JPH03189064A - Iron-non-ferrous metal combined body and manufacture thereof - Google Patents

Iron-non-ferrous metal combined body and manufacture thereof

Info

Publication number
JPH03189064A
JPH03189064A JP32780589A JP32780589A JPH03189064A JP H03189064 A JPH03189064 A JP H03189064A JP 32780589 A JP32780589 A JP 32780589A JP 32780589 A JP32780589 A JP 32780589A JP H03189064 A JPH03189064 A JP H03189064A
Authority
JP
Japan
Prior art keywords
iron
porous body
composite
iron powder
ferrous metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32780589A
Other languages
Japanese (ja)
Inventor
Tadayoshi Nakamura
忠義 中村
Hirohisa Tanaka
裕久 田中
Isao Tan
功 丹
Kazutaka Sakamoto
和隆 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP32780589A priority Critical patent/JPH03189064A/en
Publication of JPH03189064A publication Critical patent/JPH03189064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture an iron - non-ferrous combined body having heat resistance and wear resistance by sintering iron powder under low oxygen atmosphere to form a porous body and filling up the non-ferrous metal having m.p. lower than m.p. of iron into pores so as not to form intermetallic com pound. CONSTITUTION:The iron powder (pure iron powder, alloy iron powder, etc., having about 1 - 100mu particle diameter) is naturally packed into a vessel for sintering and sintered under reducing atmosphere to form the porous body having about 45 - 81 vol% porosity and about 1.5 - 4.3 g/cm<3> bulk density. Successively, the non-ferrous metal (Al, Mg, Zn, etc.) having m.p. lower than m.p. of iron, is filled up into the bores in the porous body with the ordinary method so as not to form the intermetallic compound at boundary between the porous body and non-ferrous metal at this time. By this method, the com bined body having excellent characteristics of rigidity, corrosion resistance, creep resistance, etc., is obtd. and available to the field of car engine, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鉄−非鉄金属複合体の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a ferrous-nonferrous metal composite.

〔従来の技術〕[Conventional technology]

車輌の軽量化やエンジンの高出力ニーズにともない、鉄
にかわってアルミニウム合金が多用されてきた。しかし
、アルミ合金は軽いという長所があるものの、耐熱性や
耐摩耗性、剛性の不足という問題がある。これらの解決
手段としては、アルミニウム合金ピストンの耐摩耗性不
足の対策手段としてセラミックファイバー含浸アルミピ
ストン(特開昭58−93948号公報)や、ニッケル
多孔体(ただしウレタン多孔体に化学銅メツキをしたの
ち、ニッケルメッキを行ないそののちウレタン多孔体を
焼失化したもの)を使用した複合ピストン(特開昭59
−212159号公報および特開昭60−118367
号公報)、あるいはシリンダブロックのライナー(スチ
ール)代替として鋳鉄繊維とアルミニウムを、金属間化
合物を形成するよう製造したアルミブロック(特開明6
2−288860号公報)などが知られている。
With the need for lighter vehicles and higher engine output, aluminum alloys have been increasingly used in place of steel. However, although aluminum alloys have the advantage of being lightweight, they have problems such as a lack of heat resistance, wear resistance, and rigidity. As a means of solving these problems, ceramic fiber-impregnated aluminum pistons (Japanese Patent Application Laid-Open No. 1983-93948) and nickel porous bodies (however, chemical copper plating is applied to urethane porous bodies) are available as a means to counter the lack of wear resistance of aluminum alloy pistons. Later, a composite piston (Japanese Unexamined Patent Application Publication No. 1983-1970) was developed using a composite piston (nickel plated and then burnt out of the urethane porous material).
Publication No.-212159 and JP-A-60-118367
(Japanese Patent Application Laid-Open No. 6-2010), or an aluminum block made of cast iron fiber and aluminum to form an intermetallic compound as a substitute for the cylinder block liner (steel) (Japanese Patent Application Laid-Open No.
2-288860) and the like are known.

しかしながら、これら従来技術には、たとえばピストン
の例に示す強化材は高コストであり、シリンダブロック
のライナー代替の例における金属間化合物生成は金属間
化合物が硬くてもろいという欠点があって加工上の問題
があるうえに、一定の薄膜の金属間化合物を形成させる
条件設定がむづかしいなどの問題がある。
However, these conventional techniques have the disadvantage that the reinforcing materials shown in the example of pistons are expensive, and the generation of intermetallic compounds in the example of cylinder block liner replacement is hard and brittle, making it difficult to process. In addition to these problems, there are other problems such as the difficulty of setting conditions to form a certain thin film of intermetallic compounds.

[発明が解決しようとする課題] 本発明者らは以上のごとき従来技術の問題を解決すべく
鋭意研究を重ねた結果、耐熱性、耐摩耗性、剛性などの
物理的特性にすぐれ、かつ原料、製造コストの安い鉄−
融点が鉄より低い非鉄金属複合体とその製法を見出し、
本発明を完成するに至った。
[Problems to be Solved by the Invention] As a result of intensive research by the present inventors to solve the problems of the prior art as described above, we have found that a material with excellent physical properties such as heat resistance, abrasion resistance, and rigidity, , low manufacturing cost steel.
Discovered a non-ferrous metal composite with a melting point lower than iron and its manufacturing method.
The present invention has now been completed.

[課題を解決するための手段] 本発明は、(1)鉄粉を低酸素または還元性雰囲気で焼
結してえられた多孔体の気孔に、融点が鉄より低い非鉄
金属を、前記多孔体と前記金属との境界に金属間化合物
が形成されないで充填されていることを特徴とする耐熱
、耐摩耗性の鉄−非鉄金属複合体、および鉄粉を低酸素
または還元性雰囲気で焼結してえられた多孔体の気孔に
、非鉄金属を、前記多孔体と前記非鉄金属との境界に金
属間化合物が形成されないように充填することを特徴と
する耐熱、耐摩耗性の鉄−非鉄金属複合体の製造方法に
関する。
[Means for Solving the Problems] The present invention provides (1) adding a nonferrous metal having a melting point lower than that of iron to the pores of a porous body obtained by sintering iron powder in a low oxygen or reducing atmosphere; A heat-resistant and wear-resistant iron-nonferrous metal composite characterized in that the boundary between the body and the metal is filled without forming an intermetallic compound, and iron powder is sintered in a low oxygen or reducing atmosphere. A heat-resistant and wear-resistant iron-nonferrous material characterized in that the pores of the porous body obtained by the above process are filled with a nonferrous metal so that no intermetallic compound is formed at the boundary between the porous body and the nonferrous metal. The present invention relates to a method for manufacturing a metal composite.

[作用および実施例] 本発明の複合体は機械工業、とくに自動車エンジンなど
の分野において耐熱・耐摩耗性にとみ、かつ経済的にす
ぐれたものである。
[Function and Examples] The composite of the present invention is excellent in heat resistance and wear resistance and is economically excellent in the field of mechanical engineering, particularly in the field of automobile engines.

本発明の複合体は自然充填をした鉄粉を低酸素または還
元雰囲気中で焼結してえた鉄条孔体に、アルミニウムま
たは他の融点が鉄より低い非鉄金属またはその合金をダ
イキャストまたは溶湯鍛造法で含浸させ、あるいは先に
同複合体を形成し鋳込み、鉄と前記非鉄金属またはその
合金との界面で金属間化合物を生じないようにしたもの
である。
The composite of the present invention is made by die-casting or molten metal forging of aluminum or other non-ferrous metals with a lower melting point than iron, or their alloys, into a bar body obtained by sintering naturally filled iron powder in a low-oxygen or reducing atmosphere. The composite is impregnated by a method or the composite is first formed and cast to prevent the formation of intermetallic compounds at the interface between iron and the nonferrous metal or its alloy.

本発明において用いる鉄粉はたとえば純鉄粉、合金鉄粉
、複合鋼粉などで粒径約1〜1000m+、その中でも
lO〜150屡のものが好ましい。その鉄成分は、純鉄
でもよく、またクロム、ニッケル、銅などの成分を混入
してもよい。焼結は、生成した多孔体の表面が酸化膜で
厚く覆われないように還元性の雰囲気、たとえば−酸化
炭素、水素、チッ素の混合ガス雰囲気あるいは酸素を5
体積%以下しか含まぬ前記気流中で行なうことが必要で
ある。還元性雰囲気でないばあいは焼結中に鉄粒子の表
面が酸化し、多孔状の焼結体かえられない。
The iron powder used in the present invention is, for example, pure iron powder, alloyed iron powder, composite steel powder, etc., with a particle size of about 1 to 1000 m+, preferably 10 to 150 m+. The iron component may be pure iron, or may contain components such as chromium, nickel, and copper. Sintering is performed in a reducing atmosphere, such as a mixed gas atmosphere of carbon oxide, hydrogen, and nitrogen, or an oxygen
It is necessary to carry out the above-mentioned air flow containing less than % by volume. If the atmosphere is not reducing, the surface of the iron particles will be oxidized during sintering, and a porous sintered body will not be formed.

この多孔体の気孔率は約45〜81%(体積、以下同様
)が好ましく、その中でも約65〜75%がとくに好ま
しい。気孔率がこれ以上高いと充分な耐摩耗性などの特
性かえられず、また加圧下の溶湯鍛造では鉄条孔体が座
屈する。この範囲より低いと含浸化が困難となる。この
ものの嵩密度は好ましくは約1.5〜4.3 g/cj
、とくに好ましくは約2.5〜3.0 g/−である。
The porosity of this porous body is preferably about 45 to 81% (by volume, hereinafter the same), and particularly preferably about 65 to 75%. If the porosity is higher than this, characteristics such as sufficient wear resistance cannot be changed, and the bar body will buckle when molten metal is forged under pressure. If it is lower than this range, impregnation becomes difficult. The bulk density of this material is preferably about 1.5 to 4.3 g/cj
, particularly preferably about 2.5 to 3.0 g/-.

この範囲の多孔体をうるには、焼結に先立って前記各種
鉄粉を好ましくは自然充填で、必要に応じて加振器など
を用いて充填する。この際加圧充填をしないようとくに
留意することが必要である。
In order to obtain a porous body within this range, the various iron powders are preferably filled naturally, using a vibrator or the like as necessary, prior to sintering. At this time, special care must be taken not to perform pressure filling.

充填金属はアルミニウム、マグネシウムまたは亜鉛など
の鉄より低い融点の非鉄金属またはそれらの合金である
。本発明では鉄より低い融点をもつ非鉄金属とはそれら
の合金を含み、これらを総称して「非鉄金属」とよぶ。
The filler metal is a non-ferrous metal with a lower melting point than iron, such as aluminum, magnesium or zinc, or an alloy thereof. In the present invention, nonferrous metals having a melting point lower than iron include alloys thereof, and these are collectively referred to as "nonferrous metals."

マグネシウムは耐久性の観点から、鉄との局部電池形成
による腐蝕を防止するため水分などが存在する腐蝕促進
環境以外での使用が望ましい。
From the viewpoint of durability, magnesium is preferably used in environments other than corrosion-promoting environments where moisture is present in order to prevent corrosion due to the formation of local batteries with iron.

非鉄金属の充填は通常の方法によればよいが、鉄と非鉄
金属との境界面に鉄−非鉄金属化合物を実質的に生成さ
せないことが肝要である。そのためには非鉄金属の溶湯
を鉄条孔体に充填する際に、充填を可及的に短時間に行
ない空気中の酸素との接触時間をできるだけ短かくすれ
ばよく、そのようにすれば通常のダイキャストや溶湯鍛
造でも、金属間化合物の形成はみられない。また複雑な
形状部品の製造などのためゆつくりした充填が必要なば
あいには、減圧ないし真空下またはチッ素置換下で充填
を実施すればよい。この条件をはずすと鉄と金属の境界
層に金属間化合物の層ができるばあいがある。
The non-ferrous metal may be filled by a conventional method, but it is important that no iron-non-ferrous metal compound is substantially generated at the interface between the iron and the non-ferrous metal. To this end, when filling a bar with molten nonferrous metal, it is sufficient to do so in as short a time as possible to minimize the contact time with oxygen in the air. No formation of intermetallic compounds is observed in die casting or molten metal forging. Furthermore, if slow filling is required for the manufacture of parts with complex shapes, filling may be carried out under reduced pressure or vacuum or under nitrogen substitution. If this condition is removed, an intermetallic compound layer may be formed in the boundary layer between iron and metal.

このようにしてえられた複合体は従来の鉄アルミニウム
の境界層に金属間化合物を形成させたものにくらべ、切
削加工性にすぐれ、しかも金属間化合物の生成量の制御
という製造管理のわずられしさなしに容易に耐熱性や耐
摩耗性のすぐれた複合体かえられる点ですぐれており、
ピストン、シリンダブロックライナー シリンダヘッド
、エンジンマウントなどにきわめて有用である。
The composite obtained in this way has superior machinability compared to the conventional one in which intermetallic compounds are formed in the boundary layer of iron and aluminum, and it does not require manufacturing control to control the amount of intermetallic compounds formed. It is excellent in that it can be easily replaced with a composite material with excellent heat resistance and abrasion resistance without causing any damage.
Extremely useful for pistons, cylinder block liners, cylinder heads, engine mounts, etc.

以下実施例をあげて説明するが、本発明はこれだけに限
られるものではない。
The present invention will be described below with reference to Examples, but the present invention is not limited thereto.

実施例1 粒径10〜150m+(平均粒子径約74虜)の鋳鉄粉
60gを焼結用容器(容Q20 ml)に自然充填した
。このものをRxガス(−酸化炭素、チッ素および水素
の混合ガス)気流中1150℃に1時間加熱、焼結をし
た。生成した焼結体は嵩密度的3.0g/cj、気孔率
約62%の多孔体であった。
Example 1 60 g of cast iron powder with a particle size of 10 to 150 m+ (average particle size of about 74 mm) was naturally filled into a sintering container (volume Q20 ml). This material was heated and sintered at 1150° C. for 1 hour in a flow of Rx gas (a mixed gas of carbon oxide, nitrogen, and hydrogen). The produced sintered body was a porous body with a bulk density of 3.0 g/cj and a porosity of about 62%.

この焼結体を、あらかじめ100〜400℃程度に予備
加熱し鋳鉄用金型内にセットした。つぎにアルミニウム
合金〔組成: JIS AC8A(8111〜13重量
%、Mg O,7〜1.3重量%、N10.8〜1.5
重量%を含むアルミニウム)〕の溶湯を加圧注入した。
This sintered body was preheated to about 100 to 400°C and set in a cast iron mold. Next, aluminum alloy [composition: JIS AC8A (8111-13% by weight, MgO, 7-1.3% by weight, N10.8-1.5
A molten metal containing aluminum containing % by weight was injected under pressure.

このときの注入圧力は約600kg/c−であった。冷
却後金型から取出して本発明の複合体をえた。
The injection pressure at this time was about 600 kg/c-. After cooling, it was taken out from the mold to obtain a composite of the present invention.

えられた鉄−アルミニウム複合体について、断面を電子
顕微鏡で観察すると共に鉄およびアルミニウムの濃度を
測定した。結果を第1〜4図に示す。
The cross section of the obtained iron-aluminum composite was observed using an electron microscope, and the concentrations of iron and aluminum were measured. The results are shown in Figures 1-4.

これらの写真撮影および濃度の測定は、X線マイクロア
ナライザー(EPMA) (使用機器は■島津製作所製
EPMA−8705型)を用いて行なった。
These photographs and density measurements were carried out using an X-ray microanalyzer (EPMA) (the device used was EPMA-8705 model manufactured by Shimadzu Corporation).

第1図および第3図は前記鉄−アルミニウム合金複合体
の断面の電子顕微鏡写真であり、第1図は鉄濃度線の入
っているもの、第3図はアルミニウム濃度線の入ってい
るものである。第2図は第1図の説明図、第4図は第3
図の説明図である。第1〜4図において(田の部分は鉄
、山)の部分はアルミニウム合金である。第1.2図に
おいて(1)は図中の走査線(3)にしたがって測定し
た鉄濃度線を示す。第3.4図において、(2)は図中
の走査線(3)にしたがって測定したアルミニウム濃度
線を示す。なお第5図は従来例における鉄−アルミニウ
ム合金複合体の断面の電子顕微鏡写真であり、第6図は
その説明図である。第5.6図において(a)、山)、
(1)、(′2Jおよび(3)は前記と同じものを表わ
し、(C)は鉄−アルミニウム合金の境界に生じた金属
間化合物(鉄アルミニウム合金金属間化合物)を表わす
。第5.6図から明らかなように従来の鉄−アルミニウ
ム合金複合体のばあい、鉄の濃度線には金属間化合物に
相当する部分に明瞭なプラトーが認められる。またアル
ミニウムの濃度線には金属間化合物相当の部分に不明瞭
ながられずかのプラトーが認められる。一方策1〜4図
から明らかなように、本発明の鉄−アルミニウム複合体
のばあい、鉄の濃度線は、鉄−アルミニウム間でするど
い濃度変化を示しており、同様にアルミニウムの濃度線
もするどく変化していてプラトーは認められない。した
がって鉄−アルミニウム合金複合体には金属間化合物が
生じていないことが分る。
Figures 1 and 3 are electron micrographs of the cross section of the iron-aluminum alloy composite, with Figure 1 containing the iron concentration line and Figure 3 containing the aluminum concentration line. be. Figure 2 is an explanatory diagram of Figure 1, Figure 4 is an illustration of Figure 3.
It is an explanatory view of a figure. In Figures 1 to 4, (the field portions are iron and the mountain portions are aluminum alloy). In Figure 1.2, (1) shows the iron concentration line measured according to the scanning line (3) in the figure. In Figure 3.4, (2) shows the aluminum concentration line measured according to the scanning line (3) in the figure. Note that FIG. 5 is an electron micrograph of a cross section of an iron-aluminum alloy composite in a conventional example, and FIG. 6 is an explanatory diagram thereof. In Figure 5.6, (a), mountain),
(1), ('2J and (3) represent the same as above, and (C) represents an intermetallic compound (iron-aluminum alloy intermetallic compound) generated at the boundary of iron-aluminum alloy. Section 5.6 As is clear from the figure, in the case of conventional iron-aluminum alloy composites, a clear plateau is observed in the iron concentration line at the part corresponding to the intermetallic compound, and a clear plateau is observed in the aluminum concentration line at the part corresponding to the intermetallic compound. On the other hand, as is clear from Figures 1 to 4, in the case of the iron-aluminum composite of the present invention, the iron concentration line is sharp between iron and aluminum. Similarly, the concentration line for aluminum also changes rapidly and no plateau is observed.Therefore, it can be seen that no intermetallic compound is generated in the iron-aluminum alloy composite.

えられた複合体について摩耗量、耐熱性、剛性を測定し
た。各項目の測定法および評価法はつぎのとおりである
The amount of wear, heat resistance, and rigidity of the obtained composite were measured. The measurement and evaluation methods for each item are as follows.

耐熱性・剛性: JIS Z2201の14A号金属材
料引張り試験片を用い金属材料引張り試験方法(JIS
 z2241)にもとづいて測定を行なった。
Heat resistance/rigidity: Metal material tensile test method (JIS
z2241).

試験機には1OTon万能試験機(REH−10■島津
製作所製)を用いた。
A 1OTon universal testing machine (REH-10 manufactured by Shimadzu Corporation) was used as the testing machine.

耐摩耗性:ピン−ディスク式による摩擦、摩耗試験機(
TRI−8100O1高千穂精機■製)にて実施した。
Wear resistance: Pin-disk type friction and wear tester (
The test was carried out using a TRI-8100O1 (manufactured by Takachiho Seiki).

この評価は試験ディスクを127゜r、p、m、となる
ように回転駆動し、これにダクタイル鋳鉄にクロムメツ
キをしたビンを摩擦面圧240 k g / cdとな
るように押圧して、100時間の摩擦時間に対する試験
ディスクの摩耗量を測定するものである。潤滑には80
℃に加熱したエンジンオイルを用いた。
In this evaluation, the test disk was rotated at 127 degrees r, p, m, and a chromium-plated ductile cast iron bottle was pressed against it with a friction surface pressure of 240 kg/cd for 100 hours. This is to measure the amount of wear of the test disc against the friction time. 80 for lubrication
Engine oil heated to ℃ was used.

測定したデータを第1表および第7図に示す。The measured data are shown in Table 1 and FIG.

第7図は本発明の複合体、およびアルミニウム合金単独
の、温度と強度との関係を示すグラフである。第7図に
おいて縦軸は強度kg/a+m2を、横軸は試験温度(
’C)を表わす。
FIG. 7 is a graph showing the relationship between temperature and strength of the composite of the present invention and the aluminum alloy alone. In Figure 7, the vertical axis represents the strength kg/a+m2, and the horizontal axis represents the test temperature (
'C).

実施例2 実施例1で用いたアルミニウム合金に代えて、純アルミ
ニウムを用いたほかは実施例1と同様にして鉄−純アル
ミニウム複合体をえた。
Example 2 An iron-pure aluminum composite was obtained in the same manner as in Example 1 except that pure aluminum was used instead of the aluminum alloy used in Example 1.

測定したデータを第1表および第7図に示す。The measured data are shown in Table 1 and FIG.

比較例1 比較のために、アルミニウム合金(AJIS AC8A
)をそのまま単独で測定したデータも第1表および第7
図に示す。
Comparative Example 1 For comparison, aluminum alloy (AJIS AC8A
) is also measured separately in Tables 1 and 7.
As shown in the figure.

第  1 表 第1表から本発明の複合体(実施例1〜2)はアルミニ
ウム単独のもの(比較例1)にくらべて、耐摩耗性、剛
性の点ですぐれていることが分る。また第7図は、本発
明の複合体(実施例1〜2)は、高温においてもアルミ
ニウム合金単独のもの(比較例1)より、高い強度をも
つことを示している。
Table 1 From Table 1, it can be seen that the composites of the present invention (Examples 1 to 2) are superior in abrasion resistance and rigidity to those made of aluminum alone (Comparative Example 1). FIG. 7 also shows that the composites of the present invention (Examples 1 and 2) have higher strength than the aluminum alloy alone (Comparative Example 1) even at high temperatures.

以上のごとく本発明によってえられた鉄−アルミニウム
合金複合体はすぐれた耐熱、耐摩耗、剛性をもっている
ことがわかる。
As described above, it can be seen that the iron-aluminum alloy composite obtained by the present invention has excellent heat resistance, wear resistance, and rigidity.

[発明の効果] 以上述べたごとく、本発明の方法によってえられた鉄な
らびに融点が鉄より低い非鉄金属またはその合金とから
なる複合体は耐熱、耐摩耗性剛性に加え耐蝕、耐クリー
プ、耐疲労性などの特性にすぐれ製造コストも低く、自
動車産業をはじめ各分野において広く利用できるもので
ある。
[Effects of the Invention] As described above, the composite made of iron and a nonferrous metal whose melting point is lower than that of iron or an alloy thereof obtained by the method of the present invention has not only heat resistance, wear resistance, and rigidity, but also corrosion resistance, creep resistance, and resistance. It has excellent properties such as fatigue resistance and low manufacturing cost, and can be widely used in various fields including the automobile industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の鉄−アルミニウム合金複合体の断面の
電子顕微鏡写真と走査線に沿って測定した鉄の濃度線で
ある。第2図は第1図の説明図である。第3図は本発明
の鉄−アルミニウム合金複合体の断面の電子顕微鏡写真
と走査線に沿って測定したアルミニウムの濃度線である
。 第4図は第3図の説明図である。第5図は従来例におけ
る鉄−アルミニウム合金複合体の断面の電子顕微鏡写真
と走査線に沿って測定した鉄およびアルミニウムの濃度
線である。第6図は第5図の説明図である。第7図は鉄
−アルミニウム合金複合体(実施例1)、鉄−純アルミ
ニウム複合体(実施例2)、アルミニウム合金(比較例
1)の各温度における強度の変化を示すグラフである。 (図面の主要符号) (1):鉄濃度線 (2)ニアルミニウム濃度線 (3):走査線 (■;鉄 山)ニアルミニウム合金 (C):鉄−アルミニウム合金金属間化合物第 1 図 10μm 第 図 opm 才2図 a鉄 第4図 図 5μm 27図 ・;実施例1 0:実施例2 ×:比較例1 試験温度 (°C) オ6圏 :鉄−アルミニウム合金金属間化合物 手続補正書 (方式) %式% 2発明の名称 鉄−非鉄金属複合体およびその製造方法3補正をする者 事件との関係  特許出願人 住 所  大阪府池田市ダイハツ町1番1号名 称  
(296)ダイハツ工業株式会社代表者 大須賀 二部 4代理人〒540 住 所  大阪市中央区谷町2丁目2番22号5補正命
令の日付 平成2年3月27日 (発送日) 手続補正書 (自発) 平成2年4月19日 6補正の対象 fl)明細書の「図面の簡単な説明」の欄7補正の内容 +11明細書13頁8〜9行の「断面の・・・濃度線で
ある。」を「断面における金属組織の電子顕微鏡写真で
ある。」と補正する。 (2)同13頁11〜12行の「断面の・・・濃度線で
ある。」を[断面における金属組織の電子顕微鏡写真で
ある。」と補正する。 (3)同13頁14〜16行の「断面の・・・濃度線で
ある。」を「断面における金属組織の電子顕微鏡写真で
ある。」と補正する。 2発明の名称 鉄−非鉄金属複合体およびその製造方法3補正をする者 事件との関係  特許出願人 住 所  大阪府池田市ダイハツ町1番1号名 称  
(296)ダイハツ工業株式会社代表者 大須賀 二部 4代理人〒540 住 所  大阪市中央区谷町2丁目2番22号以上 5補正の対象 tll明細書の「発明の詳細な説明」の欄6補正の内容 (1)明細書8頁19行および9頁9行においてそれぞ
れ「断面の」とあるのをいずれも「断面における金属組
織の」と補正する。 以上
FIG. 1 shows an electron micrograph of a cross section of the iron-aluminum alloy composite of the present invention and an iron concentration line measured along the scanning line. FIG. 2 is an explanatory diagram of FIG. 1. FIG. 3 is an electron micrograph of a cross section of the iron-aluminum alloy composite of the present invention and an aluminum concentration line measured along the scanning line. FIG. 4 is an explanatory diagram of FIG. 3. FIG. 5 shows an electron micrograph of a cross section of an iron-aluminum alloy composite in a conventional example and concentration lines of iron and aluminum measured along the scanning line. FIG. 6 is an explanatory diagram of FIG. 5. FIG. 7 is a graph showing changes in strength at various temperatures of an iron-aluminum alloy composite (Example 1), an iron-pure aluminum composite (Example 2), and an aluminum alloy (Comparative Example 1). (Main symbols in the drawing) (1): Iron concentration line (2) Nialuminum concentration line (3): Scanning line (■; Iron mountain) Nialuminum alloy (C): Iron-aluminum alloy Intermetallic compound No. 1 Figure 10 μm No. Diagram opm Diagram 2a Diagram 4 Iron Diagram 5μm Diagram 27・;Example 1 0: Example 2 Method) % formula % 2. Name of the invention Iron-non-ferrous metal composite and its manufacturing method 3. Relationship with the amended case Patent applicant address 1-1 Daihatsu-cho, Ikeda-shi, Osaka Name
(296) Daihatsu Motor Co., Ltd. Representative Osuka 2nd Department 4 Agent 540 Address 2-2-22 Tanimachi, Chuo-ku, Osaka 5 Date of amendment order March 27, 1990 (shipment date) Procedural amendment ( Voluntary) April 19, 1990 6 Subject of amendment fl) Contents of amendment in column 7 “Brief explanation of drawings” of the specification ” is corrected to ``This is an electron micrograph of a metal structure in a cross section.'' (2) On page 13, lines 11 to 12, "This is a concentration line of a cross section." is replaced with "This is an electron micrograph of a metal structure in a cross section." ” he corrected. (3) On page 13, lines 14 to 16, "This is a concentration line of a cross section." is corrected to "This is an electron micrograph of a metal structure in a cross section." 2. Name of the invention Iron-nonferrous metal composite and its manufacturing method 3. Relationship with the amended case Patent applicant address 1-1 Daihatsu-cho, Ikeda-shi, Osaka Name
(296) Daihatsu Motor Co., Ltd. Representative Osuka 2nd Department 4 Agent 540 Address 2-2-22 Tanimachi, Chuo-ku, Osaka Subject of 5 amendments tll 6 amendments in column ``Detailed Description of the Invention'' of the specification Contents (1) On page 8, line 19 and page 9, line 9 of the specification, the words "in cross section" are corrected to "metallic structure in cross section."that's all

Claims (1)

【特許請求の範囲】 1 鉄粉を低酸素または還元性雰囲気で焼結してえられ
た多孔体の気孔に、融点が鉄より低い非鉄金属が充填さ
れ、前記多孔体と前記非鉄金属との境界に金属間化合物
が形成されないことを特徴とする耐熱、耐摩耗性の鉄−
非鉄金属複合体。 2 鉄粉を低酸素または還元性雰囲気で焼結してえられ
た多孔体の気孔に、融点が鉄より低い非鉄金属を、前記
多孔体と前記非鉄金属との境界に金属間化合物が形成さ
れないように充填することを特徴とする耐熱、耐摩耗性
の鉄−非鉄金属複合体の製造方法。
[Claims] 1. The pores of a porous body obtained by sintering iron powder in a low oxygen or reducing atmosphere are filled with a nonferrous metal whose melting point is lower than that of iron, and the porous body and the nonferrous metal are bonded together. Heat-resistant and wear-resistant iron characterized by no intermetallic compounds forming at boundaries.
Non-ferrous metal composites. 2. A nonferrous metal having a melting point lower than that of iron is added to the pores of a porous body obtained by sintering iron powder in a low oxygen or reducing atmosphere, so that no intermetallic compound is formed at the boundary between the porous body and the nonferrous metal. 1. A method for producing a heat-resistant and wear-resistant ferrous-nonferrous metal composite, which is characterized by filling the composite material in the following manner.
JP32780589A 1989-12-18 1989-12-18 Iron-non-ferrous metal combined body and manufacture thereof Pending JPH03189064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32780589A JPH03189064A (en) 1989-12-18 1989-12-18 Iron-non-ferrous metal combined body and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32780589A JPH03189064A (en) 1989-12-18 1989-12-18 Iron-non-ferrous metal combined body and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03189064A true JPH03189064A (en) 1991-08-19

Family

ID=18203190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32780589A Pending JPH03189064A (en) 1989-12-18 1989-12-18 Iron-non-ferrous metal combined body and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03189064A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858056A (en) * 1995-03-17 1999-01-12 Toyota Jidosha Kabushiki Kaisha Metal sintered body composite material and a method for producing the same
US6668905B1 (en) 1997-11-06 2003-12-30 Sony Corporation Aluminum nitride/aluminum base composite material and method of producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858056A (en) * 1995-03-17 1999-01-12 Toyota Jidosha Kabushiki Kaisha Metal sintered body composite material and a method for producing the same
US6668905B1 (en) 1997-11-06 2003-12-30 Sony Corporation Aluminum nitride/aluminum base composite material and method of producing the same
US6805973B2 (en) 1997-11-06 2004-10-19 Sony Corporation Aluminum nitride/aluminum base composite material and a method for producing thereof

Similar Documents

Publication Publication Date Title
AU710033B2 (en) A metal sintered body composite material and a method for producing the same
US3885959A (en) Composite metal bodies
US5578386A (en) Nickel coated carbon preforms
US3410732A (en) Cobalt-base alloys
US20040182200A1 (en) Iron based sintered body excellent in enveloped casting property in light metal alloy and method for producing the same
US20210078073A1 (en) Copper alloy compositions having enhanced thermal conductivity and wear resistance
US9255575B2 (en) Component having reduced metal adhesion
Dolata Interaction of Al-Si alloys with SiC/C ceramic particles and their influence on microstructure of composites
US6793705B2 (en) Powder metal materials having high temperature wear and corrosion resistance
USRE28552E (en) Cobalt-base alloys
JPH03189064A (en) Iron-non-ferrous metal combined body and manufacture thereof
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JPH03189066A (en) Porous metal reinforced material and combined body thereof
CN109136723B (en) Self-propagating synthesis and application of iron-based composite powder
KR0183227B1 (en) A metal sintered body composite material and method for producing the same
JP2790807B2 (en) Composite piston
JPH01230738A (en) Aluminum alloy composite material
JPH03189063A (en) Ferrous porous reinforced material and combined body of this and non-ferrous metal
JP6867255B2 (en) Complex with low coefficient of thermal expansion and high adhesion
Sunderraj et al. Correlation Between Mechanical Properties and Microstructure
JP4232080B2 (en) Sliding member and manufacturing method thereof
JPS63114945A (en) Sintered alloy member excellent in wear resistance and corrosion resistance
JPH09111365A (en) Sliding material, piston, and their production
JPS63190127A (en) Metal-base composite material excellent in strength as well as in frictional wear characteristic
JP2000038624A (en) Ferrous sintered body