a pair of V-shaped rollers formed below both sides of the guide shaft.

(A)〜(DT)に示したように、上記軸受1重の支持
範囲と共に軸受内に形成した循環径路内に、隣接ころ間
の回転軸心を交互に直角に交差させて配列し、上記案内
用軸と軸受間の位置ぎめ、ならびに案内用軸の上下、左
右方向に作用する軸受荷重を均等に支持させ、ついで上
記軸の両側面の上方に位置して形成した1対の■溝形こ
ろの転走面においては、図中の(B) 、 18’ )
に示すように、ころの外周面は1図中の軸と軸受に成形
したV溝形両側面と7の下側と上側転走面との同時接触
を保ち、隣接ころ間の回転軸心は交差することなく平行
に、また案内用軸上面に対して直角に作用する軸受荷重
を負荷して転走することがで きる。 第12図TA) 、 +Bl 、 (C1は従
来の非循環式クロスローラ形直動ころがり軸受において
、上記第1図〜第8図で示した1本願直動輪受用保持器
を軸受内ころに適用して構成した、循環式単列直動ころ
がり軸受を、註軸受用の案内用軸と共に示したもので1
図中の(Δ)は上記軸受と案内用軸とで構成したころが
り直動案内の正面図、(81と(C1は同じく上記ころ
がり直動案内図の側面図と平面図である。 また図中に
おいて、2は上記ころに適用した保持器、5はころ、6
は案内用軸に成形したV形ころの転走面、7は軸受に成
形した荷重負荷域におけるV形ころの転走面。
As shown in (A) to (DT), the rotational axes of adjacent rollers are arranged so as to alternately intersect at right angles within the circulation path formed in the bearing together with the single support range of the bearing. A pair of grooves are formed above both sides of the shaft to equally support the positioning between the guide shaft and the bearing, as well as the bearing load acting on the guide shaft in the vertical and horizontal directions. On the rolling surface of the roller, (B), 18' in the figure)
As shown in Figure 1, the outer circumferential surface of the roller maintains simultaneous contact with both sides of the V-shaped groove formed on the shaft and bearing in Figure 1, and the lower and upper raceway surfaces of 7, and the center of rotation between adjacent rollers is It is possible to roll by applying a bearing load that acts in parallel without crossing and at right angles to the upper surface of the guide shaft. Fig. 12 TA), +Bl, (C1 is a conventional non-circulating cross-roller type direct-acting rolling bearing, in which the cage for the linear-acting wheel bearing shown in Figs. 1 to 8 above is applied to the inner roller of the bearing. A circulating type single-row linear-acting rolling bearing configured with
(Δ) in the figure is a front view of the rolling linear motion guide composed of the above-mentioned bearing and the guide shaft, (81 and (C1) are the side view and plan view of the above-mentioned rolling linear motion guide. , 2 is a cage applied to the roller, 5 is a roller, and 6 is a cage applied to the roller.
7 is the raceway surface of the V-shaped roller formed on the guide shaft, and 7 is the raceway surface of the V-shaped roller formed on the bearing in the load bearing area.

9は案内用軸、9aは添付図中定置用ボルト孔、鳳0は
軸受本体、10aは軸受定置用ねじ孔、12.+3は軸
受内にころの循環径路を形成するための軸受構成要素、
14は上記軸受内機環径路内に供給したころに対する。
9 is a guide shaft, 9a is a bolt hole for fixing in the attached figure, 0 is a bearing body, 10a is a screw hole for fixing a bearing, 12. +3 is a bearing component for forming a circulation path for rollers within the bearing;
Reference numeral 14 corresponds to a roller supplied into the bearing inner ring path.

軸受外への脱落を防止するための薄板金、15は軸受軸
方向両端における側板、 lsaは側板15に付加した
ダストシールである。
A thin sheet metal 15 is a side plate at both ends of the bearing in the axial direction, and lsa is a dust seal added to the side plate 15 to prevent it from falling out of the bearing.

第13図は上記第12図に示した軸受を分解し、該軸受
の各々の構成部品を斜視図によって示したもので、図示
のように輪受本体10には、荷重負荷域のV溝形ころの
転走面7と、軸受定置用のねじ孔10a、輪受本体と一
体に構成される、軸受内ころ保持器のW環径路目を形成
するための部品12.13と、上記ころの転走面7から
のころところ保持器の脱落防止用板金目、および側板1
5とを固定するためのねじ孔10b、ならびに上記軸受
円循環径路形成用部品12.13を組み合わせ嵌合させ
るための軸方向の凹部10cが形成され、上記循II径
路中の保持器の脱落防止用の板金14においては、該板
金を軸受本体に固定するための孔+4bが、また側板1
5においては、上記案内用軸のV形ころの転走面に対応
したダストシール形成用板金の凸部1saと共に、上記
軸受本体10におけるねじ孔10bに対応し、軸受本体
への構造の一体化をはかるための取付孔lsbが成形さ
れる。
FIG. 13 is a perspective view of the bearing shown in FIG. 12 disassembled and showing each component of the bearing. The rolling surface 7 of the rollers, the threaded hole 10a for bearing fixation, the parts 12 and 13 for forming the W ring path of the bearing inner roller retainer, which are integrated with the ring bearing body, and the rollers. Sheet metal eyes to prevent rollers and cages from falling off from raceway surface 7, and side plate 1
A screw hole 10b for fixing the bearing circular circulation path 5 and an axial recess 10c for fitting together the bearing circular circulation path forming parts 12 and 13 are formed to prevent the retainer from falling off in the circulation II path. In the sheet metal 14 for the bearing body, holes +4b for fixing the sheet metal to the bearing body are
5, the convex portion 1sa of the sheet metal for forming a dust seal corresponds to the rolling surface of the V-shaped rollers of the guide shaft, and the screw hole 10b of the bearing body 10 corresponds to the screw hole 10b, and the structure is integrated into the bearing body. A mounting hole lsb for measuring is formed.

第11図は、上記第1z図と第13図に示したクロスロ
ーラ方式に従い転勤するころのV溝形転走面を複列に形
成した案内用軸に対応し、軸受内に上記案内用軸と軸受
間荷重を支持して転走するころの循Im径路を複列に形
成した、本願軸受構成の実施例を示したもので、図にお
いて、2はころの保持器、5はころ、9は直動案内用軸
、9aは誠案内用軸定置用ねじ孔、10は軸受本体、1
0aは軸受定置用ねじ孔、 12.13は軸受内■溝形
ころの循環径路を形成した軸受構成部品、14は軸受作
動時に生じる軸受内上記循環径路からの、ころところ保
持器の脱落防止用板金、 14cは誤板金固定用ねじ、
15は軸受の軸方向両端における軸受側板、15cは軸
受本体に対する上記軸受構成部品15固定用ねじである
。 また図中の (A)〜(D)は本実施例における正
面図、(6)は側面図、(C]は平面図で、図示のよう
に図(A)〜(D)においては5部分を側面図のF−F
断面線に従った断面図で、図fnl では部分を図(A
)の G−G断面線に従い、軸受の構成を示したもので
、図示のように本実施例軸受においては、上記第12図
、第13図の実施例における、軸と軸受間循環式ころの
単列転走面構成から、複列に構成したものである。 従
ってこれらの実施例で示した軸受を、各種機械の前後、
左右、あるいは上下方向移動台の直動案内への適用をは
かる際、上記負荷域ころのV形溝を単列に形成した軸受
を、移動台の両側面において、通常行われる上記第12
図(B)の側面図に見られる軸受配置と、本実施例にお
いて移動台の両端の上下面に、第14図18)の側面図
のように、移動台の上下方向主荷重に対応して軸受を配
置して直動案内を構成した場合の比較において、上記移
動台の上下方向に作用する主荷重に対し、本実施例の場
合軸受の耐荷重性を4倍に増加することができる。 ま
た本実施例直動輪受を適用して構成した。往復動移動台
においては、案内用軸と軸受との双方の案内面間に上記
クロスローラ方式によって配置される、多数のころに適
応させ2列の■形溝形状に成形される、各々の傾斜転走
面間に介在させたころを介し、移動台の上面の垂直方向
主荷重と共に、水平面内で台の移動方向と置薬して作用
する荷重による変位を拘束することができる。
FIG. 11 corresponds to a guide shaft in which the V-groove rolling surface of the rollers to be transferred is formed in double rows according to the cross-roller system shown in FIG. 1Z and FIG. This figure shows an embodiment of the bearing structure of the present application in which the circulation path of the rollers rolling while supporting the load between the bearings is formed in a double row. In the figure, 2 is the roller cage, 5 is the roller, 9 9a is the linear guide shaft, 9a is the screw hole for fixing the linear guide shaft, 10 is the bearing body, 1
0a is a screw hole for fixing the bearing, 12.13 is a bearing component that forms a circulation path for the grooved rollers inside the bearing, and 14 is for preventing the rollers and retainer from falling off from the circulation path inside the bearing that occurs during bearing operation. Sheet metal, 14c is a screw for fixing the wrong sheet metal,
15 are bearing side plates at both axial ends of the bearing, and 15c are screws for fixing the bearing component 15 to the bearing body. In addition, (A) to (D) in the figure are front views of this embodiment, (6) is a side view, and (C) is a plan view. Side view of F-F
This is a cross-sectional view along the cross-sectional line, and in Figure fnl, the part is shown in Figure (A
) shows the structure of the bearing according to the cross-sectional line G-G of FIG. This is a double-row configuration instead of a single-row raceway configuration. Therefore, the bearings shown in these examples can be used at the front and rear of various machines.
When applying the linear motion guide of a horizontally or vertically movable table, bearings in which V-shaped grooves of the load area rollers are formed in a single row are installed on both sides of the movable table.
The bearing arrangement seen in the side view of Figure (B) and the upper and lower surfaces of both ends of the moving table in this embodiment correspond to the main load in the vertical direction of the moving table as shown in the side view of Fig. 14). In comparison with the case where a linear motion guide is configured by arranging bearings, the load bearing capacity of the bearing can be increased four times in this embodiment with respect to the main load acting in the vertical direction of the movable table. Further, the present embodiment is constructed by applying a direct drive wheel bridge. In the reciprocating movable table, each slope is formed into two rows of ■-shaped grooves to accommodate the large number of rollers arranged between the guide surfaces of the guide shaft and the bearing by the above-mentioned cross roller method. Through the rollers interposed between the rolling surfaces, it is possible to restrain the displacement due to the vertical main load on the upper surface of the moving table as well as the load acting in conjunction with the moving direction of the table in the horizontal plane.

従って移動台の往復運動では、空間的にX軸、y軸、X
軸の直交3軸で許容される、各々の軸における直動と回
転についての6自由度のうち、5自由度の拘束を行い、
例えば上記x、y、z軸のうちX軸のみの直動を許容す
る際、本実施例と同じく、高荷重用として作られている
この種直動ころ軸受の従来品においては、軸と軸受間に
配置される荷重負荷域におけるころの回転軸心は、長方
形状断面形状より成る案内用軸において、ころの転走面
となる上下、左右の而と平行に、またころ相互間におい
ても転走方向には直角を保ちながら平行に配置されて、
案内面に直角方向の荷重を支持することはできるが、上
記本実施例転走面における3方向荷重に対する拘束力を
期待することはできない、  従ってこの種直動ころ軸
受を用い、方形、長方形状の軸、または移動台の直動案
内を構成する場合、上記従来品のこの種ころ軸受におい
ては、上記軸、または移動台の上面と下面、ならびに直
動方向に平行な両側面との合計4面に配置して直動案内
を形成することが必要である。 」−記本願軸受実施例
では、−h記したように軸と軸受間のV溝形ころの転走
面の形成によって両者間の上下、左右方向の荷重に対応
することができ、上記軸、または移動台の上面と下面、
あるいは両側面の2面に配置して、上記軸、または移動
台の直動ころがり案内構成の簡略化をはかることができ
る。
Therefore, in the reciprocating motion of the movable table, the X-axis, y-axis,
Constrain 5 degrees of freedom out of the 6 degrees of freedom for translation and rotation in each axis, which are allowed in the three orthogonal axes,
For example, when allowing linear motion only on the The axis of rotation of the rollers in the load bearing area placed between them is parallel to the rolling surfaces of the rollers, which are the upper and lower, left and right sides, and also between the rollers. They are arranged parallel to each other while maintaining a right angle to the running direction.
Although it is possible to support a load in the direction perpendicular to the guide surface, it is not possible to expect a restraining force against loads in three directions on the raceway surface of this embodiment. When configuring a linear motion guide for a shaft or a moving table, in the above-mentioned conventional roller bearing, a total of 4 It is necessary to arrange it in a plane to form a linear guide. In the bearing embodiment of the present application, as noted in -h, by forming the rolling surface of the V-groove rollers between the shaft and the bearing, it is possible to cope with loads in the vertical and horizontal directions between the shaft and the bearing. or the top and bottom surfaces of the moving platform,
Alternatively, by arranging them on both sides, the linear motion rolling guide structure of the shaft or the moving table can be simplified.

第15図は本願直動ころ軸受の実施例において、案内用
軸の両側面に成形したV溝形ころの転走面に対応し、移
動台の両側に上記本願直動ころ軸受における、荷重負荷
域のころの転走面、ならびにころの循環径路を形成した
もので、図において2はころの保持器、5はころ、6は
案内用軸におけるV溝形ころの転走面、7&i軸受@V
溝形ころの転走面、9は案内用軸、 9aは該案内用軸
定置用のねじ孔、10は軸受本体、10aは移動台に対
する軸受本体定石用のねじ孔、+2.+3は軸受内ころ
の循環径路形成用部品、15は軸受側板、 +5cは軸
受本体10に対する側板固定用のねじである。 図示の
ように本実施例においては、方形断面形状の案内用添付
図中の両側面に形成した。1対の90°V溝形状ころの
両側面に対応して、軸受本体10においては、荷重負荷
域における90°V溝形ころの転走面7を成形すると八
に、該転走面7の軸方向両端に連り、軸受内ころの循環
径路を、第13図の本願軸受実施例の図中に示した、軸
受構成部品12.13における1対のm環径路形成用V
形溝+2a、+3cと同じく、荷重負荷域に連る軸受内
軸方向長円形状alI!!径路構成用V形満を形形溝た
、軸受構成用部品12.13を図示のように軸受本体重
◎に適合して、軸受内ころの循環径路を形成すると共に
、軸受本体1Gの軸方向両端面には、上記軸受構成部品
12、+3の軸受本体に位置ぎめ用側板15を定直し、
該銅板をねじ15cにより軸受本体に固定して軸受の構
成をはかったものである。
FIG. 15 shows, in an embodiment of the linear motion roller bearing of the present invention, a load is applied to the rolling surface of the V-groove rollers formed on both sides of the guide shaft on both sides of the moving table in the linear motion roller bearing of the present invention. In the figure, 2 is the roller cage, 5 is the roller, 6 is the V-groove roller raceway surface on the guide shaft, and 7 & i bearing @ V
9 is a guide shaft; 9a is a screw hole for fixing the guide shaft; 10 is a bearing body; 10a is a screw hole for fixing the bearing body relative to the movable table; +2. +3 is a part for forming a circulation path for the inner rollers of the bearing, 15 is a bearing side plate, and +5c is a screw for fixing the side plate to the bearing body 10. As shown in the figures, in this embodiment, the guides have a rectangular cross-sectional shape and are formed on both sides of the accompanying drawings. In the bearing body 10, the raceway surfaces 7 of the 90° V grooved rollers in the load bearing region are formed corresponding to both side surfaces of the pair of 90° V grooved rollers. A pair of m-ring path forming Vs in the bearing component 12.13 shown in FIG. 13 of the bearing embodiment of the present invention are connected to both ends in the axial direction, and the circulation path of the bearing inner rollers is shown in FIG.
Similar to shape grooves +2a and +3c, the bearing inner axial direction oval shape alI that connects to the load bearing area! ! The bearing component parts 12 and 13, which have V-shaped grooves for path configuration, are adapted to the bearing body weight ◎ as shown in the figure to form a circulation path for the bearing inner rollers, and also to form a circulation path in the axial direction of the bearing body 1G. On both end faces, side plates 15 for positioning are fixed on the bearing body of the bearing components 12 and +3.
The bearing is constructed by fixing the copper plate to the bearing body with screws 15c.

従って上記直動案内においては、案内用軸の両側面に成
形した1対のV溝形ころの両側面に対応して、軸受面に
成形した荷重負荷域1対のV溝形ころの転走面7と、該
ころの転走面7の軸方向両端に連なる半円弧状と、該半
円弧状の他端に連なる直線状径路とで。
Therefore, in the above-mentioned linear motion guide, the rolling motion of a pair of V-groove rollers in the load bearing area formed on the bearing surface corresponds to both sides of the pair of V-groove rollers formed on both sides of the guide shaft. surface 7, a semicircular arc extending to both axial ends of the rolling surface 7 of the roller, and a linear path extending to the other end of the semicircular arc.

軸方向長円形状に形成される循環径路内に。In the circulation path formed in an axially oval shape.

本願特許請求の範囲!)記載の保持器を適用した多数の
ころを、該ころの軸心を相互間で交互に直交して配列し
、軸受作動時において、該軸受の上下、左右方向に作用
する荷重を、上記案内用添付図中と軸受本体10に成形
したV溝形転走面間のころにおいて、均等に負荷して作
動することができる。
Scope of patent claims! ) A large number of rollers to which the cage described in ) is applied are arranged so that the axes of the rollers are alternately orthogonal to each other, and when the bearing is operated, the loads acting in the vertical and horizontal directions of the bearing are transferred to the above-mentioned guide. The rollers shown in the attached drawings and between the V-groove raceway surfaces formed on the bearing body 10 can be operated with an even load applied to them.

第16図(A)〜(D1.(B)は図示のように案内用
方形軸の両側面の各々に、■溝形ころの転走面を複列に
成形し、該転走面に対応して、上記第15図の実施例よ
りも高負荷容量に構成した、本願直動ころ軸受実施例の
正面図と側面図を示し、また第17図は該軸受実施例の
各構成部分を斜視図によって示したものであり、これら
の第16図と第17図の図中において、2は軸受内ころ
に適用した保持器、5はころ、6は上記案内用添付図中
における■溝形ころの転走面、7は軸受に成形した荷重
負荷域におけるV溝形ころの転走面、 9aは案内用添
付図中定置用ねじ孔、10は軸受本体、10aは移動台
への軸受定置用のねじ孔、10bとIncは軸受本体1
0に対する側板15固定用のねじ孔、14は軸受を案内
用軸から取外した際、軸受内機環径路中の荷重負荷域V
形溝からのころの脱落を防止するための板金1口aは誤
板金に成形した上記ころの脱落防止用の孔、 +4bは
板金口を軸受本体10に固定するための孔、15は輪受
内ころの循環径路形成用■形溝+sdを成形した側板、
+6bは取付ねじlscにより、側板!5を輪受本体1
0に対し、ねじ孔10bにおいて固定するためのねじ、
ISeはねじlsfを用い側板15において上記v形溝
ISaを成形した部分を軸受本体に固定するための取付
孔、11+、11+’は上記側板15に成形したV形溝
+sdと共に、軸受内ころの循環径路を形成するための
V形溝16a、16a’を成形した軸受構成部品である
。 従って本願直動ころ軸受における本実施例において
は、添付第16図IA)、lBl と第17図に示した
ように。
As shown in Figure 16 (A) to (D1. (B), double rows of raceway surfaces of grooved rollers are formed on each of both sides of the guide rectangular shaft to correspond to the raceway surfaces. FIG. 17 shows a front view and a side view of an embodiment of the linear acting roller bearing of the present application, which has a higher load capacity than the embodiment shown in FIG. 15, and FIG. 17 shows a perspective view of each component of the bearing embodiment. In these figures, 2 is a retainer applied to the inner roller of the bearing, 5 is a roller, and 6 is a grooved roller in the above attached guide diagram. 7 is the raceway surface of the V-groove roller in the load area formed on the bearing, 9a is the screw hole for fixing in the attached figure for guidance, 10 is the bearing body, 10a is for fixing the bearing on the moving table The screw holes 10b and Inc are the bearing body 1
The screw hole 14 is for fixing the side plate 15 to 0, and 14 is the load area V in the bearing internal ring path when the bearing is removed from the guide shaft.
Sheet metal for preventing the rollers from falling off from the groove 1A is a hole formed in the wrong sheet metal to prevent the rollers from falling off, +4b is a hole for fixing the sheet metal to the bearing body 10, and 15 is a ring bearing. ■ Side plate with molded groove + sd for forming circulation path of inner roller,
+6b is attached to the side plate by mounting screw lsc! 5 to the wheel holder body 1
0, a screw for fixing in the screw hole 10b,
ISe is a mounting hole for fixing the V-shaped groove ISa formed in the side plate 15 to the bearing body using a screw Isf. This is a bearing component in which V-shaped grooves 16a and 16a' are formed to form a circulation path. Therefore, in this embodiment of the linear roller bearing of the present application, as shown in the attached FIGS. 16A), 1B1 and 17.

案内用方形添付図中の両側面の各々に2対のV溝形ころ
の両側面を成形し、該両側面に対応して架台状軸受本体
10の内側両側面の2か所に、同じくv溝形ころの転走
面7を成形し、11の両側面に対応し軸受側荷重負荷域
転走面を形成する軸受本体の転走面7の軸方向両端には
、践転走面7に連り、軸受側板15に成形したV溝形案
内満ISdと、軸受構成部品16.16’に成形した同
じくv溝形案内溝16a、 16aとで、軸受ころと保
持器の走行径路を形成したもので、該11fl径路中に
上記ころ用保持器2と共に供給した多数のころ5が、上
記添付図中と軸受本体10に成形したV溝形ころの両側
面と7間の荷重負荷域で転走する際には、添付第15図
の実施例と同じく、上記案内用軸両側面に直交2平面よ
り成るV溝形に成形した各々の転走面に対して、交互に
回転軸直交して配列された上記多数のころを介し、軸受
に作用する上下、左右の荷重を均等に負荷することがで
き、また該負荷容量の値は上記添付第15図に示した実
施例の値との比較において倍加することができる。
Two pairs of V-groove rollers are molded on each of the two side surfaces of the guide square in the attached drawing, and two pairs of V-groove rollers are formed at two locations on both inner side surfaces of the frame-like bearing body 10 corresponding to the two side surfaces. The raceway surface 7 of the grooved rollers is molded, and the raceway surface 7 of the bearing body, which corresponds to both side surfaces of the rollers 11 and forms the bearing-side load area raceway surface, is provided at both axial ends of the raceway surface 7. The running path of the bearing rollers and cage is formed by the V-groove guide grooves ISd formed on the bearing side plate 15 and the same V-groove guide grooves 16a, 16a formed on the bearing component parts 16 and 16'. The large number of rollers 5 supplied together with the roller cage 2 into the 11 fl path rolls in the load area between the attached figure and both sides of the V-groove rollers formed in the bearing body 10. When running, as in the embodiment shown in the attached Fig. 15, the rollers are alternately perpendicular to the rotational axis on each rolling surface formed in a V-groove shape consisting of two orthogonal planes on both sides of the guide shaft. Through the large number of arranged rollers, the loads acting on the bearing in the upper, lower, left and right directions can be applied equally, and the value of the load capacity is compared with the value of the embodiment shown in the attached Figure 15 above. can be doubled in

第18図(Al 、 (81、第19図ならびに第20
図は。
Figure 18 (Al, (81, Figures 19 and 20)
The diagram is.

上記添付第15図、第16図に示した本願軸受構成にお
いて、更に軸受負荷容量と、軸受剛性の向上をはかるこ
とを目的として、図示のように軸受案内用軸の両側面と
上面との軸方向の角に成形した1対の傾斜V溝形ころの
転走面と、該転走面に相対して案内用軸両側に成形した
。他のl対の傾斜V溝形ころの転走面とにおいて、これ
らの転走面に上記クロスローラ方式に従い、交互に直交
して配列された多数のころの円筒面が、上記案内用軸の
上下面に平行な面と、両側面に直交した2平面間で傾@
V溝形に形成される2転走面に対して交互に接触を保ち
、軸受に作用する上下、左右の荷重を支持して転走する
ことができるように構成したものである。
In the bearing structure of the present application shown in the above-mentioned attached FIGS. 15 and 16, in order to further improve the bearing load capacity and bearing rigidity, as shown in the figure, the axis of both sides and the upper surface of the bearing guide shaft is A pair of inclined V-groove rollers were formed at the corners of the direction, and the rollers were formed on both sides of the guide shaft opposite to the rolling surfaces. The cylindrical surfaces of a large number of rollers arranged alternately and perpendicularly to the raceway surfaces of the other l pairs of inclined V-groove rollers according to the above-mentioned cross roller system are connected to the raceway surfaces of the guide shaft. Tilt between a plane parallel to the top and bottom and two planes perpendicular to both sides @
It is configured so that it alternately maintains contact with two rolling surfaces formed in a V-groove shape and can roll while supporting vertical, horizontal, and horizontal loads acting on the bearing.

すなわち添付第18図(Al 、 (B)は上記本願実
施例の正面図と側面図、第19図は同じく上記本願実施
例における軸受構成部分の斜視図、第20図は更に該軸
受構成部分における軸受内w環径路構成部品の投影図で
あり、またこれらの各図において、2はこる保持器、5
はころ、6は案内用軸における上記V溝形ころの転走面
、7は軸受内荷重負荷域に形成したV溝形ころの転走面
、9は案内用軸、 9aは案内用添付図中定置用ボルト
孔、!0は軸受本体、10aは移動台に対する軸受定置
用ねじ孔、 jobは軸受本体に対する側板15固定用
ねじ孔、10dは軸受内ころの循環径路形成用管状部品
配置用孔、15は上記軸受側板、15bは軸受本体10
に対する側板15固定ねじ用の孔、lscは上記軸受本
体に対する側板15固定用ねじ、lSgは銅板15に対
する軸受円循環径路形成用部品17.18用凹部、lS
hは側板15に対する上記軸受部品位置ぎめ用凹部、1
7は18と共に軸受内ころの循環径路中の湾曲部を形成
するための軸受構成部品、 17a、 18aは上記軸
受構成部品17と18に成形した、ころの循環径路中の
湾曲部形成用V形溝、17b、18bは軸受内軸方向長
円形状ころの循環径路構成用部品間の接合部形成用V形
溝、17c、 18cは軸受側板の凹部15hに対応し
て成形した、側板15に対する部品17.18位置ぎめ
川の凸部、17d、18dは上記目と18間の位置ぎめ
用凸部と該凸部嵌合用の孔、I9は軸受内における上記
ころの循環径路の直線走行部を形成するために、軸方向
に方形孔19aを成形し、また軸方向両端部において、
上記径路中の湾曲部を形成する部品17、10における
V膨満17b、 18bで形成される接合部に対応して
接合面を成形した管状軸嚢内循環径路構成部品である。
That is, attached FIG. 18 (Al, (B)) is a front view and side view of the embodiment of the present application, FIG. 19 is a perspective view of the bearing component in the embodiment of the present application, and FIG. 20 is a further diagram of the bearing component. 2 is a projected view of the w-ring path component parts in the bearing, and in each of these figures, 2 is a cage; 5 is a
6 is the raceway surface of the V-groove rollers on the guide shaft, 7 is the raceway surface of the V-groove roller formed in the bearing internal load area, 9 is the guide shaft, 9a is the attached diagram for the guide Bolt hole for medium stationary use! 0 is the bearing body, 10a is a screw hole for fixing the bearing to the moving table, job is a screw hole for fixing the side plate 15 to the bearing body, 10d is a hole for arranging a tubular part for forming a circulation path for the inner rollers of the bearing, 15 is the bearing side plate, 15b is the bearing body 10
lsc is the screw for fixing the side plate 15 to the bearing body, lSg is a recess for the bearing circular circulation path forming parts 17 and 18 to the copper plate 15, lS
h is a recess for positioning the bearing component with respect to the side plate 15, 1
7 is a bearing component for forming a curved part in the circulation path of the bearing inner rollers together with 18; 17a and 18a are V-shaped parts formed on the bearing components 17 and 18 to form a curved part in the circulation path of the rollers; Grooves 17b and 18b are V-shaped grooves for forming joints between components of the circulation path of the oval rollers in the bearing inner axial direction, and 17c and 18c are parts for the side plate 15 formed to correspond to the recess 15h of the bearing side plate. 17.18 Positioning convex portions, 17d and 18d form a positioning convex portion between the above-mentioned eye and 18 and a hole for fitting the convex portion, I9 forms a straight running portion of the circulation path of the rollers in the bearing. In order to do this, a square hole 19a is formed in the axial direction, and at both axial ends
This is a tubular intra-abdominal circulation path component whose joint surface is shaped to correspond to the joint formed by the V-bulges 17b and 18b in the parts 17 and 10 that form the curved portion in the path.

従って本願直動ころ軸受における上記実施例においては
、添付各図に示したように、案内用添付図中0両側面と
上面との角に成形した上記1対の傾斜V溝形状ころの両
側面と、該転走面に対応し、同じく案内用添付図中の両
側面の一定範囲を隔て下方に傾斜V溝形状に成形した1
対のころの両側面とに対し、軸受内には荷重負荷域の転
走面7を含み、軸方向長円形状ころのl1lifIA径
路を、上記添付第18図〜第20図に示した実施例にお
ける、案内用軸の取付面に平行に形成することなく、添
付第8図、第9図に示したように、案内用軸の転走面に
配列したころの中心線を含み、上記案内用軸の上下面に
平行な平面間に約45°の角度傾斜した平面内に、第1
9図、第20図に示した軸受円径路構成部品IT、 I
l1、 19を軸受本体に成形した取付孔10d、およ
び側板15の凹fi15gに配置し構成したもので、こ
のような構成より成る本実施例においては、軸受の上下
、左右に作用する主荷重は、上記添付第15図、第16
図に示した案内用軸の両側面に成形したV溝形ころの転
走面と、該転走面に対応し軸受円荷重負荷域に成形した
V溝形転走面間に介在したころ外周面により、上記軸受
に作用する主荷重の作用方向に対し45°傾斜した転走
面間で支持される軸受構成と異り、案内用軸と軸受転走
面間におけるころの荷重支持力は、軸、軸受間接触応力
として上下、左右方向に分解されることなく、直接案内
用軸と軸受における上記主荷重と該主荷重に直角方向の
荷重支持力として作用し、上記軸受主荷重としての上下
方向、ならびに案内用軸両側面における左右方向の軸受
の耐荷重性の向上をはかることができ、また軸受上下方
向の軸受荷重の作用方向における。案内用軸と軸受間弾
性近接量に関連した軸受剛性値については、添付第15
図、第16図の実施例と比較し、上記第18図〜第20
図に示した本実施例における、軸に対する軸受変位型は
僅少であり、荷重作用下における軸受剛性値の向上をは
かることができる。 更に上記添付第8図と第9図に示
した、球形外周面を基本として形成した本願軸受用ころ
保持器の特性に従い、軸受内ころの循環径路を立体的に
形成した、本願軸受構成の実施例においては、軸受形成
上の立体的容積が限定されるこの種軸受において、軸受
内lli環径路内湾曲部の上記曲率半径の増加をはかり
、径路内ころの円滑な走行をはかることができろ。
Therefore, in the above-mentioned embodiment of the linear motion roller bearing of the present invention, as shown in the attached drawings, both side surfaces of the pair of inclined V-groove rollers are formed at the corners of the 0 both side surfaces and the top surface in the attached drawings for guidance. 1, which corresponds to the rolling surface and is formed into a downwardly inclined V-groove shape separated by a certain range on both sides as shown in the attached diagram for guidance.
The embodiment shown in FIGS. 18 to 20 attached above includes a raceway surface 7 in the load bearing area in the bearing with respect to both side surfaces of the pair of rollers, and the l1lifIA path of the axially oval rollers. The guide shaft includes the center line of the rollers arranged on the rolling surface of the guide shaft, as shown in the attached FIGS. 8 and 9, without being parallel to the mounting surface of the guide shaft. The first
Bearing circular path components IT and I shown in Figures 9 and 20
l1 and 19 are arranged in the mounting hole 10d formed in the bearing body and in the concave fi15g of the side plate 15. In this embodiment with such a configuration, the main loads acting on the top, bottom, left and right of the bearing are as follows. , Figures 15 and 16 attached above.
The outer periphery of the roller interposed between the raceway surfaces of the V-groove rollers formed on both sides of the guide shaft shown in the figure and the V-groove roller raceway formed in the bearing circular load area corresponding to the raceway surfaces. Unlike the bearing configuration in which the rollers are supported between the rolling surfaces inclined at 45 degrees with respect to the direction of the main load acting on the bearing, the load supporting force of the rollers between the guide shaft and the bearing rolling surface is The contact stress between the shaft and bearing is not resolved vertically or horizontally, but directly acts as a load supporting force in the direction perpendicular to the main load on the guide shaft and bearing, and the main load on the bearing is It is possible to improve the load bearing capacity of the bearing in the horizontal direction as well as on both sides of the guide shaft, and in the direction in which the bearing load is applied in the vertical direction of the bearing. Regarding the bearing stiffness value related to the amount of elastic proximity between the guide shaft and the bearing, see attached No. 15.
18 to 20 above.
In this embodiment shown in the figure, the bearing displacement type with respect to the shaft is small, and it is possible to improve the bearing rigidity value under the action of a load. Furthermore, in accordance with the characteristics of the roller retainer for the present bearing, which is basically formed with a spherical outer circumferential surface, as shown in the above-mentioned attached FIGS. 8 and 9, the present bearing structure is implemented in which the circulation path of the bearing inner rollers is formed three-dimensionally. In this example, in this type of bearing where the three-dimensional volume of the bearing is limited, it is possible to increase the radius of curvature of the curved part in the inner ring path of the bearing so that the rollers in the path can run smoothly. .

添付第21図(A)〜(D)、+B+ および第22図
(A)〜(D)、 (B)は、上記添付第15図〜第1
9図に示した、案内用角軸の両側面に成形した、ころの
転走面に対応して構成した。直動ころ軸受の実施例にお
いて、さらに軸受に作用する軸受荷重の特性、軸受構成
のlI易さ、移動台に対する軸受定置方法によって相違
する1本願直動ころ軸受の構成を示したものである。 
またこれらの図中において2はころの保持器、5はころ
、6.6aは案内用軸に成形したころの転走面、7.7
aは軸受円荷重支持範囲におけるころの転走面、9は案
内用角軸、9aは添付図中定五用ボルト孔、10は軸受
本体、10aは軸受本体定置用ねじ孔、15は軸受側板
、19は軸受内軸方向循環径路形成用管である。
Attached Figures 21 (A) to (D), +B+ and Figures 22 (A) to (D), (B) are the same as the above attached Figures 15 to 1.
It is constructed to correspond to the rolling surfaces of the rollers, which are molded on both sides of the square guide shaft shown in Figure 9. In the embodiment of the linear motion roller bearing, the structure of the linear motion roller bearing of the present invention is shown which differs depending on the characteristics of the bearing load acting on the bearing, the ease of bearing construction, and the method of positioning the bearing with respect to the moving table.
In these figures, 2 is a roller cage, 5 is a roller, 6.6a is a roller rolling surface formed on a guide shaft, and 7.7 is a roller cage.
a is the rolling surface of the rollers in the bearing circular load support range, 9 is the guide square shaft, 9a is the fixed bolt hole in the attached figure, 10 is the bearing body, 10a is the screw hole for fixing the bearing body, 15 is the bearing side plate , 19 are tubes for forming an axial circulation path inside the bearing.

はじめに第21図の実施例において、図中の(Alは本
実施例の部分を断面図で示した正面図、図(ロ)は同じ
く部分を断面図で示した側面図である。 図示のように
本実施例においては、案内用添付図中の両側面に成形し
た2対のころの両側面についてはV溝形状に、また68
においては図示のように上記添付図中の両側面と上面の
角の軸方向に、上記V溝形転走面の片側傾斜転走面を形
成し、該これら転走面に対応して軸受内ころの循環径路
を、添付第18図〜第20図の実施例のように、軸受本
体の上下面と両側面に傾斜し、また上記軸受本体外周面
の隣接2面間の4角に位置して。
First, in the embodiment shown in FIG. 21, (Al in the figure is a front view showing a section of this embodiment, and figure (B) is a side view showing the same section as a section. In this embodiment, both sides of the two pairs of rollers molded on both sides in the attached diagram for guidance are V-shaped, and 68 mm.
As shown in the figure, one side inclined raceway surface of the V-groove raceway surface is formed in the axial direction of the corners of both side surfaces and the top surface in the attached drawing, and the inner surface of the bearing is formed in correspondence with these raceway surfaces. The circulation path of the rollers is inclined on the upper and lower surfaces and both side surfaces of the bearing body, and is located at the four corners between two adjacent surfaces of the outer peripheral surface of the bearing body, as in the embodiment shown in the attached FIGS. 18 to 20. hand.

径路内軸方向の走行径路形成用管状部品!9を適用し形
成したもので、該軸受円循環径路において、上記案内用
軸を面と両側面間の角に成形した、両側面aに対応し形
成した軸受内循環径路内におけるころの回転軸心は、上
記したクロスローラ方式に従い、相互に交差することな
く、上記案内用軸の両側面aに対応して、相互間の平行
を保ち配置される。
Tubular parts for forming the travel path in the axial direction! 9, and in the bearing circular circulation path, the guide shaft is formed at the corner between the surface and both side surfaces, and the rotation axis of the roller in the bearing internal circulation path formed corresponding to both side surfaces a. The cores are arranged parallel to each other in accordance with the above-described cross-roller method, without intersecting each other, and corresponding to both side surfaces a of the guide shaft.

ついで添付第22図(A)〜(D1.(B)に示した実
施例では、図示のように添付図中の両側面と上面との角
に成形したl対の傾斜V溝形転走面においては、添付第
18図〜第20図の実施例に従い、また軸角側面の中央
に位1バ成形したV溝形転走面においては、添付第15
図に示した実施例に従って軸受を構成し、軸受内循環径
路中へのころの配置は、軸受荷重の作用方向により、例
えば軸受の上方より下方に作用する主荷重に対しては、
上記軸上面と両側面との角に成形した傾斜V溝形転走面
において、軸と軸受llTl荷重負何域負荷域てのころ
の回転軸心を、添付図中の上、下面と平行に配置し、ま
た上記添付図中両側面の中央に位置して成形した、■溝
形転走面と軸受円荷重負荷域転走面間ころに対しては、
上記クロスローラ方式に従って荷重を負荷するように配
置した際には、軸受に作用する上下、左右方向に作用す
る荷重のうち、上方より下方に作用する主荷重に対して
は、主として上記軸上面と両側面の角に成形した傾斜V
溝形転走面において、また左右方向と、下方より上方に
作用する荷重に対しては輪画側面中央のV溝形転走面に
おいて負荷することができ、本願直動案内用軸受の耐主
荷重特性の向上をはかることができる。
Next, in the embodiment shown in attached FIGS. 22(A) to (D1.(B)), l pairs of inclined V-groove raceway surfaces are formed at the corners of both side surfaces and the top surface in the attached figures as shown in the figures. In this case, according to the embodiment shown in attached Figs. 18 to 20, and in the case of a V-groove raceway surface formed with a bar at the center of the shaft angle side surface, the attached Fig. 15 is applied.
The bearing is constructed according to the embodiment shown in the figure, and the arrangement of the rollers in the bearing internal circulation path is determined depending on the bearing load acting direction, for example, for a main load acting from above to below the bearing.
In the inclined V-groove raceways formed at the corners of the upper surface and both side surfaces of the shaft, the axis of rotation of the rollers in the load region of the shaft and bearings is aligned parallel to the upper and lower surfaces in the attached diagram. ■For the groove-shaped raceway surface and the roller between the bearing circle load area raceway surface, which is arranged and molded at the center of both sides in the attached diagram above,
When arranged to apply loads according to the cross-roller method described above, among the loads that act on the bearing in the vertical and horizontal directions, the main load that acts from the top to the bottom is mainly applied to the top surface of the shaft. Inclined V molded into the corners of both sides
Loads acting on the groove-shaped raceway surface, and in the left-right direction and from the bottom to the top, can be applied to the V-groove raceway surface in the center of the wheel side surface. It is possible to improve load characteristics.

第23図(A) 、 +B)は、上記添付第15図〜第
22図に示した、案内用角軸の両側面に成形したころの
転走面に対応して、軸受内に上記本願軸受保持器を適用
したころの循環径路を形成した軸受構成と同じく、案内
用角軸の両側面に成形した球の転走面に対応し、軸受内
に添付第1図(Dl と第5図に示した本願軸受用保持
器を適用した球の循環径路を形成して構成した、直動球
軸受の実施例の正面図と側面図を示し、また添付第24
図(A)〜(D1.(B)は同じく上記直動球軸受構成
における部分拡大図である。 これらの第23図と第2
4図において。
Figures 23(A) and +B) show the bearing of the present application in the bearing corresponding to the rolling surfaces of the rollers formed on both sides of the square guide shaft shown in the attached Figures 15 to 22. Similar to the bearing configuration in which a cage is applied to form the circulation path of the rollers, the rollers attached inside the bearing correspond to the rolling surfaces of the balls formed on both sides of the square guiding shaft. A front view and a side view of an embodiment of a linear motion ball bearing configured by forming a circulation path for balls to which the bearing retainer of the present application is applied, and attached No. 24
Figures (A) to (D1. (B) are also partially enlarged views of the above-mentioned linear motion ball bearing configuration.
In Figure 4.

4は球保持器、6Cは案内用軸両側面に成形した傾斜V
溝形保持器片側走行面における球の転走面、7cは上記
両側面に対応し、傾斜V溝形保持器走行面の片側に成形
した軸受荷重負荷域の球の転走面、9は案内用軸、10
は軸受本体、15は軸受側板、16は循環径路形成用軸
受構成部品、20は球、14は軸受荷重負荷域転走面か
らの球脱落防止用の板金である。
4 is a ball holder, and 6C is a sloped V formed on both sides of the guide shaft.
Ball rolling surface on one running surface of the groove-shaped cage, 7c corresponds to the above-mentioned both sides, and ball rolling surface in the bearing load area formed on one side of the inclined V-groove cage running surface, 9 is a guide. Axle for use, 10
15 is a bearing body, 15 is a bearing side plate, 16 is a bearing component for forming a circulation path, 20 is a ball, and 14 is a metal plate for preventing the ball from falling off from the rolling surface in the bearing load area.

図示のように本実施例においては、添付図中と軸受本体
10に成形した球の転走面に形成される荷重負荷域の球
と球保持器の走行径路の軸方向両端部に連なり、軸受内
に添付第16図と第17図に示した実施例と同じく、軸
受18l@15と軸受構成部品16に成形したV形溝I
Saと+6aとにより軸受内法保持器の循環径路を形成
し、該径路内で循環する球には、」二重箱1図(D)と
第5図に示した保持@4が適用されて、上記本願直動こ
ろ軸受巾のころと同じく、径路内多数のころは上記球保
持器を介して、常に隣接ころ相互間の直接接触を回避し
、また径路内における隣接球保持器間では、径路中の湾
曲部においても相互間の球形外周面間のころがり接触に
より、保持器間の相対すべり摩擦を生じることなく、ま
た保持器の径路自走行時においては、上記した軸受円循
環径路壁1sa、 16aとの間に僅かの隙間を保ち成
形した、走行案内面4bに導かれ、径路内保持器の蛇行
を生じることなく径路内の円滑な循環走行を期待するこ
とができる。
As shown in the figures, in this embodiment, the balls in the load bearing area formed on the rolling surface of the balls molded in the bearing body 10 are connected to both ends in the axial direction of the running path of the ball retainer, and the bearing Similar to the embodiment shown in FIGS. 16 and 17 attached hereto, a V-shaped groove I is formed in the bearing 18l@15 and the bearing component 16.
Sa and +6a form a circulation path of the bearing internal cage, and the holding @ 4 shown in double box 1 (D) and Fig. 5 is applied to the balls circulating in this path. As with the rollers of the linear acting roller bearing width of the present application, a large number of rollers in the path always avoid direct contact between adjacent rollers via the ball cage, and between adjacent ball cages in the path, Due to the rolling contact between the spherical outer circumferential surfaces of the inner curved portions, relative sliding friction between the cages does not occur, and when the cage is running on its own path, the above-mentioned bearing circular circulation path wall 1sa, It is guided by the travel guide surface 4b, which is formed with a slight gap between it and the guide surface 16a, and can be expected to run smoothly in the path without meandering of the in-path holder.

従って軸受円循環径路の球に保持器を適用することなく
構成した、この種直動球軸受の従来品と異り、本軸受構
成の実施例においては、案内用軸と軸受間に設定される
予荷重と軸受荷重の作用下における、上記添付第10図
で説明した径路内各々の球相互間に作用する、循環域か
ら負荷域への移動時に繰返される球相互間の衝撃的接触
圧変動と、誠接触圧と接触圧変動に伴う隣接隙間と球と
径路壁閤の衝突、ならびに径路内法の蛇行によって生じ
る球と径路壁間の接触圧に比例した走行摩擦力の増大等
による1対音を伴う軸受内振動発生の回避、軸受案内精
度と作動時の軸受摩擦・摩耗特性等の低下を回避して、
ころがり直動案内用高性能直動球軸受を構成することが
できる。
Therefore, unlike conventional linear motion ball bearings of this kind, which are configured without applying a cage to the balls in the bearing circular circulation path, in this embodiment of the bearing configuration, a cage is installed between the guide shaft and the bearing. Under the action of preload and bearing load, impact contact pressure fluctuations between the balls acting between each of the balls in the path described in the attached Figure 10 above and repeated during movement from the circulation area to the load area and , one-pair noise due to the collision between the adjacent gap and the ball and the path wall due to contact pressure fluctuations, and the increase in running friction force proportional to the contact pressure between the ball and the path wall caused by the meandering of the inside path method. Avoiding the occurrence of vibrations in the bearing accompanied by vibrations, and the deterioration of bearing guidance accuracy and bearing friction and wear characteristics during operation.
A high performance linear motion ball bearing for rolling linear motion guide can be constructed.

第25図は上記添付第15図〜第24図で説明した本願
直動ころがり案内における各実施例について、軸受の上
下、左右方向に対するiil荷重性の相違を比較したも
ので、その際図中の谷実施例において荷重負荷域におけ
る転動体の大きさと、転動体数は等しく、また図中の転
動体にころを用いた各実施例において、ころの回転軸心
について、該回転軸心を(A)〜(D)〜(H)の各図
中の対をなした各々の転走面において、ころの軸心を直
交させ配列した場合と、または、隣接ころ間の軸心を平
行に配列して構成した実施例を示し、また図中の(A)
〜(D)〜(11の各々右側に矢印で示した、軸受の上
下、左右方向の負荷容量は、図(A)〜(D)における
軸の両側面に形成した1対のV溝形転走面に対して、上
記クロスローラ方式に従ってころを配置して構成される
、添付第15図に示した上下、左右方向等負荷容量軸受
実施例における負荷容量との比較により示したものであ
る。
FIG. 25 compares the differences in IIL load characteristics in the vertical and horizontal directions of the bearing for each of the embodiments of the linear motion rolling guide of the present invention explained in the attached FIGS. 15 to 24. In the valley embodiment, the size of the rolling elements in the load area and the number of rolling elements are the same, and in each of the embodiments in which rollers are used as the rolling elements in the figure, the rotation axis of the roller is ) to (D) to (H), the axes of the rollers are arranged perpendicular to each other, or the axes of adjacent rollers are arranged parallel to each other. (A) in the figure is shown.
~(D)~(11) The load capacity in the vertical and horizontal directions of the bearing, indicated by arrows on the right side of each figure, is determined by the pair of V-groove rollers formed on both sides of the shaft in Figures (A) to (D). This figure is shown in comparison with the load capacity of the load capacity bearing example shown in the attached FIG. 15, which has equal load capacity in the vertical and horizontal directions, and is constructed by arranging rollers in accordance with the above-mentioned cross roller system with respect to the running surface.

従って本願軸受実施例の各々において、添付第16図に
示した実施例における軸受構成において、軸の両側面2
対のV溝形転走面の全てに、上記クロスローラ方式に従
ってころを配置した、図18)の場合の軸受上下、左右
方向軸受等負荷容量は、図(A)〜(D)実施例の負荷
容量の2倍になり、また図(C)に示すように、軸受構
成において図181 と同一で、図中の添付図中の両側
面に成形した上記2対のV溝形転走面の、L方に位置し
た、l対のV溝形転走面におけるころの配置を図示のよ
うに配置した際には、軸受の上下方向の負荷容においで
、軸受の上方から作用する荷重に対しては増大し、逆に
下方から作用する荷重に対しては減少する。 また添付
第21図実施例の軸受構成を示した図(D)においては
、軸受構造において図fclの実施例と幾分異るが、添
付図中の転走面に対するころの配置は、図(C)の場合
と同一であり、軸受に作用する上下、左右方向の荷重に
対する軸受負荷容量は両者で同一になる。 図(E)に
おいては、添付図中両側面の上記2対の転走面について
、上方の1対の転走面はV溝形に、また下gs1対の転
走面は円弧状に成形し、これらの転走面に図示のように
各々ころと、球を配置し構成したもので、軸受の上下、
左右に作用する荷重に対する負荷容量は、軸受の上方か
ら下方、左右方向、下方より上方の各々の荷重の作用方
向に対応して相違し減少する。 添付第18図〜第20
図に示した軸受構成に従った図(F)の実施例において
、案内用軸両側面に形成した2対の転走面の各々に対し
、図示のようにころを配置し構成した場合の軸受負荷容
量は、上記因島)と図fB)の実施例と同様に、軸受の
上下、左右方向に対して均等であり、また該負荷容量の
大きさにおいては、上記図(Al と図f111の実施
例よりも約1.5〜3倍である。
Therefore, in each of the bearing embodiments of the present application, in the bearing configuration in the embodiment shown in attached FIG.
In the case of FIG. 18), in which rollers are arranged on all of the pair of V-groove raceway surfaces according to the above-mentioned cross roller method, the load capacities of the bearings in the vertical and horizontal directions are as shown in FIGS. (A) to (D). The load capacity is doubled, and as shown in Figure (C), the bearing structure is the same as in Figure 181, and the two pairs of V-groove raceway surfaces molded on both sides of the attached figure. , when the rollers on the V-groove raceway surfaces of l pairs located in the L direction are arranged as shown in the figure, the load acting from above the bearing is For loads acting from below, it increases, and conversely for loads acting from below, it decreases. In addition, in the diagram (D) showing the bearing structure of the embodiment in the attached Figure 21, the bearing structure is somewhat different from the embodiment in Figure fcl, but the arrangement of the rollers with respect to the raceway surface in the attached diagram This is the same as case C), and the bearing load capacity for vertical and horizontal loads acting on the bearing is the same in both cases. In Figure (E), regarding the two pairs of raceway surfaces on both sides in the attached figure, the upper pair of raceway surfaces is formed into a V-groove shape, and the lower gs pair of raceway surfaces is formed into an arc shape. , rollers and balls are arranged on these rolling surfaces as shown in the figure, and the upper and lower parts of the bearing,
The load capacity for loads acting on the left and right sides differs and decreases depending on the direction in which the load is applied, from above to below the bearing, from left to right, and from below to above. Attached Figures 18 to 20
In the embodiment shown in Figure (F) according to the bearing configuration shown in the figure, the bearing is constructed by arranging rollers as shown on each of the two pairs of raceway surfaces formed on both sides of the guide shaft. The load capacity is equal in the vertical and horizontal directions of the bearing, similar to the embodiments shown in the above figure (Al) and figure fB). It is about 1.5 to 3 times larger than the example.

図(G)の実施例は、図(F)と同一の軸受形成におい
て、q重負荷域転走面間に図示のようにころを配置し構
成したもので、上下、左右の軸受負荷容量は、図(F)
の実施例と比較し、上方より下方に作用する荷重に対す
る負荷容量は倍増し、該負荷容量に対応して左右方向の
負荷容量は半減する。 添付第22図に示した軸受構成
を示す図 (H)においては、図示のように図(Gl 
の実施例と同じく、軸受の上方より下方に作用する荷重
に対する負荷容量は大であるが、軸受左右方向の負荷容
量と、下方より上方に対する負偶容量は図(Glの場合
よりも減少する。 上記添付第23図、第24図に示し
た実施例における、図(+)に示す軸受構成における軸
受負荷容量は、図示のように軸受の上下、左右方向に対
して均等であり、該負荷容量の値は本実施例に類似して
、ころを配置し構成した図(B)、図(F)の実施例に
おける値より小である。
The embodiment shown in Figure (G) has the same bearing configuration as Figure (F), but has rollers arranged between the rolling surfaces in the q heavy load area as shown in the figure, and the bearing load capacity on the upper and lower and left and right sides is , Figure (F)
Compared to the embodiment, the load capacity for loads acting downwardly is doubled, and the load capacity in the left and right direction is halved correspondingly to the load capacity. In the diagram (H) showing the bearing configuration shown in attached Figure 22, the diagram (Gl
As in the embodiment, the load capacity for loads acting from above to below the bearing is large, but the load capacity from left to right of the bearing and the negative joint capacity from below to above are smaller than in the case of Gl. In the embodiment shown in the above attached FIGS. 23 and 24, the bearing load capacity in the bearing configuration shown in FIG. The value of is smaller than the value in the embodiments shown in FIGS. (B) and (F), in which rollers are arranged and configured, similar to this embodiment.

従って上記した案内用角軸の両側面に成形した1〜2対
の転走面に対応し、軸受内にクロスローラ方式に従って
配置されるころの循環径路を形成した各々の本願直動案
内用ころ軸受実施例においては、軸受の上下、左右方向
荷重に対応することができる、軸受耐荷重特性と、径路
内ころ相互間の配列を、上記図中の実施例に示したよう
に、径路内の全ての隣接ころ間で軸心を交差、または平
行に配置し、あるいは径路中で間欠的に2個に対し1個
、3個に対し1個等の割合でころの軸心を交差し配置す
ることが可能であり、従って本願軸受構成においては軸
受の上下、左右に作用する軸受荷重の大きさに対応して
、軸受耐荷重性への適応をはかると共に軸受の静・動剛
性の向上等を目的とした、適正予荷重の設定が可能であ
り、この種軸受に必要とされる多様な軸受負荷特性への
対応をはかることができる。
Therefore, each linear motion guide roller of the present invention corresponds to one or two pairs of rolling surfaces formed on both sides of the above-mentioned square guide shaft, and forms a circulation path for the rollers disposed in the bearing according to the cross roller system. In the bearing embodiment, the load-bearing characteristics of the bearing, which can cope with loads in the vertical and horizontal directions of the bearing, and the arrangement of the rollers in the path, as shown in the example in the figure above, are as follows. The axes of all adjacent rollers are arranged to intersect or parallel, or the axes of the rollers are arranged intermittently in the path at a ratio of 1 for every 2 rollers, 1 for every 3, etc. Therefore, in the bearing configuration of the present application, in response to the magnitude of the bearing load that acts on the top, bottom, left and right sides of the bearing, the load capacity of the bearing is adapted and the static and dynamic rigidity of the bearing is improved. It is possible to set an appropriate preload for the purpose, and it is possible to respond to the various bearing load characteristics required for this type of bearing.

従ってこれら本願直動ころがり軸受においては、相互に
直交する2平面で形成される。
Therefore, these linear motion rolling bearings of the present invention are formed of two mutually orthogonal planes.

V溝形転走面を成形した1対の案内用軸の、−に記vl
形転走面に形成される、案内用軸の軸方向方形に、2対
の転走面を形成した径路中に、直径よりも長さを僅かに
短(成形したころを、該ころの軸心な交互に直交させ、
板金状保持器を介して軸方向等間隔に配置し。
Marked on - of a pair of guide shafts with V-groove raceway surfaces
In the path formed on the shaped raceway surface, in which two pairs of raceway surfaces are formed in the axial direction of the guide shaft, the length is slightly shorter than the diameter (the shaped roller is placed on the axis of the roller). orthogonal to each other,
Arranged at equal intervals in the axial direction via a sheet metal retainer.

上記径路中のころが上記径路中2対の転走面に対して交
互に接触を保ち、荷重を支持して転走することができる
ようにした、クロスローラ方式に従った非循環式直動こ
ろ軸受において、該直動ころ軸受のクロスローラ方式に
従った循環式直動ころ軸受として構成するため、新たに
添付第1図〜第5図に示した。上記循環式ころ軸受用こ
ろに適用するための保持器を考案し、ついで該保持器を
適用したころを添付第6図〜第目図に示した隣接ころの
軸心を交差したクロスローラ方式に従い、あるいは隣接
ころの軸心を相互に平行に軸受内に形成される軸方向長
円形状循環径路内に配置することができるように構成し
たもので、該構成方法に従った本願添付12図〜第25
図に示した直動ころ軸受は、この種軸受の従来品と比較
して次のような特徴を有している。
Non-circulating linear motion according to the cross roller system, in which the rollers in the above path alternately maintain contact with the two pairs of rolling surfaces in the above path, supporting the load and rolling. The roller bearing is configured as a circulating linear roller bearing according to the cross-roller method of the linear roller bearing, so it is newly shown in the attached FIGS. 1 to 5. A cage was devised to be applied to the rollers for the above-mentioned circulating roller bearing, and then the rollers to which the cage was applied were assembled according to the cross-roller system in which the axes of adjacent rollers intersect, as shown in the attached Figures 6 to 4. Alternatively, the axes of adjacent rollers can be arranged in parallel with each other in an axially oval circulation path formed in the bearing, and according to this construction method, the attached rollers shown in Figs. 25th
The linear roller bearing shown in the figure has the following features compared to conventional bearings of this type.

すなわち上記案内用角軸に成形した、クロスローラ方式
に従って配置するころのV溝形転走面に対応して、軸受
内に成形した荷重負荷域V溝形転走面の軸方向両端部に
連り、輪受内に形成する上記軸方向長円形状ころの循環
径路における、上記軸受荷重負荷域と案内用角軸に形成
したV溝形ころの転走面間で形成される、循環方向直角
断面で方形状に形成される循環径路壁に順応した、ころ
の円滑な循環走行をはかるために、新たに該径路内ころ
への適用を目的とした。添付第1図〜第5図に示したこ
ろ保持器を開発したもので、該保持器においては、上記
添付第1図〜第11図に示したように、径路内保持器間
の接触面は各々円筒面、または球面に成形され、註外周
面相互間において常に線接触、または点接触を保って走
行し、従って径路内の湾曲部においても、保持器相互間
では相対すべりを生じることなくころがり接触が継続さ
れ、保持器間に接触圧を生じる際にも、保持器間の相互
干渉を僅少にとどめて、径路内機環運、動の円滑化をは
かることができる。 また保持器と循環径路間において
は、上記軸受荷重負荷域における案内軸と軸受に成形し
た、V溝形2対のころの転走面に対応して形成される軸
受内方形循環径路の壁面に順応し、保持器外周面には、
上記循環径路内荷重負侑域転走面に対する、保持器内こ
ろの転走方向の偏りを回避し、また保持器の径路内の円
滑な走行を確保するために、上記循環径路壁間との間に
僅かの隙間を確保して、上記添付第1図〜第5図の各図
に示した保持器外周面の4か所の走行案内面を形成し、
上記径路内保持器相互間の干渉の回避と共に、循環径路
内における保持器と、該保持器内に挿入したころとの走
行の円滑化をはかったものである。
In other words, corresponding to the V-groove raceway surface of the rollers arranged according to the cross-roller system, which is formed on the guide square shaft, the V-groove raceway surface in the load bearing area is connected to both axial ends of the V-groove raceway surface formed in the bearing. In the circulation path of the axially oval rollers formed in the ring bearing, the area is perpendicular to the circulation direction formed between the bearing load area and the rolling surface of the V-groove rollers formed on the guide square shaft. In order to ensure smooth circulation of the rollers while adapting to the walls of the circulation path, which are formed in a rectangular cross section, the present invention was newly designed to be applied to the rollers in the circulation path. The roller cage shown in the attached Figures 1 to 5 has been developed, and in this cage, as shown in the attached Figures 1 to 11 above, the contact surface between the cages in the path is Each cage is formed into a cylindrical or spherical surface, and the cages always run while maintaining line contact or point contact between their outer circumferential surfaces. Therefore, even in curved sections in the path, the cages can roll without relative slipping between them. Even when contact is continued and contact pressure is generated between the cages, mutual interference between the cages can be kept to a minimum, and smooth movement of the machine in the path can be achieved. In addition, between the cage and the circulation path, the wall surface of the bearing inner circular circulation path is formed corresponding to the rolling surface of the two pairs of V-groove rollers formed on the guide shaft and the bearing in the bearing load area. The outer circumferential surface of the cage is
In order to avoid bias in the rolling direction of the cage inner rollers with respect to the load-bearing area raceway surface in the circulation path and to ensure smooth running of the cage in the path, the distance between the walls of the circulation path is With a slight gap in between, four running guide surfaces are formed on the outer circumferential surface of the retainer as shown in the attached figures 1 to 5 above,
This is intended to avoid interference between the retainers in the path and to facilitate smooth running of the retainers in the circulation path and the rollers inserted into the retainers.

従って本願直動ころ軸受においては、新たに上記クロス
ローラ方式に従った、高性能循環式直動ころ軸受を構成
したもので、該軸受とこの横軸受の従来品との比較にお
いて、っぎのような成果が期待できる。
Therefore, the linear acting roller bearing of the present invention is a high-performance circulating linear roller bearing newly constructed according to the above-mentioned cross roller method. We can expect great results.

■ 軸受構成について 本願直動案内用1lIl1式直動ころ軸受においては、
新たに添付第1図〜第4図に示した、軸受内ころに適用
する保持器を成形し、該保持器をころに適用して軸受内
の軸方向長円形状循環径路内に、添付第6図〜第9図に
示したクロスローラ方式に従って配列して、案内用軸と
軸受荷重支持範囲に成形したV溝形転走面と共に、添付
第12図〜第24図に示した各々の軸受実施例における
軸受構成に対応し、軸受内ころの循環径路を構成したも
ので、従って上記本願軸受実施例においては、該軸受の
構成上の特性に従って各種機械への適用がはかられると
共に、各々の実施例における軸受構成においては、例え
ば小型精密測定機器から大型工作機械・産業機械等への
適用をはかる機械に対応して、上記軸受構成用ころの直
径を例えば!、5粍〜20粍にわたり形成される、極め
て広範囲にわたる多様な軸受の構成が可能である。
■ About the bearing configuration In the 1lIl1 type linear acting roller bearing for linear acting guide in this application,
A cage to be applied to the inner rollers of the bearing as shown in the attached figures 1 to 4 is newly molded, and the cage is applied to the rollers to form the attached figure in the axially oval circulation path inside the bearing. Each of the bearings shown in attached Figs. 12 to 24 is arranged according to the cross roller system shown in Figs. Corresponding to the bearing configuration in the embodiment, the circulation path of the bearing inner roller is configured, and therefore, in the bearing embodiment of the present application, application to various machines is attempted according to the structural characteristics of the bearing, and each In the bearing configuration in the embodiment, the diameter of the rollers for the bearing configuration can be changed, for example, to correspond to machines that are applied from small precision measuring instruments to large machine tools, industrial machines, etc. , 5 to 20 mm, an extremely wide variety of bearing configurations are possible.

また本願添付各図に示した軸受構成においでは、添付第
25図に示したように、輪受の上下、左右方向軸受荷重
の大きさに対応して、軸受の負荷容量の設定をはかるこ
とができる。 すなわち本願軸受においては、上記循I
II径路内にころに本願保持器を適用し、径路内ころの
循環走行の円滑化をはかることができるばかりでなく、
例えば添付第8図、第9図に示したように、上記軸受荷
重方向に対応し、案内用軸の両側面に上記V溝形、ある
いは両側面と軸上面との軸方向の角に傾斜■溝形状に成
形したころの転走面に対応し、軸受荷重負荷域転走面と
1M転走面の軸方向両端に連なるころの循環径路を立体
的に形成することができ、また本願軸受における上記輪
In addition, in the bearing configuration shown in the figures attached to this application, the load capacity of the bearing can be set in accordance with the magnitude of the bearing load in the vertical and lateral directions of the wheel bearing, as shown in attached Figure 25. can. In other words, in the present bearing, the above circulation I
By applying the cage of the present invention to the rollers in the II path, it is possible to not only facilitate the circulation of the rollers in the path, but also
For example, as shown in the attached FIGS. 8 and 9, corresponding to the direction of the bearing load, the guide shaft may have the above-mentioned V groove shape on both sides, or an inclined groove at the axial angle between both sides and the top surface of the shaft. Corresponding to the roller raceway surface formed into a groove shape, it is possible to form a three-dimensional circulation path for the rollers that connects to both axial ends of the bearing load area raceway surface and the 1M raceway surface. The above ring.

嚢内ころの循環径路におけるころの走行方向直角断面形
状は、上記添付第8図中の8に示すように方形に形成さ
れ、また該径路に対するころの配列は、ころに適用する
保持器外周面における径路案内面が、添付第1図〜第4
図のlb、2b、3bに示したように、保持器の走行方
向に直角な断面が方形に形成された上記径路壁に対応し
て、該径路壁間に僅かな隙間を保ち走行することができ
るように、保持器走行方向に直角な断面形状が、上記径
路壁断面形状と同じく方形に成形され、該案内面と共に
保持器外周面残余の円[Lまたは球面は、何れも保持器
内ころの軸心に対して対称的に形成され、従って径路内
周面形状に対応して該径路内に配列した保持器外周面の
形状は、保持器内隣接ころの軸心を相互に直交させ、あ
るいは上記ころの軸心な相互に平行に配置した場合にお
いて同一であり、径路内を走行する際の径路壁と保持器
外周面の相対的位置関係も同一である。 従って添付第
12図〜第22図に示した本願軸受の各実施例において
は、軸受に作用する上下、左右方向の軸受荷重と、転走
面ところ間に生じる隙間除去を目的として設定される軸
受予荷重等の各々のMfflに対して、軸と軸受に形成
した上記V溝形、あるいは傾斜V溝形転走面間に形成さ
れる2対のころの転走面間において、上記軸受荷重を負
荷する多数のころにおける荷重の均等化をはかるために
、上記循環径路内2対の転走面に対応して、隣接保持器
内ころの軸心を上記クロスローラ方式に従って、交互に
直交させて配列する場合のほか、交互に2対1.3対1
等の割合で配列し、あるいは上記荷重負荷域径路内のす
べてのころについて、ころの軸心を交差することなく、
平行に配置することができるように循環径路内ころの配
列を行うことができ、このような配列方法に従い本願軸
受において、例えば添付第16図〜第24図の案内用軸
の両側面に成形したV溝形、あるいは傾斜V溝形2対の
転走面に対応して構成した、軸受構成の各実施例におい
て添付第25図で示した、軸受に作用する主荷重あるい
は軸受予荷重等に対応した軸受構成の多様化をはかるこ
とができる。
The cross-sectional shape perpendicular to the running direction of the rollers in the circulation path of the inner rollers is formed into a rectangular shape as shown in 8 in the above-mentioned attached FIG. The route guide surface is shown in attached Figures 1 to 4.
As shown in lb, 2b, and 3b in the figure, the cage can run while keeping a small gap between the channel walls, corresponding to the channel walls having a rectangular cross section perpendicular to the running direction. In order to be The shape of the outer circumferential surface of the cage, which is formed symmetrically with respect to the axis of the rollers and arranged in the path corresponding to the shape of the inner circumferential surface of the path, is such that the axes of adjacent rollers in the cage are orthogonal to each other, Alternatively, it is the same when the rollers are arranged parallel to each other on their axes, and the relative positional relationship between the path wall and the outer circumferential surface of the cage when traveling in the path is also the same. Therefore, in each of the embodiments of the bearing of the present application shown in the attached FIGS. 12 to 22, the bearings are designed for the purpose of removing the bearing loads acting on the bearing in the vertical and horizontal directions and the gaps generated between the raceway surfaces. For each Mffl of preload, etc., the above bearing load is applied between the raceway surfaces of two pairs of rollers formed between the V groove shaped raceways formed on the shaft and the bearing, or between the inclined V groove shaped raceway surfaces. In order to equalize the load on a large number of loaded rollers, the axes of adjacent rollers in the cage are alternately orthogonal according to the crossed roller system, corresponding to the two pairs of raceway surfaces in the circulation path. In addition to arranging, alternately 2:1, 3:1
or all the rollers in the above load bearing area path without intersecting the axis of the rollers.
The rollers in the circulation path can be arranged so that they can be arranged in parallel, and according to this arrangement method, in the present bearing, for example, rollers molded on both sides of the guide shaft shown in attached Figs. 16 to 24 are used. In each embodiment of the bearing configuration, which is configured to correspond to a V-groove type or two pairs of inclined V-groove raceway surfaces, it corresponds to the main load acting on the bearing or the bearing preload, etc., as shown in attached Figure 25. This makes it possible to diversify bearing configurations.

2) 直動案内精度の向上 本願直動ころ軸受における。案内用軸と輪受に成形した
。直交2平面により形成されるV溝形転走面に、直径よ
りも軸方向の長さを僅かに短く成形した多数のころを、
該ころの保持器を介し、上記クロスローラ方式に従って
配置し、案内用軸と軸受間に直交する2対の転走面によ
って、軸と軸受間の上下、左右方向の力を拘束して行う
直動ころがり案内軸受の構成においては、直動案内精度
を左右する軸と軸受の上記V溝形転走面と、ころの成形
加工時における寸法精度、ならびに平面度、2平面間の
直角度、ころの円筒度等の形状精度を、この種直動ころ
がり軸受において、転動体に球を用いて構成した従来品
の円弧溝形状転走而と異り、極めて高精度に行うことが
でき、従って最近の例えば、超精密測定用機器、放電加
工機等の超精密工作機械、あるいは高密度半導体52造
工程におけるホンディングマシン等における超精密先端
技術を必要とする分テfで、」−1己クロスローラ方式
に従った非循環式直動ころ軸受を適用した往復動移動台
の構成が行われている。  しかし上記クロスローラ方
式に従った非循環式直動ころ軸受においては、往復動作
動時の移動台1の行程は、案内用軸と軸受に成形した転
走面間に介在するころの転勤に伴う、上記転走面間の相
対的移動により、上記軸と軸受転走面長さの約1/2に
限定され、また長期間にわたる移動台の往復動につれて
、軸と軸受間のころは、ころに適用した板金状保持器と
共に。
2) Improving linear motion guide accuracy in the linear motion roller bearing of this application. Molded into the guide shaft and wheel bearing. A large number of rollers whose axial length is slightly shorter than the diameter are mounted on a V-groove rolling surface formed by two orthogonal planes.
The rollers are arranged in accordance with the above-mentioned cross-roller method through a cage, and the vertical and horizontal forces between the shaft and the bearing are restrained by two pairs of rolling surfaces orthogonal between the guide shaft and the bearing. In the configuration of a moving rolling guide bearing, the above-mentioned V-groove raceway surfaces of the shaft and bearing, the dimensional accuracy during the forming process of the rollers, the flatness, the perpendicularity between the two planes, the roller In this type of linear rolling bearing, the shape accuracy such as cylindricity can be achieved with extremely high precision, unlike the conventional circular groove rolling bearing that uses balls for the rolling elements. For example, in cases where ultra-precision cutting-edge technology is required in ultra-precision measurement equipment, ultra-precision machine tools such as electrical discharge machines, or bonding machines in high-density semiconductor manufacturing processes, A reciprocating movable platform is constructed using non-circulating linear roller bearings according to the roller system. However, in the non-circulating linear roller bearing according to the above-mentioned cross roller system, the stroke of the moving table 1 during reciprocating operation is due to the transfer of the rollers interposed between the guide shaft and the raceway surface formed on the bearing. , Due to the relative movement between the raceway surfaces, the length of the raceway surface of the shaft and bearing is limited to approximately 1/2, and as the moving platform reciprocates over a long period of time, the rollers between the shaft and bearing are Together with the sheet metal retainer applied to.

転走面軸方向の定位置から移動することが認められ、極
めて高精度の直動案内構成の可能性が認められながら、
各種機械への適用の範囲が限定されてきた。 本願直動
軸受では。
Although it has been recognized that the raceway surface can move from a fixed position in the axial direction, and the possibility of an extremely high-precision linear motion guide configuration has been recognized,
The scope of application to various machines has been limited. In the linear motion bearing of this application.

上記非循環式クロスローラ方式直動ころ軸受の精度特性
に看目し、新たに上記循環方式に従って、従来品にみら
れなかった高精度直動ころ軸受を実現することができる
In view of the accuracy characteristics of the non-circulating cross-roller type direct-acting roller bearing, and by newly following the above-mentioned circulation system, it is possible to realize a high-precision direct-acting roller bearing that has not been seen in conventional products.

3) 摩擦・摩耗特性について 案内用軸と軸受間に循環転勤する球、またはころを介在
する、この種直動ころがり軸受において、作動時の軸受
に総合的に作用する摩擦抵抗は、上記添付第1O図に示
したように、循環径路中の荷重負荷域における転動体の
ころがり摩擦力と、転動体の循環径路壁に対する走行摩
擦力、ならびに循環域から荷重負荷域への移行時、軸受
荷重に起因した輪と軸受間弾性近接量に伴って転動体に
生じる抵抗に大別され、転動体ころに上記保持器を適用
して構成した本願軸受においては、荷重負荷域における
ころの転勤は保持器に案内されて、転動体相互間の干渉
はもとより、ころ転走方向の偏りによって生じるスキュ
ー現象に伴う、ころ軸方向両端と径路壁間の摩擦を生じ
ることなく、また循環径路における湾曲部と直線走行部
においても、ころは保持器内に隔離されてこる相互間の
干渉を生じることなく、上記第1O図で述べたようにこ
ろ保持器間においては、保持器外周面における円筒面、
または球面間のころがり接触により保持器相互間の摺動
摩擦力は回避され、更に保持器外周面において、上記径
路内周面に僅かの隙間を保ち成形した案内面により、径
路内保持器は相互間の蛇行を生じることなく円滑な循環
走行が確保される。 また上記循環域から荷重負荷域へ
のころの移行時に生じる抵抗は、軸受荷重に対応して生
じる軸と軸受間弾性近接量が、転動体に球を用いて構成
するこの種軸受との比較においても173〜1ハの僅か
な値であり、上記ころの荷重負荷域移行時の抵抗によっ
て生じる、軸受作動時における摩擦力変動も著しく減少
し、本願第12図〜第22図に示した直動ころがり案内
の各実施例における直動ころがり軸受において、作動時
における転動体ころ相互間、ならびにころと荷重負荷域
転走面、ならびに循環径路壁間の摩擦・摩耗現象は改善
されて長時間にわたる軸受寿命の確保と1円滑な軸受作
動特性を維持することができる。
3) Regarding friction and wear characteristics In this type of linear motion rolling bearing in which circulating balls or rollers are interposed between the guide shaft and the bearing, the frictional resistance that acts overall on the bearing during operation is as shown in the attached article above. As shown in Figure 1O, the rolling friction force of the rolling elements in the load bearing area in the circulation path, the running friction force of the rolling elements against the circulation path wall, and the bearing load at the time of transition from the circulation area to the load bearing area. Resistance generated in the rolling elements due to the amount of elastic proximity between the ring and the bearing. This eliminates not only interference between the rolling elements but also friction between both ends of the roller axis and the path wall due to the skew phenomenon caused by deviation in the rolling direction of the rollers, and a straight line between the curved part and the circulation path. Even in the running section, the rollers are isolated within the cage without interference between them, and as described in FIG.
Alternatively, the sliding friction force between the cages is avoided by rolling contact between the spherical surfaces, and furthermore, the guide surface formed on the outer circumferential surface of the cage with a slight gap between the inner circumferential surface of the channel allows the cages in the channel to move between each other. Smooth circulation is ensured without meandering. In addition, the resistance that occurs when the rollers move from the circulation area to the load area is determined by the amount of elastic proximity between the shaft and bearing that occurs in response to the bearing load, compared to this type of bearing that uses balls as rolling elements. is a small value of 173 to 1 Ha, and the frictional force variation during bearing operation, which is caused by the resistance during the transition of the roller load range, is also significantly reduced, and the linear motion shown in Figs. In the linear motion rolling bearing of each embodiment of the rolling guide, the friction and wear phenomena between the rolling elements and the rollers, between the rollers and the load area raceway surfaces, and between the circulation path walls during operation are improved, allowing the bearing to last for a long time. It is possible to ensure a long life and maintain smooth bearing operating characteristics.

4) 耐荷重性について 転走2面にころまたは球を介在させて荷重を負荷するこ
ろがり軸受負荷特性において、両者間の直径が等しく、
また軸方向の長さが直径と等しいころと球における負荷
容量は、ころの場合に球における値の約3倍をこえるこ
とは周知のことである。 従って各種機械における直動
案内においても、従来品における球にかえてころを適用
した循環式直動ころがり軸2受の開発が試みられてきた
が、軸受構成の困難さから未だこの種軸受において汎用
性が認められる製品は見受けられない。
4) Regarding load capacity In the load characteristics of a rolling bearing in which a load is applied by interposing rollers or balls between two rolling surfaces, the diameter between the two surfaces is equal,
Furthermore, it is well known that the load capacity of rollers and balls whose length in the axial direction is equal to the diameter is about three times greater than that of balls. Therefore, for linear motion guides in various machines, attempts have been made to develop two circulating linear motion rolling shaft bearings that use rollers instead of balls in conventional products, but due to the difficulty of bearing construction, this type of bearing is still not widely used. There are no products that can be found to be compliant.

本願直動案内用ころ軸受では、上記添付第12図〜第2
2図の各種軸受実施例に示したように、例えば各種計測
機等の小型機器から工作機械をはじめとする宇宙開発機
械等にわたる、礪めて広範囲の機械の直動案内への適用
が予定される、耐荷重性に勝れた高性能各種循環式直動
ころ軸受を構成したもので、特に最近の先端技術超高精
密機械に球を用いて構成したこの種直動ころがり軸受を
用いた直動案内において、球と核球の転走面間の点接触
部分における軸受繰り返し荷重の作用下で生じる1μm
前後の微少剥離現象に伴う破損対策として、ころを用い
て構成したこの種軸受における線接触における、荷重作
用下での上記転走面剥離現象の回避等に対応することを
目的とし、新たにころを用いて構成した直動ころ軸受の
実現をはかったものである。
In the linear motion guide roller bearing of the present application, the above-mentioned attached figures 12 to 2
As shown in the examples of various bearings in Figure 2, applications are planned for linear motion guides in an increasingly wide range of machines, from small equipment such as various measuring instruments to space development machines such as machine tools. It consists of various types of high-performance circulating linear roller bearings with excellent load resistance.In particular, direct-acting linear roller bearings made of balls are used in recent cutting-edge technology and ultra-high precision machinery. 1 μm generated under the action of bearing cyclic load at the point contact area between the rolling surface of the ball and the core ball in the dynamic guide.
As a countermeasure against damage caused by minute peeling phenomenon at the front and rear, we have developed a new roller bearing with the aim of avoiding the above-mentioned raceway surface peeling phenomenon under load action in line contact in this type of bearing constructed using rollers. The aim is to realize a direct-acting roller bearing constructed using the following.

5) 静・動剛性について 転動体の循環式直動ころがり軸受を用いて構成する直動
案内においては、軸受荷重が軸と軸受に成形した転走面
と小数個の転動体との接触面間に集中して作用し、従っ
て該転動体の弾性変形による。軸と軸受間の弾性近接に
より、軸受荷重作用下の静剛性が大きく左右され、また
軸受に外乱が作用した場合の動剛性は、上記軸受静剛性
と軸受の固有振動数、ならびに転動体と転走面間の接触
状況等に起因した減衰係数等に影響される。 従って転
動体にこの種軸受従来品における球に変えてころを採用
し構成した本願軸受においては、上記従来品よりも転動
体自体において3〜4倍の剛性値を確保することができ
、静荷重作用下における軸受転動体の変形、ならびに該
転動体変形にもとすいた荷重負荷域軸受と輪転走面間の
弾性近接量も僅少になり、荷重作用下における軸受精度
の確保と共に円滑な軸受作動特性を確保することができ
る。
5) Concerning static and dynamic rigidity In a linear motion guide constructed using a linear motion rolling bearing with rolling elements circulating, the bearing load is applied between the contact surface between the shaft and the raceway formed on the bearing and a small number of rolling elements. This is due to the elastic deformation of the rolling elements. The elastic proximity between the shaft and the bearing greatly affects the static stiffness under bearing load, and the dynamic stiffness when a disturbance is applied to the bearing is determined by the above-mentioned static stiffness of the bearing, the natural frequency of the bearing, and the rolling elements and rolling elements. It is affected by the damping coefficient etc. caused by the contact situation between running surfaces. Therefore, in the present bearing, which uses rollers for the rolling elements instead of balls in conventional bearings, it is possible to secure 3 to 4 times the rigidity of the rolling elements themselves compared to the conventional bearings, and the static load The deformation of the bearing rolling elements under the action of the load, as well as the amount of elastic proximity between the bearing and the wheel raceway in the load area required for the deformation of the rolling elements, are minimized, ensuring bearing accuracy under the action of the load and smooth bearing operation. characteristics can be secured.

また動剛性については、該動剛性に直接的に関与する上
記高度の静剛性値と、加振時における軸と軸受転走2面
間におけるころの減衰係数は5球の場合の約3倍であり
、更に本願軸受内転動体には保持器が適用されて上記減
衰効果を助長し、従って誤保持器が採用されていないこ
の種直動案内の従来品と比較し、軸受外部より加えられ
る加振力、ならびに軸受内において、転動体が上記荷重
負荷域を含む循環径路走行時に発生する振動等によって
軸受に加振力が作用した場合の動剛性を示す軸と軸受間
相対振動の振幅の値は僅少であり、また従来品で発生す
る上記振動に誘発される高調波の騒音も防止される。
Regarding dynamic rigidity, the high static rigidity value mentioned above, which is directly related to the dynamic rigidity, and the damping coefficient of the rollers between the shaft and the two rolling surfaces of the bearing during vibration are approximately three times that of the case of five balls. Moreover, a cage is applied to the inner rolling element of the present bearing to promote the above-mentioned damping effect, and therefore, compared to conventional linear motion guides of this type that do not use a cage, the stress applied from the outside of the bearing is reduced. The value of the amplitude of the relative vibration between the shaft and the bearing, which indicates the dynamic rigidity when an excitation force acts on the bearing due to vibrations and vibrations generated when the rolling elements run in the circulation path including the above load area within the bearing. is small, and the harmonic noise induced by the above-mentioned vibrations, which occurs in conventional products, is also prevented.

6) 構成要素の成形加工について 本願軸受を用いて構成する直動案内においては、添付各
実施例に示したように、案内用軸と、該軸に成形したこ
ろの転走面に対応した軸受とにより成り、さらに該軸受
は、ころ、ころ保持器、軸受本体、軸受内ころの循環径
路形゛成部品、該循環径路内ころ保持器の脱落防止用板
金、軸受側板等の要素により形成される。  これらの
構成要素のうち。
6) Regarding molding of components In a linear motion guide configured using the bearing of the present application, as shown in the attached examples, a guide shaft and a bearing corresponding to the rolling surface of the rollers molded on the shaft are used. Furthermore, the bearing is formed by elements such as rollers, a roller retainer, a bearing body, a circulation path forming part for the rollers in the bearing, a sheet metal for preventing the roller retainer in the circulation path from falling off, and a bearing side plate. Ru. Of these components.

本願軸受内クロスローラ方式に配列したころの円滑な循
環走行を実現した、添付第1図〜第4図に示したころ保
持器の成形は、図中に示した径路内における保持器間の
円筒形、または球形接触面1a〜4a、径路自走行案内
面1b〜4b、保持器内転動体挿入用円筒形の孔、およ
び長方形状と円筒形状、または円筒形状と球面より成る
凹部1c〜4cと、訊孔または凹部と上記案内面1b〜
4b間における保持器内転動体と絃転動体用転走面間接
触に必要な孔1d〜4d、さらに保持器外周面における
保持器補強用の凹flll10〜2eの成形は、金属材
料、高分子材料等の各種材料からの切削加工法では、保
持器に必要とされる作動特性、ならびに互換性等から必
要とされる0、011単位の高度の加工精度の確保は極
めて困難であり、特に最近のM密測定m器、電気・電子
関連機器等での高性能機械への対応が期待されている、
直径1粍前後のころを用いて構成する、上記直動案内用
ころの保持器の製作は不可能に近く、また本願直動案内
における上記軸受内機環径路中に必要な保持器数は10
0〜200個であり、このような多数の保持器を製品価
格に対応して供給することも不可能である1本願上記保
持器においては、訊保持器における諸機能の充実な前捷
とした、保持器外周面と保持器内における形状を、加工
精度を0.001粍111位で成形することのできる金
型を用い、溶融高分子材料からの射出成形によって成形
することを目的とし、上記保持器の諸機能の充実と共に
、上記射出成形を困難にするアンダーカット番生じる形
状を避けて保持器の形状を定めたもので、上記高分子材
料により成形した際には、該高分子材料における。最近
のポリアミド、ポリアセタール系等の強度、耐摩性、耐
熱性に勝れたエンジニャリングプラスチック材料に、更
にガラス、ケブラー等の繊維強化、ならびに二硫化モリ
ブデン、テフロン等の固体潤滑材を添加した高性能高分
子複合材料よりの射出成形法により、軽量で高精度、な
らびに強力、耐久性、潤滑性、緩衝性等の諸特性に勝れ
た、高性能上記保持器を量産方式により、低重な製作費
により成形することができる。 また軸受内における、
添付第13図、第17図、第19図において詳記した、
軸受内ころところ保持器の循環径路形成用部品、ならび
に軸受側板においても、上記ころ保持器と同じく、上記
エンジニャリングプラスチック材料の射出成形法によっ
て成形することができ、軸受本体と、軸受案内用軸にお
いては輪受鯛、あるいは主として低炭素クロム鋼等の浸
炭焼入合金鋼を対象とし、添付本願各実施例に示すよう
に、軸受本体と、案内用軸の各々において、軸方向直角
断面形状が軸方向に一定した架台状、あるいは方形、長
方形状に設計されて素形段階における、熱間・冷間R選
と圧延成形による加工の合理化をはかると共に、荷重負
荷域における転動体転走面の成形が容易であり、特に上
記軸受と案内用軸に成形する高精度ころの転走面の成形
においては、精密加工時と精度測定に必要な基阜面を容
易にして、高精度の直動案内精度を確保することができ
、また案内用軸から軸受を取はずした際、軸受内機環径
路中の荷重負荷域に生じるころと保持器の脱落防止用の
薄板金の成形は、鉄系、あるいは銅糸薄板金よりプレス
成形により、高精度で容易に成形することができる。
The molding of the roller cage shown in the attached Figures 1 to 4, which realizes smooth circulation of the rollers arranged in the cross-roller system within the bearing of the present application, is a cylindrical shape between the cages in the path shown in the figure. shape or spherical contact surfaces 1a to 4a, path self-propelled guide surfaces 1b to 4b, cylindrical holes for inserting rolling elements in the cage, and recesses 1c to 4c having rectangular and cylindrical shapes, or cylindrical shapes and spherical surfaces. , the hole or recess and the guide surface 1b~
The holes 1d to 4d necessary for contact between the rolling elements in the cage and the rolling surfaces for the grid rolling elements between 4b and the recesses 10 to 2e for reinforcing the cage on the outer peripheral surface of the cage are formed using metal materials, polymers, etc. With cutting methods from various materials, it is extremely difficult to ensure a high degree of machining accuracy of 0.011 units, which is required due to the operating characteristics and compatibility required for the cage. It is expected to be compatible with high-performance machines such as M-density measuring instruments and electrical/electronic equipment.
It is almost impossible to manufacture a cage for the linear motion guide rollers, which is constructed using rollers with a diameter of about 1 mm, and the number of cages required in the bearing inner ring path in the present linear motion guide is 10.
0 to 200, and it is impossible to supply such a large number of cages at a reasonable price.1. , the purpose of molding the outer circumferential surface of the cage and the shape inside the cage by injection molding from a molten polymer material using a mold that can mold the shape with a processing accuracy of 0.001 mm, 111, In addition to enhancing the various functions of the cage, the shape of the cage is determined to avoid the undercut shape that makes injection molding difficult. . The latest engineering plastic materials such as polyamide and polyacetal that have excellent strength, wear resistance, and heat resistance are reinforced with fibers such as glass and Kevlar, and solid lubricants such as molybdenum disulfide and Teflon are added. Using an injection molding method using a high-performance polymer composite material, the above-mentioned high-performance cage is lightweight, has high precision, and has excellent properties such as strength, durability, lubricity, and cushioning properties. It can be molded at a manufacturing cost. In addition, inside the bearing,
As detailed in the attached Figures 13, 17, and 19,
The parts for forming the circulation path of the bearing inner roller and cage, as well as the bearing side plates, can be molded by the injection molding method of the engineering plastic material mentioned above, just like the roller cage mentioned above. For the shaft, the bearing body and the guide shaft each have a cross-sectional shape perpendicular to the axial direction, as shown in the attached examples of this application. The design is designed in the form of a pedestal, square, or rectangular shape with constant axial direction, which streamlines processing by hot/cold R selection and rolling forming at the preform stage, and improves rolling element rolling surface in the load area. In particular, when forming the raceway surfaces of the high-precision rollers that are formed into the bearings and guide shafts mentioned above, it is easy to form the base surface necessary for precision machining and accuracy measurement, and it is possible to form high-precision straight lines. It is possible to ensure dynamic guide accuracy, and when the bearing is removed from the guide shaft, the thin sheet metal is formed to prevent the rollers and cage from falling off in the load bearing area of the bearing internal ring path. It can be easily molded with high precision by press molding from copper thread thin sheet metal or copper thread thin sheet metal.

また以上1)〜6)に述べた本願直動ころがり案内にお
ける、クロスローラ方式に従った軸受諸特性と共に、上
記した本願軸受内機環径路中のころに適用する保持器を
、添付第1図(D)、第5図に示したようにころに替え
て球に適用した場合の実施例を、添付第23図と第24
図に示し、該実施例によって、転動体に保持器を適用す
ることなく構成されている。この種循環式直動球軸受に
おいて、輪受作動時、軸受内法の循環径路内における球
相互間、ならびに球と循環径路壁間衝突によって生じ1
球のO,5KHziiJ後の固有振動数によって増幅さ
れた軸受内の振動による軸受の精度と諸性能の低下、な
らびに該振動によりて派生する高周波の騒音の発生を回
避することができる。
In addition, in addition to the various characteristics of the bearing according to the cross roller system in the linear motion rolling guide of the present application described in 1) to 6) above, the cage applied to the rollers in the internal ring path of the bearing of the present application described above is shown in attached Figure 1. (D) As shown in Figure 5, an example in which the ball is used instead of a roller is shown in attached Figures 23 and 24.
As shown in the figure, this embodiment is constructed without applying a cage to the rolling elements. In this type of circulating type linear ball bearing, when the bearing is operated, collisions occur between the balls in the circulation path inside the bearing, and between the balls and the walls of the circulation path.
It is possible to avoid deterioration of bearing precision and performance due to vibrations within the bearing amplified by the natural frequency of the ball after 0.5 KHz, and generation of high frequency noise derived from the vibrations.

これを要するに本願直動ころがり案内は、上記添付各図
と詳細な説明で述べたように、軸受内に転動体の循環径
路を形成した、この種ころがり軸受において、上記軸受
内wyA径路中に、従来の主として球を用いて構成した
直動ころがり軸受において、新たに転動体にころを用い
た軸受の簡略な構成と、軸受直動案内精度、耐荷重性、
耐久性等の諸性能において最も勝れた特性が認められな
がら円滑に作動する循環式直動ころ軸受への展開が不可
能とされてきた、非循環式クロスローラ方式に着目し、
該クロスローラ方式に従った循環式直動ころ軸受を実現
するため、新たに添付第1図(A)〜(D)〜TCI 
 および第2図〜第4図に示した、上記軸受循環径路内
ころに適用する保持器を考案し、該保持器を保持器内こ
ろと共に添付第6図〜第9図に示したように上記循環径
路内に配列し、添付第12図〜第23図の本願軸受実施
例に示したように、軸受案内用角軸の片側側面、両側面
、あるいは上面に単列、または複列に成形したV溝形、
傾斜V溝形上記ころの転走面に対応して、軸受内荷重負
を9域転走面の軸方向両端に連り、軸方向長円形状に形
成し循環径路内に多数のころを供給して5上記クロスロ
一ラ方式の循環式直動ころ軸受を構成し、1軸受に適用
する上記直動案内用軸と共に上記方式に従ったころがり
直動案内を実現し、また上記添付第1図(Dlと、第5
図には、上記ころに適用した保持器の形状に順応し、こ
の種W環式直動球軸嚢内機環径路中の球に適用すること
のできる球保持器を示し、添付第23図〜第24図に銭
保持器を適用して構成した、上記Ili環式直動球軸受
の実施例を示し、註直動ころがり軸受の構成により、技
術上の困難さから軸受循環径路中の球に対して保持器の
適用がはかられなかった、この種軸受と比べ、高性能直
動軸受と該軸受を用いて構成した直動ころがり案内を実
現したものである。
In short, the linear motion rolling guide of the present invention, as described in the attached drawings and detailed description, is a rolling bearing of this type in which a circulation path for rolling elements is formed within the bearing, and in the wyA path inside the bearing. In the conventional linear motion rolling bearing, which mainly uses balls, we have improved the bearing's simple structure, which uses rollers as rolling elements, and the bearing's linear motion guide accuracy, load capacity,
We focused on the non-circulating cross roller system, which has been recognized as having the best characteristics in terms of performance such as durability, but has been considered impossible to develop into a smoothly operating circulating linear roller bearing.
In order to realize a circulating linear roller bearing according to the cross-roller method, newly attached figures 1 (A) to (D) to TCI
Then, we devised a cage to be applied to the rollers in the bearing circulation path as shown in FIGS. 2 to 4, and installed the cage together with the inner rollers in the cage. They are arranged in the circulation path and are formed in single or double rows on one side, both sides, or the upper surface of the bearing guide square shaft, as shown in the bearing examples of the present application in the attached Figures 12 to 23. V groove shape,
Inclined V-groove shape Corresponding to the rolling surface of the rollers mentioned above, the bearing internal negative load is connected to both axial ends of the 9-region rolling surface, and is formed into an axially oval shape to supply a large number of rollers within the circulation path. 5 constitute the above-mentioned cross-roller type circulating linear roller bearing, realize the rolling linear motion guide according to the above method together with the above-mentioned linear motion guide shaft applied to the 1 bearing, and also realize the above-mentioned attached Fig. 1. (Dl and the fifth
The figure shows a ball cage that adapts to the shape of the cage applied to the above-mentioned rollers and can be applied to the balls in the ring path of this type of W-ring type linear motion ball-shaft capsule machine. Fig. 24 shows an embodiment of the above-mentioned Ili annular linear motion ball bearing configured by applying a holder. Compared to this type of bearing, which does not have a cage, this bearing realizes a high-performance linear motion bearing and a linear motion rolling guide constructed using the bearing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(Al−(D)は本願軸受転動体用保持器の斜視
図、第2図は第1図(A)〜(D)に示した軸受循環径
路内保持器間の接触面を円筒形に成形した、ころ用保持
器の投影図、第3図、第4図は、上記径路内保持器間接
触面を球形に成形した、ころ用保持器の投影図、第5図
は同じく径路内保持器間接触面を球形に成形した、法用
保持器の投影図、第6図、第7図は上記外周面に円筒面
または球面を成形した保持器を軸受円循環径路内に配列
した場合の説明図、第8図と第9図は、上記外周面に球
面を成形した保持器を、軸受内に立体的に形成した循環
径路内に配列した場合の説明図、第10図は上記軸受円
循環径路内に配列した保持器の循環走行移動の説明図、
第N間は同じく軸受循環径路中への上記保持器の配列方
式の説明図、第12図は片側側面にV溝形転走面を成形
した案内用角軸と2M角軸に対応して構成した本願直動
ころ軸受とで構成した直動ころがり案内の実施例、第1
3図は上記第12図直動ころがり案内用軸受構成用の各
部分を、斜視図によって示した説明図、第14図は角軸
上面にV溝形並列転走面を成形した案内用角軸と、該軸
に対応して形成した本願復列直動ころ軸受とで構成した
直動ころがり案内の実施例、第15図は角軸両側面に1
対のV溝形転走面を成形した案内用軸と、該輪画側面の
転走面に対応して形成した本願直動ころがり軸受とで構
成した直動案内実施例、第16図は角軸両側面の各々に
複列V溝形転走面を成形した案内用軸と、箆案内用軸に
対応して形成した本願直動ころがり軸受とで構成した直
動案内、第17図は上記第16図直動案内における軸受
形成要素の斜視図、第18図は角軸両側面並列傾斜V溝
形転走面を成形した案内用軸と。 該案内用軸転走面に対応して形成した本願直動ころ軸受
とで構成した直動ころがり案内の実施例、第19図、第
20図は上記第1図実施例における軸受形成要素の斜視
図と投影図、第21図と第22図は各々角軸両側面にお
ける1対のV溝形状転走面と、V溝形転走面と共に角軸
両側面と上面との軸方向の角における斜面状転走面、ま
たは傾@V溝形転走面を成形した各々の案内用軸と、註
案内用軸に対応して形成した本願直動ころ軸受とで構成
した直動ころがり案内の実施例、第23図は上記第16
図の直動案内実施例における本願軸受構成に類似し、該
軸受における転動体径路用保持器に替えて、第1図(D
)における本願法用保持器と共に、上記循環径路内に球
を配列し形成した軸受を採用して構成した直動案内の実
施例、第24図は上記第23図の球を用いて形成した本
願軸受円循環径路、ならびに径路内法保持器の配列、を
示した部分拡大図、第25図(A)〜(D)〜(りは上
記本願直動ころがり案内用軸受実施例における軸受内に
形成される循環径路内への、保持器を介した転動体の配
列方法の相違等による軸受負荷容量の値の比較説明図で
ある。 また図中の記号の各々については、 1、外周面に円筒面を成形したころ用 保持器 外周面に球面を成形したころ用保持器 外周面に球面を成形したころ用保持器 外周面に球面を成形した球団保持器 こる 案内用軸に成形したころの転走面 軸受に成形したころの転走面 軸受内転動体循環径路壁断面図 軸受案内用軸 軸受本体 軸受内軸方向長円形状転動体循環径路 軸受内循環径路形成用部品 軸受円循環径路形成用部品 保持器脱落防止用板金 軸受側板 軸受円循環径路形成用部品 軸受円循環径路形成用部品 軸受円循環径路形成用部品 軸受円循環径路形成用部品 球 図面の浄書 J1 図 (A) (B) CC) CD) (C) (A) (B) (ε) hケ 弔 (A) (F) 目 (D) (C) 覚 (A) (B) (E) (A) (巳) 日 (D) 笛 6 ■ カ 図 篤 目 (ら) (A) L3#−一÷ 第 10 図 (4) 第 z 口 (A) CB) 蓼 1 1コ 14 (A) (8) ■ 茶 )図 第 13 2 (Aン (E3) 笛 ?O 1図 第 9 1 図 (△) 第 22 図 (A) (B) 笛 4 1刃 (A) (B) 3 j」 (A) CB) 5 z 手続補正帯 (方式) 事件の表示 平成1年 特 許 願 第327148号 3゜ 補正をする者 事件との関係
Figure 1 (Al-(D) is a perspective view of the retainer for bearing rolling elements of the present invention, and Figure 2 is a cylindrical view of the contact surface between the retainers in the bearing circulation path shown in Figures 1 (A) to (D). Figures 3 and 4 are projected views of the roller cage formed into a spherical shape, and Figure 5 is a projected view of the roller cage in which the contact surface between the cages in the path is formed into a spherical shape. Figures 6 and 7 are projection views of a legal cage in which the contact surface between the inner cages is formed into a spherical shape, and cages with a cylindrical or spherical surface formed on the outer peripheral surface are arranged in the bearing circular circulation path. Figures 8 and 9 are explanatory diagrams of the case in which the above-mentioned retainer having a spherical surface formed on its outer circumferential surface is arranged in a circulation path formed three-dimensionally within the bearing, and Figure 10 is an explanatory diagram of the above-mentioned case. An explanatory diagram of the circular movement of the cage arranged in the bearing circular circulation path,
The Nth space is also an explanatory diagram of the arrangement method of the cage in the bearing circulation path, and Fig. 12 is configured to correspond to a guiding square shaft with a V-groove raceway formed on one side surface and a 2M square shaft. Embodiment of a linear motion rolling guide constructed with the linear motion roller bearing of the present invention, Part 1
Figure 3 is an explanatory perspective view showing each part of the linear motion rolling guide bearing structure shown in Figure 12 above, and Figure 14 is a square guide shaft with a V-groove parallel rolling surface formed on the upper surface of the square shaft. FIG. 15 shows an embodiment of a linear motion rolling guide composed of a double row linear motion roller bearing of the present invention formed corresponding to the shaft.
A linear motion guide embodiment constructed of a guide shaft formed with a pair of V-groove raceway surfaces and a linear motion rolling bearing of the present invention formed corresponding to the raceway surfaces on the side surface of the wheel. A linear motion guide consisting of a guide shaft with a double-row V-groove raceway formed on each side of the shaft and a linear motion rolling bearing of the present invention formed corresponding to the shaft guide shaft, FIG. 17 shows the above-mentioned linear motion guide. Fig. 16 is a perspective view of a bearing forming element in a linear motion guide, and Fig. 18 shows a guide shaft with parallel inclined V-groove rolling surfaces formed on both sides of a square shaft. An embodiment of a linear motion rolling guide configured with a linear motion roller bearing of the present invention formed corresponding to the guide shaft rolling surface, FIGS. 19 and 20 are perspective views of the bearing forming elements in the embodiment shown in FIG. 1 above. Figures and projection views, and Figures 21 and 22 respectively show a pair of V-groove raceway surfaces on both side surfaces of the square shaft, and a pair of V-groove raceway surfaces at the axial corners between both side surfaces and the top surface of the square shaft. Implementation of a linear motion rolling guide consisting of each guide shaft formed with an inclined raceway surface or an inclined @ V-groove raceway surface, and a linear motion roller bearing of the present invention formed corresponding to the guide shaft. For example, Figure 23 is the above 16
Similar to the bearing configuration of the present application in the linear motion guide embodiment shown in FIG.
24 is an example of a linear motion guide constructed by employing a bearing formed by arranging balls in the above-mentioned circulation path together with the retainer for the present invention method in ). FIGS. 25A to 25D are partially enlarged views showing the bearing circular circulation path and the arrangement of the cages within the path. This is a comparative explanatory diagram of bearing load capacity values due to differences in the arrangement method of rolling elements via cages in the circulation path in which the rolling elements are arranged. A cage for rollers with a spherical surface molded on the outer surface.A cage for rollers with a spherical surface molded on the outer surface.A ball cage with a spherical surface molded on the outside surface. Roller rolling surface molded into a running surface Bearing Internal rolling element circulation path Wall sectional view Bearing guide shaft Bearing body Bearing Inner axial direction Elliptical rolling element circulation path Parts for forming the internal circulation path Bearing For forming the circular circulation path Components Sheet metal bearing for preventing holder falling off Side plate Bearing Components for forming circular circulation path Bearing Components for forming circular circulation path Bearing Components for forming circular circulation path Bearing Components for forming circular circulation path Engraving of sphere drawing J1 Figure (A) (B) CC ) CD) (C) (A) (B) (ε) h Condolence (A) (F) Eye (D) (C) Wake (A) (B) (E) (A) (Snake) Day (D ) Flute 6 ■ Kazu Atsume (Ra) (A) L3#-1 ÷ Fig. 10 (4) Zth mouth (A) CB) 1 1 14 (A) (8) ■ Brown) Fig. 13 2 (A) (E3) Whistle? Band (method) Display of the case 1999 Patent Application No. 327148 3゜Amendment Relationship with the case

Claims (1)

【特許請求の範囲】 1)直動ころがり案内構成用の案内用軸と、直動ころ軸
受において、該案内用軸と軸受間に一定の遊隙を保ち、
軸受の作動方向に平行に形成される軸受案内面と軸受面
の各々に、相互間で対称的に1対の直交転走面より成る
V溝形ころの転走面を成形し、該1対のV溝形転走面に
より形成される方形径路中の2対の転走面に対応し、該
2対の転走面のうち何れか一方の転走面間で転走するこ
ろの軸方向両端面における、他の1対の転走面との干渉
を回避するため、直径に対して軸方向の長さを僅かに短
く成形した、同一寸法・形状の多数のころを、上記案内
用軸と軸受間に形成した方形ころの転走径路の軸方向に
、上記多数のころの軸心を交互に直交させて配列した際
の各々のころに適用することを目的とした保持器におい
て、本願添付第1図(A)〜(C)の斜視図と、第2図
〜第4図の各投影図中の記号1〜3に示した、各保持器
外周面には、上記経路内保持器間接触面を、上記添付図
の保持器1においては、図中の記号1aに示す円筒面に
成形し、また同じく添付図中の保持器2と3においては
、図中の記号2a、3aに示した球面に成形して経路内
保持器間干渉の回避をはかり、また同じく上記案内用軸
と軸受間方形経路内周面に対応して、上記各保持器1〜
3の外周面には、上記方形経路内周面間に、保持器走行
時に必要な僅かの隙間を設定し、また上記各保持器の円
筒形状、または球形外周面の中心に対して対称的に、上
記経路内周面と平行な方形保持器走行案内面1b〜3b
を成形し、また該保持器外周面方形走行案内面における
、2対の平行案内面中の1対の平行案内面の中央に、該
平行案内面に直交して上記添付各図中の保持器1と2に
おいて は、該保持器を適用するころの外周面間に、僅かの遊隙
を確保して保持器内へのころを挿入するための円筒形状
の孔1c、および2cと、該孔1c、2cに対応して上
記方形2対の経路内保持器案内面1b、2bの他の1対
の案内面には、上記保持器内の孔1c、2cに挿入され
たころの外周面と、上記案内用軸と軸受間方形経路の2
対のころの転走面の何れか1対の転走面との接触を保つ
ための長方形状の孔1d、2dが形成され、また上記案
内用軸と軸受間1対のV溝形転走面間方形径路に対応し
て形成した、保持器外周面方形案内面の4か所の角には
、上記V溝形転走面を成形した案内用軸と軸受間平行案
内面間の遊隙と、上記1対のV溝形案内面の高精度成形
加工時に必要な溝底逃げ面成形用の角溝に対応し、上記
保持器外周面の円筒面、または球面に連なり、保持器補
強用の凸部1e、または2eが形成される。 また上記添付図中の保持器3の外周面に成形した、上記
2対の平行面により形成した方形保持器走行案内面中の
1対の平行面においては、該1対の平行面片側案内面の
中央に、該案内面に直交して、図示のように、上記保持
器1と2を適用する場合のころと比較し、軸方向の長さ
を短く成形したころを、該ころの外周面と軸方向の両端
面間に僅かの隙間を確保し、上記ころの外周面より保持
器内に挿入するための、孔底の部分に保持器内ころの外
周面に対応し、半円形状円筒面と、保持器内ころと転走
面間の接触を保つための長方形状の孔3dを形成した、
長方形状の孔3cが成形される。 ついで上記添付各図に示した保持器1〜3を、上記した
案内用軸と軸受に成形したV溝形ころの転走面間に形成
される、軸方向方形2対のころの転走面によって形成さ
れる、ころの転走方向方形径路内周面に連なり、内周面
形状が上記方形転走径路内周面に対応し、また走行時の
上記保持器外周面間に僅かの遊隙を確保して、軸受軸方
向両端部における半円弧状径路と、該半円弧状径路範囲
の他端に連なる直線状径路範囲とで形成される、軸受内
上記保持器と、該保持器内ころの循環転走径路を形成し
、該循環径路と上記案内用軸と軸受間ころの転走径路と
で、全体として長円形状に形成される循環径路中に、上
記保持器を配列した際には、添付第6図〜第8図の各々
に示すように、径路内多数の保持器は、該保持器外周面
の上記円筒面1a間における線接触、または球面2a、
3a間の点接触を保ち、また該接触線、または接触点に
対して、上記循環径路方形内周面の中心線は、上記円筒
面1a相互間の接触線と、該接触線の中央で直交し、ま
た球面2a、3a間の接触点は中心線上に位置して、径
路内における保持器間の接触 は、上記円筒面1a、または球面2a、3a間接触によ
り、軸受作動時における保持器相互間の干渉と拘束を僅
少にとどめると共に、添付第10図(A)〜(D)に示
した、同じく軸受作動時における径路内保持器外周面に
作用する接触圧力は、循環径路の全域にわたり、上記方
形径路内周面の中央に位置する保持器外周面の接触面間
に作用し、保持器外周面に上記方形径路内周面形状に対
応し、該径路内周面間に僅かの遊隙を保ち、保持器中心
に対し上記対称的に成形した方形走行案内面1a〜3b
とで、上記本願直動ころがり案内用軸と軸受に成形した
V溝形転走面の両端に連なる循環径路中に配列した多数
のころ5、5’の各々に適用し、該ころの上記循環径路
中の軸と軸受間荷重負荷域の転走と、軸受内循環のため
の走行範囲の円滑な走行をはかることができるように形
成したことを特徴とする、循環式直動ころ軸受用ころの
保持器。 2)請求項1)記載のころの保持器3において、該保持
器外周面に形成した、直動ころがり案内構成用の案内用
軸と軸受間荷重支持範囲の転走径路と、該径路の軸受軸
方向両端に連なる軸受内循環径路とで、軸方向に長円形
状に形成される循環径路内保持器間の接触面3aと、径
路内保持器の走行案内面3b、および、保持器内に形成
したころを挿入するための孔3cと、該孔3cの半円筒
面状の底面と上記保持器走行案内面3b間に形成した、
保持器内ころの外周面と、該ころの転走面間の接触を保
つための長方形状孔3dの各々について、上記保持器を
適用する転動体としてのころにかえて、球に適用するこ
とを目的として形成した、添付第1図(D)と第5図に
示した保持器4の外周面には、上記保持器の外周面に対
応して、循環径路内保持器間接触面4aは、保持器3外
周面の3aと同じく球面に、また径路内保持器走行用2
対の直交平面より成る案内面4bは、保持器の走行方向
に方形に成形された保持器3における3bと異り、同じ
く走行方向に径路内の球の転走面に対応して、平行2平
面間の距たりを短く成形した、1対の案内面に対応して
長方形に形成され、また上記球の転走面に対応した1対
の転走面の片側案内面の中央には、保持器内への球の挿
入口4cを、該孔4c中に供給する球の外周面間に僅か
の遊隙を保ち、また底面を半球状に形成し、更に該孔4
cの球形底面と、上記孔4cを成形した案内面と平行な
案内面間には、上記保持器3におけるころと転走面接触
を保つための孔3dに対応して、球と球の転走面間の丸
孔4dが形成され、該保持器4を多数の球に適用し、保
持器外周に成形した上記走行案内面4bに対応して形成
した、案内用軸と軸受間軸方向長円形状循環路内に供給
した 際、上記保持器4と、該保持器内に供給された球は、上
記ころに適用した保持器の場合と同じく、球相互間の直
接接触は回避されると共に、保持器間において上記球形
接触面4aで相互間の干渉を僅少にとどめ、外周面走行
案内面4bと共に、直動案内作動時における循環径路内
法の円滑な循環走行をはかることを特徴とする球の保持
器。 3)請求項1)記載のころの保持器を軸受内多数のころ
に適用して構成する直動ころがり案内において、添付第
12図と第13図、ならびに添付第14図に示した案内
用方形状角軸の片側側面と、長方形状角軸の上面におい
て単列、または並列に成形した直交2平面より成るV溝
形ころの転走面6と、該転走面6の各々に対称的に、軸
受本体10に成形した、同じく直交2平面より成るV溝
形転走面7とで形成される、ころの方形転走面径路の軸
方向両端に連なる、軸受内円弧状と、該円弧状他端に連
なる内周面方形径路とで、軸方向長円形状に形成される
各々の循環径路内 に、該径路内周面に対する軸方向両端面間の干渉を回避
するため、外径に対して軸方向の長さを僅かに短く成形
した多数のころの各々に、上記ころの保持器を適用し、
該保持器と共にころの軸心を交互に直交させ、上記方形
径路内に形成される2対の転走面に対応して配列し、上
記案内用軸9と、軸受本体10に成形したV形転走面6
と7の近接方向と該転走面6と7の近接方向と同じく転
走面6と7におけるころの転走方向とに直交する、添付
各実施例における上下方向、または左右方向との3方向
軸受荷重を支持し、軸受作動時においては、上記循環径
路中の多数のころは、上記案内用軸と軸受に単列で、高
精度の成形が容易な1対のV溝形2対の転走面において
、該2対の転走面間に僅かの遊隙を確保して成形した、
上記本願保持器外周の走行案内面により、転走方向に対
するころの軸心間の直角度を高度に確保し、作動時にお
けるころの軸方向両端面と、径路内周面間の摺動摩擦を
僅少にとどめ、また上記循環径路内走行時の保持器間接
触圧は、保持器外周面に成形した円筒面、または球面間
に作用して、湾曲部を含む循環径路内における、上記接
触圧に伴う保持器間干渉を回避して、軸受作動時におけ
る保持器ころの円滑な転走、ならびに走行を実現し、上
記案内用軸と軸受間単列、ならびに並列V形転走面と、
該転走面に連なる循環径路中の各々のころに、上記本願
保持器を適用して配列し、上記軸受作動方向直角断面内
の3方向軸受荷重作用下における円滑な作動特性と、案
内用軸と軸受間に球を介在させて構成した従来品に比べ
案内精度、耐荷重性、耐久性等の諸特性に勝れたことを
特徴とする直動ころがり案内。 4)請求項1)記載のころ用保持器を、軸受内循環径路
中の多数のころに適用して構成する直動ころがり案内に
おいて、直動案内構成用軸と軸受間構成を、添付第15
図に示した方形軸9の両側面に対称的に成形した、直交
2平面より成る1対のV溝形軸方向ころの転走面6に対
応し、上記添付図中の10に示した、上記案内用軸9の
両側面に案内されて作動する架台状軸受本体10の両側
面に平行に、また上記案内用軸9の両側面に僅かの遊隙
を確保して、上記案内用軸のV溝形転走面の各々に対称
的に成形した、上記添付図中の7に示した、直交2平面
より成る1対のV溝形軸方向ころの転走面間に、上記案
内用軸9の両側面において対称的に形成される、1対の
荷重負荷域軸方向方形内周面より成るころの転走径路を
形成し、ついで該1対の転走径路の軸方向両端には、該
径路の方形内周面に連なる半円弧状と、該半円弧状他端
に連なる直線状径路とで、上記荷重負荷域径路とで軸方
向長円形状に、軸受内ころの循環径路を形成し、該径路
内に軸方向の長さを外径よりも僅かに短く成形した多数
のころの各々 に、上記本願ころの保持器を適用し、該保持器と共にこ
ろの軸心を交互に交差し、あるいは2個毎に1個、また
は3個毎に1個等の割合で交差して配列し、交互に交差
配列した場合の、案内用角軸と軸受間上下、左右方向均
等負荷容量に対応して、左右の2方向には上記均等負荷
容量を保ち、上下の2方向においては、荷重を負荷する
ころの数に対応して2対1、または3対1等の負荷容量
を設定し、上記軸受に作用する上下2方向の荷重の大き
さに対応して合理的な軸受負荷容量の設定をはかること
ができ、また上記本願保持器を適用した径路内ころの走
行の円滑化と共に、案内用軸と軸受間2対の転走面の形
成が必要な球を用いて構成したこの種直動ころがり案内
の従来品と異なり、案内用軸と軸受間直交2平面により
V溝形に成形された1対の転走面により、軸受に作用す
る上下、左右の4方向荷重を合理的に支持することがで
きると共に、直動案内用軸の取付面と軸受上面間の高さ
を低く形成し、直動ころがり案内を用いる、往復動台と
台座間の間隔が制約される各種機械への適用をはかるこ
とができることを特徴とする高性能直動ころがり案内。 5)請求項1)記載のころ用保持器を、軸受内循環径路
中の多数のころに適用して構成する直動ころがり案内を
、請求項4)記載の直動ころがり案内と同じく、案内用
角軸の両側面に成形したころの転走面に対応して、架台
状軸受本体両側面の内側に、上記案内用軸両側面に一定
の遊隙を保ち形成した軸受面において、上記案内用角軸
両側面に成形したころの転走面と対称的に成形したころ
の転走面間に形成される、荷重負荷域ころの軸方向方形
ころの転走径路の軸受軸方向両端に連なり、軸方向長円
形状ころの循環走行径路を形成して構成する直動ころが
り案内において、上記案内用角軸の両側面に成形するこ
ろの転走面を、上記特許請求の範囲4)記載の直動ころ
がり案内構成用の案内用角軸の両側面の各々に単列で、
また両側面間で対称的に形成した1対の転走面と異な り、上記案内用角軸の両側面の各々には並列に、また該
軸の両側面間では対称的に成形した2対の転走面につい
て、これらの各々の転走面を、添付第16図の実施例に
おいては、すべての転走面について、直交2平面より成
るV溝形転走面6を、添付第18図の実施例においては
、上記案内用角軸9の両側面と上面との角と、両側面の
中間に位置して、各々上記角軸9の取り付け面に平行、
ならびに直交する2平面より成る傾斜V溝形転走面6a
を、添付第21図の実施例においては、案内用角軸の両
側面と上面との角に位置し、上記角軸両側面と上面に対
して45°傾斜した平面より成る1対の転走面6bと、
同じく角軸9の両側面の中間に位置した1対の直交2平
面より成るV溝形転走面7とで形成される上記2対の転
走面を、また添付第22図の実施例においては、同じく
上記案内用角軸9の両側面と上面との角に位置して、該
軸9の取付面に平行、ならびに直交する2面より成る傾
斜V溝形状1対の転走面6aと、上記案内用角軸9の両
側面の中間に位置して、直交2平面より成るV溝形1対
の転走面6とで、上記2対の転走面を成形し、これらの
各実施例のように各々の案内用角軸9の両側面に成形し
た2対のころの転走面に対応して、上記架台状に形成し
た各軸受本体10の両側面と上面の内側に、案内用軸9
の両側面と上面間に一定の遊隙を保ち形成した軸受面と
、該軸受面と軸受内側上面との角において、上記案内用
軸9における2対の転走面の各々に対称的に成形した、
V溝形転走面間で形成される軸方向転走径路の軸受軸方
向両端において、半円弧状と、該半円弧状の他端に連な
る直線状循環径路とで、軸方向長円形状に形成される各
々の循環径路中に、軸方向の長さを外径に対して僅かに
短く成形した多数のころに、本願ころの保持器を適用し
、該保持器と共に多数のころを配列する際に、添付第1
6図と第18図の実施例において、案内用軸9両側面に
おける2対の上記ころの方形転走径路のすべてにおいて
、添付第11図(A)と(C)に示したように、ころ相
互間の軸心を交互に交差して配列した際には、添付第2
5図の(B)と(F)に示すように、本願直動案内の軸
受負荷容量は、同じく本願上記特許請求の範囲4)記載
の実施例における案内用軸9の両側面に形成した、荷重
負荷域方形循環径路中にころ相互間の軸心を交互に交差
配列して構成した場合の、添付第25図中の(A)に示
した、軸受の上下、左右方向に均等な負荷容量との比較
において、上記した添付第16図に対応した図中の(B
)では、軸受の上下、左右に均等な軸受負荷容量は図中
の上記(A)の場合の2倍であり、同じく図中の(F)
における軸受の上下、左右方向における均等負荷容量は
、図中の(A)における均等負荷容量の約2.5倍であ
る。ついで添付第16図、第18図、第21図、第22
図の実施例において、上記案内用軸9の両側面における
2対のころの転走面に対称的に成形した軸受側転走面間
軸方向方形転走径路のうち、1対の方形径路内ころにつ
いては、上記添付第11図(A)、(C)に示したよう
に、相互間で交互に軸心を交差して配列し、他の1対の
径路内ころについて は、上記添付第11図中の(B)と(D)に示したよう
に、相互間ころの軸心を平行に配列した際には、案内用
軸と軸受間負荷容量は、添付各実施例について、上記添
付第25図(C)、(G)、(D)、(H)に示すよう
に、実施例第16図と第18図における図(C)と(G
)において、各々上記図中の(B)と(F)における、
上下、左右方向均等負荷容量は、図示のように図(C)
において図(B)の下方から作用する荷重に対する負荷
容量が減少して、上方から作用する荷重に対する負荷容
量が増加し、また図中の(F)と(G)における負荷容
量においては、軸受の左右方向の負荷容量が減少して、
上方から下方に作用する荷重に対する負荷容量が増加す
るように構成し、また実施例第21図と第22図に対応
した図(D)と(H)においても、上記(C)、(D)
と類似して、下方から、または左右方向から作用する荷
重に対する負荷容量が減少して、上方から作用する荷重
に対する負荷容量が増加し、また上記添付第16図と第
18図の実施例における、循環径路内ころの配列方法の
変更により示された、上記添付第25図中の図(C)と
(G)における、軸受上方より作用する荷重に対する軸
受負荷容量の増加は、案内用軸両側面上下2対の転走径
路内ころの配列方法を、上下の径路間で交替した際には
、各々上方と下方より作用する軸受荷重に対応した軸受
負荷容量も交替して、下方よりの荷重に対応した負荷容
量の増加をはかることがで き、更に上記各実施例の循環径路内ころの配列方法と共
に、上記径路内ころの相互間における交互交差配列にお
いては1体1の交差配列と2対1、3対1等の交差配列
に変え、またはころ相互間の平行配列においては、1対
1、1対2、1対3等の交差配列方式を採用して、軸受
負荷容量の多様化をはかることができる。 従って軸受内多数のころに請求項1)記載のころの保持
器を適用して構成する直動ころがり案内における、案内
用軸の両側面に成形した2対のV溝形ころの転走面と該
転走面に対応して、架台状軸受に対称的に成形した、2
対のV溝形転走面間に形成される荷重負荷域ころの2対
の方形ころの転走径路を形成して、上記ころを用いて構
成したこの種従来品における、案内用角軸両側面に上記
1対のころの転走径路を形成した直動ころがり案内との
比較において、直動案内構成用軸受の負荷容量の増加を
はかると共に、上記添付各実施例に示した、上記案内用
角軸と軸受間2対の方形ころの転走径路の形成と配置方
式の相違と、該径路内への上記保持器内ころの配列方式
の選択等により、軸受に作用する主荷重の作用方向と該
荷重値の大きさ、ならびに上記主荷重値に対応して設定
される予荷重値等に対応して、軸受の上下、左右方向負
荷容量間比率の適正化をはかることができることを特徴
とする、循環式直動ころがり案内の構成。 6)請求項2)記載の本願ころがり案内用球の保持器4
を軸受内の多数の球に適用して構成した、添付第23図
と第24図の直動ころがり案内において、案内用方形軸
9の両側面と、該両側面間に一定の遊隙を保ち、架台状
軸受本体10の両側面の内側に形成した軸受面の各々に
、球の荷重支持範囲の転走面と共に、該転走面に上記球
の保持器を配列した際の、該保持器外周面における保持
器の走行案内面4b間に僅かの遊隙を保ち、相互間で対
称的に成形した傾斜V溝6cと7c間に形成される、軸
方向長方形状荷重負荷域走行径路と、該走行径路の軸受
軸方向両端に連なる半円弧状と、該半円弧状の他端に連
なる直線状径路とで、軸方向長円形状に形成される循環
径路中に、上記保持器4と共に配列される多数の球20
は、上記直動ころがり案内の作動時、上記案内用軸と軸
受間循環径路において、上記保持器4を介して隣接球間
の直接接触を回避し、上記保持器4の球形外周面4aに
おける、径路内保持器の相互接触と、同じく保持器外周
面の上記走行案内面4bとにより、径路内の円滑な循環
転走を継続する保持器内において、上記径路内の案内用
軸と軸受間の荷重負荷域転走面と、軸受内循環径路中で
の、転走面ならびに循環径路壁間、および球相互間に不
可避的に繰返される弾性的な衝突に伴う球と転走面の損
傷、高調波の騒音を回避することを特徴とする直動ころ
がり案内。 7)請求項1)記載のころの保持器を、軸受内循環径路
中の多数のころに適用して構成する直動ころがり案内に
おいて、案内用軸に成形した、直交2平面より成るV溝
形ころの転走面に対応し、一定の遊隙を保ち形成される
軸受面に、上記案内用軸に成形したV溝形転走面に対応
し、該転走面に対して対称的に成形した、同じくV溝形
転走面に形成される、軸方向方形ころの転走径路の軸受
軸方向両端に連なり、半円弧状と、該半円弧状の他端に
連なる直線状循環走行径路の形成を、添付第19図の斜
視図と、第20図の投影図中に示したように、上記案内
用軸と軸受間軸方向方形ころの転走径路の、軸受軸方向
の両端に連なる半円弧状径路については、上記添付各図
中に示した半円弧状の径路構成部品17と18の各々に
、V溝形状の案内溝17a、18aを成形し、上記部品
17と18を重ねあわせた円弧状径路を形成し、また該
円弧状径路の 他端に連なる直線状径路については、上記円弧状径路形
成部品17と18に成形した、円弧状V形溝17aと1
8aに連なり、同じく部品17と18に成形した、上記
V形溝17aと18aを形成する各々の交差2平面間と
の間に一定の段差と、平行度とを保ち形成したV形接合
面17bと18bにより形成される方形接合部に対応し
、内周面には上記円弧状径路内周面に連なる方形循環径
路19aを、また円筒形外周面の軸方向両端には、上記
円弧状径路構成部品17と18に成形した、接合面17
bと18bにより形成される、軸方向方形内周面よりな
る接合部に嵌合する、上記方形循環径路19a間に一定
の厚さを保ち、平行な接合面19bを成形した円筒形部
品19とで、軸受内ころところに適用した保持器との循
環径路を形成し、また上記循環径路の方形状内周面の4
隅には、径路内ころに適用する保持器外周面形状に対応
し、添付第1図(A)と(B)に示した保持器1と保持
器2においては、保持器補強用凸部1eと2e間に僅か
の遊隙を保ち角溝形逃げ面が形成され、上記した添付図
中の17〜19に示した循環径路構成部品は、本願直動
ころがり案内構成用軸受において、各構成用部品の外周
面形 状に適応して成形した、上記添付第19図中に示した軸
受本体10の軸方向円筒形状の孔10dと、軸受側板1
5の凹部15gにおいて、各々軸方向直線状径路範囲形
成用の円筒形部品19と、部品17と18とを重ねあわ
せて形成される、上記半円弧状径路範囲形成用部品とを
定置して形成し、本願転動体に保持器を適用する、転動
体保持器の循環径路の形成に際しては、上記添付第19
図中の軸受本体10に成形した軸方向の丸孔10dと、
側板15に成形した凹部15gを、上記直動案内の種類
と大きさに対応して形成して適用することができ、また
径路構成部品17〜19は、循環径路内転動体と、該転
動体に適用する保持器の寸法・形状を同じくする、本願
直動ころがり案内構成用軸受本体10と、軸受側板15
とにおいて、上記軸方向の丸孔と、側板15における凹
部15gを形成して供用することができ、また上記本願
直動案内のコンパクト化を目的とし、軸受巾の縮小と、
該軸受巾の縮小に伴う、軸受内循環径路中の上記半円弧
状湾曲部における、保持器旋回半径の減少による径路内
保持器走行の困難さを回避するため、添付第8図と第9
図に示した、軸方向長円形状径路の立体的な形成方式に
よって、上記径路内保持器の旋回半径の増加をはかる際
には、上記循環径路構成用の円筒形部品19を、添付第
18図〜第19図の実施例に示すように、架台状軸受本
体10の両側面と、上下面の隅に配置し、該円筒形径路
構成部品19の架台状軸受内への配置と共に、構成部品
19と、案内用軸と軸受間荷重負荷域転走径路間を、径
路構成部品17と18により、軸受本体10の上、下面
に対して傾斜連接して、上記径路構成部品間で形成され
る、循環径路中の半円弧状径路範囲における保持器旋回
半径を増加することを特徴とする、本願直動ころがり案
内における軸受内保持器循環径路の形成法。 8)請求項1)又は2)記載の転動体保持器を、成形性
、ならびに強度、耐摩性、耐蝕性等のころがり軸受転動
体用保持器材料に必要な諸特性を備えている、ナイロン
系、ポリアセタール等の高分子材料、ならびに該材料に
おける各種繊維強化、固体潤滑剤添加複合材料等からの
射出成形法により成形したことを特徴とする、上記本願
直動ころがり案内構成用転動体への適用を目的とした保
持器。
[Claims] 1) In a guide shaft for a linear motion rolling guide configuration and a direct motion roller bearing, a constant play is maintained between the guide shaft and the bearing,
A V-groove roller raceway surface consisting of a pair of orthogonal raceway surfaces is formed symmetrically on each of the bearing guide surface and the bearing surface, which are formed parallel to the operating direction of the bearing. The axial direction of a roller that corresponds to two pairs of raceway surfaces in a rectangular path formed by V-groove raceway surfaces and that rolls between any one of the two pairs of raceway surfaces. In order to avoid interference with the other pair of raceway surfaces on both end faces, a large number of rollers of the same size and shape, whose axial length is slightly shorter than the diameter, are mounted on the guide shaft. The present invention relates to a cage intended to be applied to each roller when the axes of the above-mentioned large number of rollers are arranged alternately orthogonally in the axial direction of the rolling path of the square rollers formed between the bearing and the bearing. On the outer circumferential surface of each cage, as shown by symbols 1 to 3 in the perspective views of FIGS. 1 (A) to (C) and the projected views of FIGS. 2 to 4, In the cage 1 shown in the above attached drawing, the contact surface is formed into a cylindrical surface indicated by the symbol 1a in the drawing, and in the cages 2 and 3 also shown in the attached drawing, the contact surface is formed into a cylindrical surface shown by the symbols 2a and 3a in the drawing. The cages 1 to 1 are molded into the spherical surfaces shown in order to avoid interference between the cages in the path.
On the outer circumferential surface of No. 3, a slight gap is set between the inner circumferential surfaces of the rectangular paths, which is necessary when the cage runs, and a gap is set symmetrically with respect to the center of the cylindrical or spherical outer circumferential surface of each cage. , rectangular cage running guide surfaces 1b to 3b parallel to the inner circumferential surface of the route.
The cage shown in the attached figures above is formed at the center of one pair of parallel guide surfaces in the two pairs of parallel guide surfaces on the rectangular running guide surface on the outer peripheral surface of the cage. 1 and 2 have cylindrical holes 1c and 2c for inserting the rollers into the cage with a slight clearance between the outer peripheral surfaces of the rollers to which the cage is applied, and the holes 1c and 2c. Corresponding to 1c and 2c, the other pair of guide surfaces 1b and 2b of the square cage guide surfaces 1b and 2b have outer circumferential surfaces of rollers inserted into the holes 1c and 2c in the cage. , 2 of the rectangular path between the guide shaft and the bearing.
Rectangular holes 1d and 2d are formed to maintain contact with any one of the rolling surfaces of the pair of rollers, and a V-groove rolling contact between the guide shaft and the bearing is formed. At four corners of the square guide surface on the outer peripheral surface of the cage, which is formed corresponding to the square path between the surfaces, there is a clearance between the guide shaft formed with the V-groove raceway surface and the parallel guide surface between the bearings. and corresponding to the square grooves for molding the groove bottom flank surface required during high-precision molding of the pair of V-shaped guide surfaces, and connected to the cylindrical or spherical surface of the outer peripheral surface of the cage, for reinforcing the cage. A convex portion 1e or 2e is formed. In addition, in the pair of parallel surfaces in the rectangular cage running guide surface formed by the two pairs of parallel surfaces molded on the outer circumferential surface of the cage 3 in the above attached drawing, the pair of parallel surfaces one side guide surface At the center of the roller, perpendicular to the guide surface, as shown in the figure, a roller whose axial length is shortened compared to the rollers when the cages 1 and 2 are applied is placed on the outer circumferential surface of the roller. A semi-circular cylinder corresponding to the outer circumferential surface of the inner roller of the cage is installed at the bottom of the hole in order to insert the roller into the cage from the outer circumferential surface of the roller while ensuring a slight gap between the two end faces in the axial direction. A rectangular hole 3d is formed to maintain contact between the cage inner roller and the rolling surface.
A rectangular hole 3c is formed. Next, cages 1 to 3 shown in the attached figures are attached to the rolling surfaces of two axially rectangular pairs of rollers formed between the rolling surfaces of the V-groove rollers formed on the above-mentioned guide shaft and bearing. The shape of the inner circumferential surface corresponds to the inner circumferential surface of the rectangular rolling path in the rolling direction of the rollers, and there is a slight play between the outer circumferential surfaces of the cage during running. The retainer in the bearing and the rollers in the retainer are formed by a semicircular arc path at both ends in the axial direction of the bearing, and a linear path range continuous to the other end of the semicircular arc path range. A circulating rolling path is formed, and when the cage is arranged in the circulating path that is formed in an oval shape as a whole by the circulating path and the rolling path of the guide shaft and the rollers between the bearings. As shown in each of the attached FIGS. 6 to 8, a large number of cages in the path have line contact between the cylindrical surfaces 1a on the outer peripheral surface of the cages, or spherical surfaces 2a,
3a, and with respect to the contact line or contact point, the center line of the rectangular inner circumferential surface of the circulation path is orthogonal to the contact line between the cylindrical surfaces 1a at the center of the contact line. In addition, the contact point between the spherical surfaces 2a and 3a is located on the center line, and the contact between the cages in the path is due to the cylindrical surface 1a or the contact between the spherical surfaces 2a and 3a, so that the cages are mutually connected during bearing operation. In addition, the contact pressure acting on the outer circumferential surface of the retainer in the path when the bearing is in operation, as shown in attached FIGS. It acts between the contact surfaces of the outer circumferential surface of the cage located at the center of the inner circumferential surface of the rectangular path, and corresponds to the shape of the inner circumferential surface of the rectangular path on the outer circumferential surface of the cage, with a slight play between the inner circumferential surfaces of the channel. The rectangular running guide surfaces 1a to 3b are formed symmetrically with respect to the center of the cage.
Then, it is applied to each of a large number of rollers 5, 5' arranged in a circulation path connected to both ends of the V-groove raceway surface formed on the linear motion rolling guide shaft and bearing of the present invention, and the above-mentioned circulation of the rollers is applied. A roller for a circulating direct-acting roller bearing, characterized in that it is formed so that it can roll in the load area between the shaft and the bearing in the path and smoothly run in the running range for circulation within the bearing. retainer. 2) In the roller cage 3 according to claim 1), a rolling path is formed on the outer peripheral surface of the cage and is a load support range between a guide shaft and a bearing for a linear motion rolling guide configuration, and a bearing in the path. The circulation path in the bearing is connected to both ends in the axial direction, and the contact surface 3a between the circulation path retainers, which is formed in an elliptical shape in the axial direction, the running guide surface 3b of the path retainer, and the inside of the retainer. A hole 3c for inserting the formed roller, and a hole 3c formed between the semi-cylindrical bottom surface of the hole 3c and the cage running guide surface 3b,
Each of the rectangular holes 3d for maintaining contact between the outer circumferential surface of the inner roller of the cage and the rolling surface of the roller is applied to a ball instead of a roller as a rolling element to which the cage is applied. The outer circumferential surface of the cage 4 shown in attached FIG. 1(D) and FIG. 5, which was formed for the purpose of , the same spherical surface as 3a on the outer circumferential surface of the cage 3, and the cage 2 for running in the path.
Unlike the guide surface 4b in the cage 3, which is formed into a rectangular shape in the running direction of the cage, the guide surface 4b consisting of a pair of orthogonal planes is parallel to the rolling surface of the balls in the path in the running direction. It is formed into a rectangular shape corresponding to a pair of guide surfaces with a short distance between the planes, and a holding surface is provided at the center of one guide surface of the pair of rolling surfaces corresponding to the rolling surfaces of the balls. The insertion opening 4c for the ball into the container is formed by maintaining a slight clearance between the outer peripheral surfaces of the balls to be fed into the hole 4c, and by forming the bottom surface into a hemispherical shape.
Between the spherical bottom surface of c and the guide surface parallel to the guide surface formed with the holes 4c, there is a ball-to-ball rolling hole corresponding to the hole 3d for maintaining contact with the roller and rolling surface in the cage 3. A round hole 4d is formed between the running surfaces, and the cage 4 is applied to a large number of balls, and the axial length between the guide shaft and the bearing is formed corresponding to the running guide surface 4b formed on the outer periphery of the cage. When supplied into the circular circulation path, the cage 4 and the balls supplied into the cage avoid direct contact between the balls, as in the case of the cage applied to the rollers. The spherical contact surface 4a minimizes mutual interference between the cages, and together with the outer circumferential travel guide surface 4b, smooth circulation within the circulation path is achieved during linear motion guide operation. Ball holder. 3) In a linear motion rolling guide configured by applying the roller cage described in claim 1 to a large number of rollers in a bearing, the guide method shown in attached FIGS. 12 and 13 and attached FIG. 14. A raceway surface 6 of a V-groove roller consisting of two perpendicular planes formed in a single row or in parallel on one side of the rectangular shaft and the upper surface of the rectangular shaft, and a raceway surface 6 symmetrically on each of the raceway surfaces 6. , a V-groove raceway surface 7 formed on the bearing body 10, which also consists of two orthogonal planes, and an internal circular arc shape in the bearing that is connected to both axial ends of the square rolling surface path of the roller, and the circular arc shape. In order to avoid interference between both end surfaces in the axial direction with respect to the inner circumferential surface of the circulation path, there is a Applying the roller cage to each of a large number of rollers whose axial length is slightly shortened,
V-shaped rollers formed on the guide shaft 9 and the bearing body 10 are arranged so that the axes of the rollers are alternately orthogonal to each other along with the cage, and are arranged corresponding to the two pairs of rolling surfaces formed in the square path. Rolling surface 6
and 7, and the vertical direction or the horizontal direction in each of the attached examples, which is orthogonal to the approaching direction of the raceway surfaces 6 and 7 and the rolling direction of the rollers on the raceway surfaces 6 and 7. To support the bearing load and when the bearing is in operation, the large number of rollers in the circulation path are arranged in a single row on the guide shaft and the bearing, with a pair of V-groove rollers that are easy to form with high precision. Molded with a slight clearance between the two pairs of rolling surfaces on the running surface,
The running guide surface on the outer periphery of the cage of the present invention ensures a high degree of perpendicularity between the axes of the rollers with respect to the rolling direction, and minimizes the sliding friction between both axial end surfaces of the rollers and the inner circumferential surface of the path during operation. In addition, the contact pressure between the cages during traveling in the circulation path is caused by the cylindrical surface formed on the outer peripheral surface of the cage or between the spherical surfaces, and is accompanied by the contact pressure in the circulation path including the curved portion. Avoiding interference between the cages and realizing smooth rolling and running of the cage rollers during bearing operation, the single row between the guide shaft and the bearing, and the parallel V-shaped rolling surface;
The cage according to the present invention is applied to each roller in the circulation path connected to the raceway surface and arranged to achieve smooth operating characteristics under the action of a bearing load in three directions within a cross section perpendicular to the bearing operating direction, and a guiding shaft. A linear motion rolling guide that is characterized by superior characteristics such as guiding accuracy, load resistance, and durability compared to conventional products that have a ball interposed between the bearing and the bearing. 4) In a linear motion rolling guide configured by applying the roller retainer according to claim 1 to a large number of rollers in a circulation path within the bearing, the shaft for linear motion guide configuration and the structure between the bearings are provided in attached No. 15.
Corresponding to the rolling surfaces 6 of a pair of V-groove axial rollers consisting of two orthogonal planes formed symmetrically on both sides of the square shaft 9 shown in the figure, and shown at 10 in the attached figure above, A small amount of play is ensured in parallel to both sides of the frame-like bearing body 10 that operates while being guided by both sides of the guide shaft 9, and on both sides of the guide shaft 9. The guide shaft is placed between the raceway surfaces of a pair of V-groove axial rollers formed symmetrically on each of the V-groove raceway surfaces and consisting of two orthogonal planes, as shown in 7 in the attached drawing. A roller rolling path is formed symmetrically on both side surfaces of the roller 9 and is formed of a pair of axially rectangular internal circumferential surfaces of the load bearing area, and then, at both axial ends of the pair of rolling paths, A semicircular arc continuous to the rectangular inner circumferential surface of the passage and a linear passage continuous to the other end of the semicircular arc form a circulation passage for the bearing inner rollers in an axially oval shape with the load bearing area passage. Then, the cage of the roller of the present invention is applied to each of a large number of rollers whose axial length is slightly shorter than the outer diameter in the path, and the roller axes are alternately crossed with the cage. Or, if they are arranged crosswise at a ratio of one for every two or one for every three, etc., and arranged alternately, the load capacity will be equal in the vertical and horizontal directions between the guide square shaft and the bearing. Correspondingly, the above-mentioned equal load capacity is maintained in the left and right directions, and the load capacity is set in a ratio of 2 to 1 or 3 to 1 in the up and down directions, depending on the number of rollers that carry the load. , it is possible to set a reasonable bearing load capacity corresponding to the magnitude of the load acting on the bearing in two directions, up and down, and in addition to smooth running of the rollers in the path by applying the cage of the present invention, Unlike conventional linear motion rolling guides, which are constructed using balls that require the formation of two pairs of rolling surfaces between the guide shaft and the bearing, the guide shaft and the bearing are formed into a V-groove shape with two orthogonal planes. The pair of raceway surfaces can rationally support the four-directional loads acting on the bearing (up, down, left and right), and the height between the mounting surface of the linear motion guide shaft and the top surface of the bearing is low. A high-performance linear motion rolling guide, which is characterized in that it can be applied to various machines that use a linear motion rolling guide and where the distance between a reciprocating table and a pedestal is restricted. 5) A linear motion rolling guide constituted by applying the roller retainer according to claim 1) to a large number of rollers in a bearing internal circulation path, as well as a linear motion rolling guide according to claim 4), for guiding purposes. Corresponding to the rolling surfaces of the rollers formed on both sides of the square shaft, the guide shaft is formed on the inside of both sides of the frame-like bearing body with a certain amount of play on both sides of the guide shaft. The rolling path of the square roller in the axial direction of the load bearing area roller, which is formed between the rolling surface of the roller formed on both sides of the square shaft and the rolling surface of the roller formed symmetrically, is connected to both ends of the bearing in the axial direction, In a linear motion rolling guide configured by forming a circulation path for axially oval rollers, the rolling surfaces of the rollers formed on both sides of the guide square shaft are formed by the linear roller according to claim 4). in a single row on each side of the square guide shaft for the moving rolling guide arrangement;
Also, unlike the pair of rolling surfaces formed symmetrically between both side surfaces, there are two pairs of rolling surfaces formed symmetrically on each side surface of the square guide shaft, and in parallel between both sides of the shaft. Regarding the raceway surfaces, in the embodiment shown in the attached FIG. 16, for all the raceway surfaces, a V-shaped raceway surface 6 consisting of two orthogonal planes is defined as shown in the attached FIG. 18. In the embodiment, a corner between both side surfaces and the upper surface of the guide square shaft 9, and a corner located midway between the both sides and parallel to the mounting surface of the square shaft 9, respectively;
and an inclined V-groove raceway surface 6a consisting of two orthogonal planes.
In the embodiment shown in the attached FIG. 21, a pair of rolling surfaces are located at the corners of both side surfaces and the top surface of the guide square shaft, and are composed of planes inclined at 45 degrees with respect to both side surfaces and the top surface of the square shaft. Surface 6b and
Similarly, the above two pairs of raceway surfaces formed by the V-groove raceway surface 7 consisting of a pair of orthogonal two planes located in the middle of both side surfaces of the square shaft 9 are also shown in the embodiment shown in the attached FIG. 22. are also located at the corners of both side surfaces and the top surface of the guide square shaft 9, and have a pair of inclined V-groove rolling surfaces 6a consisting of two surfaces parallel to and orthogonal to the mounting surface of the shaft 9. , and a pair of V-groove raceway surfaces 6 formed of two orthogonal planes located midway between both side surfaces of the guide square shaft 9 to form the two pairs of raceway surfaces, and each of these implementations As shown in the example, guide rollers are formed on both sides and inside the upper surface of each bearing body 10 formed in the shape of a pedestal, corresponding to the rolling surfaces of the two pairs of rollers formed on both sides of each of the square guide shafts 9. Axle 9
A bearing surface is formed with a constant clearance between both side surfaces and the upper surface of the bearing surface, and a corner of the bearing surface and the inner upper surface of the bearing is formed symmetrically on each of the two pairs of rolling surfaces of the guide shaft 9. did,
At both ends of the bearing axial direction of the axial rolling path formed between the V-groove raceway surfaces, a semicircular arc shape and a linear circulation path connected to the other end of the semicircular arc shape form an axially elliptical shape. In each circulation path to be formed, a cage of the present roller is applied to a large number of rollers whose axial length is slightly shorter than the outer diameter, and a large number of rollers are arranged with the cage. Attachment 1
In the embodiments shown in FIGS. 6 and 18, in all of the rectangular rolling paths of the two pairs of rollers on both sides of the guide shaft 9, as shown in FIGS. 11 (A) and (C), When the axes are arranged so that they alternately intersect, please refer to attached No. 2.
As shown in FIGS. 5(B) and (F), the bearing load capacity of the linear motion guide of the present application is similar to that formed on both sides of the guide shaft 9 in the embodiment described in claim 4) of the present application. Load capacity is equal in the vertical and horizontal directions of the bearing, as shown in (A) in the attached Figure 25, when the axes of the rollers are alternately arranged in a rectangular circulation path. In comparison with (B) in the figure corresponding to the above attached Figure 16
), the bearing load capacity that is equal to the top, bottom, left and right sides of the bearing is twice that of case (A) above in the figure, and also (F) in the figure.
The equal load capacity of the bearing in the vertical and horizontal directions is approximately 2.5 times the equal load capacity in (A) in the figure. Next, attached Figures 16, 18, 21, and 22.
In the illustrated embodiment, one of the square rolling paths in the axial direction between the bearing-side rolling surfaces formed symmetrically on the rolling surfaces of the two pairs of rollers on both sides of the guide shaft 9. The rollers are arranged so that their axes intersect with each other alternately as shown in the attached Figures 11 (A) and (C), and the other pair of rollers in the path are arranged as shown in the attached Figure 11 (A) and (C) above. As shown in (B) and (D) in Figure 11, when the axes of the mutually spaced rollers are arranged in parallel, the load capacity between the guide shaft and the bearing is as shown in the above attachment for each of the attached examples. As shown in FIGS. 25(C), (G), (D), and (H), FIGS.
), respectively in (B) and (F) in the above figure,
The equal load capacity in vertical and horizontal directions is as shown in figure (C).
In Figure (B), the load capacity for loads acting from below decreases, while the load capacity for loads acting from above increases; The load capacity in the left and right direction decreases,
The configuration is such that the load capacity for loads acting from above to below increases, and also in the figures (D) and (H) corresponding to the embodiments FIGS. 21 and 22, the above (C) and (D)
Similarly, the load capacity for loads acting from below or from the left and right direction decreases, and the load capacity for loads acting from above increases; The increase in the bearing load capacity against the load acting from above the bearing in Figures (C) and (G) in the attached Figure 25, which is shown by changing the arrangement method of the rollers in the circulation path, is due to the increase in the bearing load capacity against the load acting from above the bearing. When the arrangement method of the two pairs of upper and lower rolling path inner rollers is changed between the upper and lower paths, the bearing load capacity corresponding to the bearing load acting from above and below is also changed, and the bearing load capacity corresponding to the bearing load acting from above and below is also changed. A corresponding increase in load capacity can be achieved, and in addition to the arrangement method of the rollers in the circulation path of each of the above embodiments, in the alternating cross arrangement between the rollers in the path, a one-body one-one cross arrangement and a two-to-one arrangement are possible. , change to a cross arrangement such as 3 to 1, or adopt a cross arrangement method such as 1 to 1, 1 to 2, 1 to 3, etc. in parallel arrangement between rollers to diversify the bearing load capacity. be able to. Therefore, in a linear motion rolling guide constructed by applying the roller cage according to claim 1 to a large number of rollers in the bearing, the rolling surfaces of two pairs of V-groove rollers formed on both sides of the guide shaft. 2 formed symmetrically on the pedestal-like bearing corresponding to the rolling surface.
In a conventional product of this kind constructed using the above-mentioned rollers, the rolling paths of the two pairs of square rollers of the load bearing area rollers formed between the pair of V-groove raceway surfaces are formed on both sides of the guide square shaft. In comparison with a linear motion rolling guide in which a rolling path for the pair of rollers is formed on the surface, the load capacity of the bearing for the linear motion guide configuration is increased, and the bearings for the guide shown in the attached examples are improved. Due to the differences in the formation and arrangement of the rolling paths of the two pairs of square rollers between the square shaft and the bearing, and the selection of the arrangement method of the cage inner rollers in the paths, the direction of the main load acting on the bearings is determined. The bearing is characterized in that the ratio between the vertical and horizontal load capacities of the bearing can be optimized in accordance with the magnitude of the load value and the preload value set corresponding to the main load value. A circulating linear motion rolling guide configuration. 6) Cage 4 for rolling guide balls according to claim 2)
In the linear motion rolling guide shown in the attached FIGS. 23 and 24, which is constructed by applying the above to a large number of balls in a bearing, a constant play is maintained between both sides of the rectangular guiding shaft 9 and between the two sides. , when the ball cages are arranged on each of the bearing surfaces formed on the inside of both side surfaces of the pedestal-shaped bearing body 10, together with the rolling surfaces in the load supporting range of the balls, on the rolling surfaces. an axially rectangular load area running path formed between inclined V grooves 6c and 7c formed symmetrically with a slight clearance between the running guide surfaces 4b of the retainer on the outer peripheral surface; Arranged together with the retainer 4 in a circulation path formed in an axially oval shape with a semicircular arc extending to both ends of the running path in the axial direction of the bearing, and a linear path extending to the other end of the semicircular arc. A large number of balls 20
During the operation of the linear rolling guide, direct contact between adjacent spheres is avoided via the retainer 4 in the circulation path between the guide shaft and the bearing, and on the spherical outer peripheral surface 4a of the retainer 4, Due to the mutual contact of the cages in the path and the traveling guide surface 4b on the outer circumferential surface of the cage, the movement between the guide shaft and the bearing in the path within the cage continues smooth circular rolling in the path. Damage to the balls and raceway due to the unavoidable repeated elastic collisions between the raceway in the load bearing area and the circulation path in the bearing, between the raceway and the circulation path wall, and between the balls. Direct-acting rolling guide characterized by avoiding wave noise. 7) In a linear rolling guide configured by applying the roller retainer according to claim 1 to a large number of rollers in a circulation path within the bearing, a V-groove shape formed on the guide shaft and consisting of two orthogonal planes. The bearing surface, which corresponds to the rolling surface of the rollers and is formed with a certain amount of play, corresponds to the V-groove raceway formed on the guide shaft and is formed symmetrically with respect to the rolling surface. The rolling path of the square rollers in the axial direction, which is also formed on the V-groove raceway surface, is connected to both ends in the axial direction of the bearing, and has a semicircular arc shape, and the linear circulation path that is connected to the other end of the semicircular arc shape. As shown in the perspective view of FIG. 19 and the projected view of FIG. For the arc-shaped path, V-shaped guide grooves 17a and 18a were formed in each of the semicircular arc-shaped path component parts 17 and 18 shown in the attached figures above, and the parts 17 and 18 were overlapped. For a straight path that forms an arcuate path and continues to the other end of the arcuate path, the arcuate V-shaped grooves 17a and 1 formed in the arcuate path forming parts 17 and 18 are used.
V-shaped joint surface 17b, which is connected to V-shaped grooves 17 and 18 and is formed with a certain level difference and parallelism between the two intersecting planes forming the V-shaped grooves 17a and 18a. Corresponding to the rectangular joint formed by Joint surface 17 formed on parts 17 and 18
A cylindrical part 19 which maintains a constant thickness between the rectangular circulation path 19a and molds a parallel joint surface 19b, which fits into the joint formed by the rectangular inner peripheral surface in the axial direction formed by b and 18b. This forms a circulation path with the cage applied to the inner rollers of the bearing, and also forms a circulation path with the cage applied to the inner roller of the bearing.
At the corners, corresponding to the shape of the outer circumferential surface of the cage applied to the rollers in the path, in cage 1 and cage 2 shown in attached FIGS. 1(A) and (B), there is a projection 1e for reinforcing the cage. A rectangular groove-shaped flank is formed with a slight play between The axial cylindrical hole 10d of the bearing main body 10 shown in the attached FIG.
In the concave portion 15g of No. 5, the cylindrical component 19 for forming a linear path range in the axial direction and the semicircular arc path range forming component formed by overlapping parts 17 and 18 are placed in place. However, when forming the circulation path of the rolling element retainer in which the retainer is applied to the rolling elements of the present application, the above attachment No. 19 shall be applied.
An axial round hole 10d formed in the bearing body 10 in the figure,
The concave portion 15g formed in the side plate 15 can be formed and applied in accordance with the type and size of the linear motion guide, and the path component parts 17 to 19 include the rolling elements in the circulation path and the rolling elements. The bearing body 10 for the linear motion rolling guide configuration of the present invention and the bearing side plate 15 that have the same cage dimensions and shape applied to the
In this case, the round hole in the axial direction and the recess 15g in the side plate 15 can be formed and used, and for the purpose of making the linear motion guide of the present application more compact, the width of the bearing can be reduced;
In order to avoid difficulty in running the cage in the path due to a decrease in the cage turning radius at the semicircular curved portion in the circulation path in the bearing due to the reduction in bearing width, the attached Figs.
When increasing the turning radius of the in-path holder by the three-dimensional forming method of the axially oval path shown in the figure, the cylindrical component 19 for configuring the circulation path is attached to the attached No. 18. As shown in the embodiments of FIGS. 19 to 19, the components are arranged at both sides and the corners of the upper and lower surfaces of the pedestal bearing main body 10, and when the cylindrical path component 19 is placed inside the pedestal bearing, 19, and the guide shaft and the inter-bearing load area rolling path are connected at an angle to the upper and lower surfaces of the bearing body 10 by path components 17 and 18, and are formed between the path components. A method for forming a cage circulation path in a bearing in a linear motion rolling guide according to the present application, which is characterized by increasing the cage turning radius in a semicircular arc path range in the circulation path. 8) The rolling element cage according to claim 1) or 2) is made of nylon-based material having various properties necessary for a cage material for rolling bearings, such as formability, strength, wear resistance, and corrosion resistance. Application to the above-mentioned rolling elements for linear motion rolling guide configurations, characterized in that they are molded by injection molding from polymeric materials such as polyacetal, as well as various fiber-reinforced materials, solid lubricant-added composite materials, etc. A cage intended for.
JP1327148A 1989-12-19 1989-12-19 Linear rolling guide Expired - Fee Related JP2952500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1327148A JP2952500B2 (en) 1989-12-19 1989-12-19 Linear rolling guide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1327148A JP2952500B2 (en) 1989-12-19 1989-12-19 Linear rolling guide

Publications (2)

Publication Number Publication Date
JPH03189416A true JPH03189416A (en) 1991-08-19
JP2952500B2 JP2952500B2 (en) 1999-09-27

Family

ID=18195848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1327148A Expired - Fee Related JP2952500B2 (en) 1989-12-19 1989-12-19 Linear rolling guide

Country Status (1)

Country Link
JP (1) JP2952500B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062714A (en) * 1992-06-19 1994-01-11 Takeuchi Seiko Kk Bearing for linear motion
DE10322006A1 (en) * 2003-05-16 2004-12-02 Ina-Schaeffler Kg Roller circulation unit of a linear bearing
WO2013002064A1 (en) * 2011-06-30 2013-01-03 Smc株式会社 Linear actuator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062714A (en) * 1992-06-19 1994-01-11 Takeuchi Seiko Kk Bearing for linear motion
DE10322006A1 (en) * 2003-05-16 2004-12-02 Ina-Schaeffler Kg Roller circulation unit of a linear bearing
WO2013002064A1 (en) * 2011-06-30 2013-01-03 Smc株式会社 Linear actuator
JPWO2013002064A1 (en) * 2011-06-30 2015-02-23 Smc株式会社 Linear actuator

Also Published As

Publication number Publication date
JP2952500B2 (en) 1999-09-27

Similar Documents

Publication Publication Date Title
US6752696B2 (en) Rolling elements for rolling bearing, method of producing the same, and rolling bearing
US4616886A (en) Linear slide bearing and linear slide table unit employing the same
JPS6211216B2 (en)
JP6728585B2 (en) Angular contact ball bearing
EP0752072A1 (en) Linear motion bearing
JP5031957B2 (en) Linear actuator
TW201819790A (en) Rolling bearing cage and rolling bearing
JPH07507619A (en) Guide device for guiding objects along a rail system by a group of rolling rail running elements
JPS62242126A (en) Direct driven rolling bearing
JPS6014618A (en) Cross linear bearing unit
JP2003194057A (en) Rectilinear guide unit equipped with separator between rolling elements
JPS6211209B2 (en)
JPH0646050B2 (en) Linear sliding bearing and linear sliding table
JPH03189416A (en) Direct-acting rolling guide
CN105782246B (en) Angular contact ball bearing
KR20170063587A (en) Ball bearing cage
JPS6148022B2 (en)
CN205991096U (en) Angular contact ball bearing retainer, angular contact ball bearing and bearing arrangement
JP5959856B2 (en) Linear motion guidance unit
GB2256902A (en) Load bearing guide
JPS62110024A (en) Retainer for direct acting rolling bearing
JP3618388B2 (en) Combined type rolling guide unit
De Benedictis et al. Study of a three-groove kinematic coupling for precise positioning in a robotized laser-cutting machine
JPH05118327A (en) Bearing for rectlinear sliding
JPS5973623A (en) Guide for translational motion

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees