JPH03188642A - Etching method for ultramicro element analysis of thin film semiconductor - Google Patents

Etching method for ultramicro element analysis of thin film semiconductor

Info

Publication number
JPH03188642A
JPH03188642A JP32925089A JP32925089A JPH03188642A JP H03188642 A JPH03188642 A JP H03188642A JP 32925089 A JP32925089 A JP 32925089A JP 32925089 A JP32925089 A JP 32925089A JP H03188642 A JPH03188642 A JP H03188642A
Authority
JP
Japan
Prior art keywords
wafer
liquid
thin film
gas
decomposition liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32925089A
Other languages
Japanese (ja)
Inventor
Toshio Mukai
俊男 向
Masami Takasuka
高須賀 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP32925089A priority Critical patent/JPH03188642A/en
Publication of JPH03188642A publication Critical patent/JPH03188642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To reduce etching time by using only the reaction decomposition liquid of the surface side thin film of a substrate as sample liquid, by keeping droplets of the reaction decomposition liquid on the surface side of a semiconductor substrate, and gathering them as sample liquid. CONSTITUTION:Mixed acid gas (b) ascending from a Teflon beaker 2 for evaporation is rapidly introduced together with nitrogen gas flow (a) to a wafer 5 on a table. An oxide film formed on the surface side of the wafer 5 is decomposed by the chemical reaction with the gas (b). Reaction decomposition liquid 6 becomes droplets to exist on the surface. After that, a closed vessel 1 is opened; each of the wafers 5 is taken out from the vessel 1 while the rear of the wafer 5 is fixed; nitric acid is dripped on the wafer surface; the wafer 5 is inclined; all droplets of the decomposed liquid are gathered while the droplets are rolled on the surface. The gathered decomposition liquid 6 is turned into sample liquid after metering. This liquid is used to analyze a trace of metallic impurity in the oxide film on the surface of the wafer 5.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は超大規模集積回路等の半導体基板の薄膜に含有
する超微量元素を分析する前工程として、半導体基板の
薄膜をエツチングする半導体薄膜の超微量元素分析にお
けるエツチング方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is a method for etching a semiconductor thin film as a pre-process for analyzing ultratrace elements contained in a thin film of a semiconductor substrate such as an ultra-large scale integrated circuit. Concerning an etching method in ultratrace element analysis.

〈従来の技術〉 Siウェハー上に形成したSin、やSi、N4等の薄
膜は、Si半導体素子におけるドープ剤の部分拡散マス
キングや金属蒸着膜の保護膜として用いられている。こ
れらの膜中に含まれるNaやFe等の微量金属不純物は
、素子の電気絶縁特性を低下させ、寿命を縮める。従っ
て、超大規模集積回路等の高性能化にはこれら超微量成
分の分析技術が必要不可欠となる。
<Prior Art> Thin films of Sin, Si, N4, etc. formed on Si wafers are used for partial diffusion masking of dopants in Si semiconductor devices and as protective films for metal vapor deposition films. Trace metal impurities such as Na and Fe contained in these films degrade the electrical insulation properties of the device and shorten its life. Therefore, techniques for analyzing these ultra-trace components are essential for improving the performance of ultra-large scale integrated circuits.

従来の半導体薄膜の超微量元素分析におけるエツチング
方法としては次のようなものが掲げられる。
Conventional etching methods used in ultratrace elemental analysis of semiconductor thin films include the following.

テフロン密閉容器1の内部には蒸発用ビーカ9、テフロ
ン製のウェハーキャリア12、分解液受皿11が夫々設
けられており、まず、半導体基板であるウェハー5をウ
ェハーキャリア12に数枚立て掛けた後、蒸発用ビーカ
9に入れられた弗酸10を入れる。すると、弗酸10が
周囲雰囲気温度により気化し、約2時間放置させる。す
ると、弗酸ガスがウェハー5上の酸化膜に反応して分解
され、この反応分解液滴6が分解液受皿11で受は止め
られる。
Inside the Teflon sealed container 1, an evaporation beaker 9, a Teflon wafer carrier 12, and a decomposition liquid receiver 11 are provided. First, several wafers 5, which are semiconductor substrates, are placed against the wafer carrier 12. Add hydrofluoric acid 10 placed in an evaporation beaker 9. The hydrofluoric acid 10 is then vaporized by the ambient temperature and left for about 2 hours. Then, the hydrofluoric acid gas reacts with the oxide film on the wafer 5 and is decomposed, and the reaction and decomposition droplets 6 are stopped in the decomposition liquid receiving tray 11.

そして反応分解液滴6をマイクロピペットを用いてその
全てを回収した後、純水で一定量に希釈し、これを試料
溶液とするという方法が採られている。
A method is adopted in which all of the reaction decomposition droplets 6 are collected using a micropipette, and then diluted to a certain amount with pure water, and this is used as a sample solution.

なお、試料溶液に含有するNaやFe等の微量金属不純
物は、気相分解/黒鉛炉原子吸光法により分析される。
Note that trace metal impurities such as Na and Fe contained in the sample solution are analyzed by gas phase decomposition/graphite furnace atomic absorption spectrometry.

〈発明が解決しようとする課題〉 しかしながら、上記従来法による場合には、次に述べる
ような諸欠点が指摘されている。
<Problems to be Solved by the Invention> However, in the case of the above-mentioned conventional method, the following drawbacks have been pointed out.

第1の欠点としては、分析すべき事項がウェハー5の表
面側酸化膜の微量金属不純物であるにもかかわらず、弗
酸ガスによりウェハー5の裏面側もエツチングされる結
果、試料溶液の中にはウェハー5の裏面側の反応分解液
も含まれ、ウェハー5の表面側酸化膜の微量金属不純物
を正確に分析することができない。
The first drawback is that even though the item to be analyzed is trace metal impurities in the oxide film on the front side of the wafer 5, the back side of the wafer 5 is also etched by the hydrofluoric acid gas, resulting in some metal impurities in the sample solution. This also includes the reaction decomposition liquid on the back side of the wafer 5, making it impossible to accurately analyze trace metal impurities in the oxide film on the front side of the wafer 5.

第2の欠点としては、蒸発用ビーカ9に入れられた弗酸
10を周囲雰囲気温度により気化させる方法が採られて
いるので、ウェハー5上の酸化膜のエツチングに長い時
間がかかり、半導体薄膜の超微量元素分析を効率よく行
う上で大きな支障となっている。
The second drawback is that since the method of vaporizing the hydrofluoric acid 10 placed in the evaporation beaker 9 at ambient atmospheric temperature takes a long time to etch the oxide film on the wafer 5, the semiconductor thin film is This is a major hindrance to efficiently performing ultratrace element analysis.

第3の欠点としては、集積回路に悪影響を及ぼす微量金
属不純物の中には弗酸ガスで分解されないもの例えばC
u等があり、この種の元素については分析できない。
The third drawback is that some trace metal impurities that have an adverse effect on integrated circuits cannot be decomposed by hydrofluoric acid gas, such as C.
u, etc., and this type of element cannot be analyzed.

本発明は上記事情に鑑みて創案されたものであり、その
目的とするところは、半導体基板の表面側薄膜の反応分
解液のみを試料溶液とすることができ、又はエツチング
時間の短縮を図ることができる半導体薄膜の超微量元素
分析におけるエツチング方法を提供することにある。
The present invention was devised in view of the above circumstances, and its purpose is to use only the reaction decomposition liquid of the thin film on the surface side of a semiconductor substrate as a sample solution, or to shorten the etching time. An object of the present invention is to provide an etching method for ultratrace elemental analysis of semiconductor thin films.

く課題を解決するための手段〉 本発明の第1請求項にかかる半導体薄膜の超微量元素分
析におけるエツチング方法は、分解液蒸発用ビーカを内
蔵した密閉容器の内部に半導体基板を水平に配置し、前
記分解液蒸発用ビーカから蒸発した分解ガスと前記半導
体基板の表面側薄膜との化学反応により当該薄膜を分解
させ、前記半導体基板の表面上に溜まった反応分解液の
液滴を採取する。
Means for Solving the Problems> The etching method for ultratrace elemental analysis of semiconductor thin films according to the first aspect of the present invention includes horizontally disposing a semiconductor substrate inside a closed container containing a beaker for evaporating a decomposition liquid. , the thin film is decomposed by a chemical reaction between the decomposition gas evaporated from the decomposition liquid evaporation beaker and the thin film on the surface side of the semiconductor substrate, and droplets of the reaction decomposition liquid accumulated on the surface of the semiconductor substrate are collected.

本発明の第2請求項にかかる半導体薄膜の超微量元素分
析におけるエツチング方法は、分解液蒸発用ビーカを内
蔵した密閉容器の内部に半導体基板を配置し、前記分解
液蒸発用ビーカ内の分解液を加熱して分解ガスを発生さ
せ、前記密閉容器内にキャリアガスを流して前記分解ガ
スを半導体基板側に導き、当該分解ガスと前記半導体基
板上の薄膜との化学反応により当該薄膜を分解させる。
The etching method for ultratrace elemental analysis of a semiconductor thin film according to the second aspect of the present invention is such that a semiconductor substrate is placed inside a closed container containing a beaker for evaporating a decomposition liquid, and the decomposition liquid in the beaker for evaporating a decomposition liquid is is heated to generate a decomposed gas, a carrier gas is flowed into the sealed container to guide the decomposed gas toward the semiconductor substrate, and the thin film is decomposed by a chemical reaction between the decomposed gas and the thin film on the semiconductor substrate. .

〈実施例〉 以下、本発明にかかる半導体薄膜の超微量元素分析にお
けるエツチング方法の実施例を説明する。
<Example> Hereinafter, an example of the etching method for ultratrace elemental analysis of a semiconductor thin film according to the present invention will be described.

第1図はエツチング装置の断面図である。FIG. 1 is a sectional view of the etching apparatus.

図中1はテフロン密閉容器であり、−辺の長さが全て3
0cmの立方体である。このテフロン密閉容器1の底面
には、テフロン製蒸発用ビーカ2とテフロン製テーブル
4とが夫々設けられている。
In the figure, 1 is a Teflon airtight container, and the - side length is all 3.
It is a 0cm cube. A Teflon evaporating beaker 2 and a Teflon table 4 are provided on the bottom of the Teflon sealed container 1, respectively.

テフロン製蒸発用ビーカ2の凹部には混酸3(分解液に
相当する)が入れられる。また、テフロン製蒸発用ビー
カ2には図示省略されているがヒータ等が内蔵されてお
り、これで混酸3に気化熱が与えられるようになってい
る。テフロン製テーブル4は複数枚(図示例では4枚)
のウェハー5を水平に載置し得る棚であって、テフロン
製テーブル4の各棚段には、ウェハー5の裏面を点支持
する凸部41が夫々設けられている。
A mixed acid 3 (corresponding to a decomposition liquid) is placed in the recess of the Teflon evaporation beaker 2. Further, although not shown in the drawings, the Teflon evaporation beaker 2 has a built-in heater, etc., so that heat of vaporization can be given to the mixed acid 3. There are multiple Teflon tables 4 (four in the illustrated example).
Each shelf of the Teflon table 4 is provided with a convex portion 41 that supports the back surface of the wafer 5 horizontally.

更にその上で、テフロン密閉容器1の図中右側側面上部
には、キャリアガスとしての窒素ガスaを導入する窒素
ガス吸引ロアが設けられている一方、図中左側下部には
、窒素ガスaを排出するための窒素ガス排出口8が設け
られている。窒素ガス吸引ロア、窒素ガス排出口8は何
れも図示省略されているが窒素ガス配管系に接続されて
いる。
Furthermore, a nitrogen gas suction lower is provided at the upper right side of the Teflon sealed container 1 in the figure to introduce nitrogen gas a as a carrier gas, while a nitrogen gas suction lower is provided at the lower left side in the figure. A nitrogen gas outlet 8 is provided for discharging nitrogen gas. Although not shown, both the nitrogen gas suction lower and the nitrogen gas discharge port 8 are connected to a nitrogen gas piping system.

次に、上記のようなエツチング装置を用いてウェハー5
に形成された薄膜をエツチングする方法について具体的
に説明する。
Next, the wafer 5 is etched using the etching apparatus as described above.
A method for etching the thin film formed in the above will be explained in detail.

まず、4枚のウェハー5をテフロン製テーブル4の各棚
段に′R置する。そしてテフロン製芸発用ビーカ2の凹
部に、20%弗酸と30%硝酸とを混ぜた混酸3を入れ
、テフロン密閉容器lを密閉する。
First, four wafers 5 are placed on each shelf of the Teflon table 4. Then, mixed acid 3, which is a mixture of 20% hydrofluoric acid and 30% nitric acid, is put into the recess of the Teflon beaker 2, and the Teflon airtight container 1 is sealed.

その後、混酸3の蒸発効率を高めるために、テフロン製
蒸発用ビーカ2に内蔵のヒータ等を発熱させて混酸3を
約40°Cくらいに保ち、混酸ガスb(分解ガスに相当
する)を連続して発生させる。
After that, in order to increase the evaporation efficiency of the mixed acid 3, the built-in heater etc. in the Teflon evaporation beaker 2 is heated to keep the mixed acid 3 at about 40°C, and the mixed acid gas b (corresponding to decomposed gas) is continuously supplied. and generate it.

そして少し時間を置いてテフロン密閉容器1内に高純度
の窒素ガスaを流通させる。即ち、テフロン密閉容器1
内に高純度の窒素ガスaを窒素ガス吸引ロアを介して送
り込む一方、送り込まれた窒素ガスaをテフロン密閉容
器1外に窒素ガス排出口8を介して排出する。なお、窒
素ガスaをテフロン密閉容器1に送り込む割合は、ここ
ではテフロン密閉容器lの中の雰囲気が30分で入れ代
わる約111 /minに設定されている。
After a short period of time, high-purity nitrogen gas a is passed through the Teflon sealed container 1. That is, Teflon sealed container 1
High-purity nitrogen gas a is fed into the container via a nitrogen gas suction lower, while the fed nitrogen gas a is discharged to the outside of the Teflon sealed container 1 through a nitrogen gas outlet 8. Note that the rate at which the nitrogen gas a is fed into the Teflon sealed container 1 is set here to approximately 111/min so that the atmosphere in the Teflon sealed container l is replaced in 30 minutes.

すると、テフロン製蒸発用ビーカ2から上昇した混酸ガ
スbが窒素ガスaの流れに乗ってテフロン製テーブル4
上のウェハー5に速やかに導かれる。このとき、混酸ガ
スbはウェハー5の表側面には十分に接触するが、裏側
面の接触は極めて少ない。これは、ウェハー5の表面側
とテフロン製テーブル4との隙間は十分に確保されてい
るが、ウェハー5の裏面側とテフロン製テーブル4との
隙間は極めて小さいので、混酸ガスbがウェハー5の裏
面側に回り難く、更に、窒素ガス゛aの下降気流に乗っ
て混酸ガスbがウェハー5の表面側に効率よ(導かれる
からである。
Then, the mixed acid gas b rising from the Teflon evaporation beaker 2 rides on the flow of nitrogen gas a and reaches the Teflon table 4.
It is quickly guided to the upper wafer 5. At this time, the mixed acid gas b sufficiently contacts the front side of the wafer 5, but the contact with the back side is extremely small. This is because the gap between the front side of the wafer 5 and the Teflon table 4 is sufficiently secured, but the gap between the back side of the wafer 5 and the Teflon table 4 is extremely small, so the mixed acid gas b is This is because it is difficult for the mixed acid gas b to flow toward the back surface side, and furthermore, the mixed acid gas b is efficiently guided toward the front surface side of the wafer 5 by riding on the downward current of the nitrogen gas a.

そして混酸ガスbとの化学反応によりウェハー5の表面
側に形成された酸化膜(図示せず)が分解され、これに
よりウェハー5の表面が流水面となり、反応分解液6が
液滴となってこの面上に点在する。だが、ウェハー5は
水平配置されているので、反応分解液6の液滴がこぼれ
ることはない。
Then, the oxide film (not shown) formed on the surface side of the wafer 5 is decomposed by a chemical reaction with the mixed acid gas b, and as a result, the surface of the wafer 5 becomes a flowing water surface, and the reaction decomposition liquid 6 becomes droplets. Scattered on this surface. However, since the wafer 5 is arranged horizontally, droplets of the reaction decomposition liquid 6 will not spill.

その後、テフロン密閉容器1を開けて、ウェハー5の裏
面を真空ビンセットで固定しながら、ウェハー5をテフ
ロン密閉容器1から個々に取り出し、取り出したウェハ
ー5の表面に約50μ!の硝酸(約2%)を滴下する。
Thereafter, the Teflon sealed container 1 was opened, and while fixing the back side of the wafer 5 with a vacuum bottle set, the wafers 5 were taken out individually from the Teflon sealed container 1, and approximately 50 μm was applied to the surface of the taken out wafer 5. of nitric acid (approximately 2%) is added dropwise.

そしてウェハー5を傾け、反応分解液6の全ての液滴を
もれなくその表面上を転がしながらマイクロピペットに
回収する。
Then, the wafer 5 is tilted and all the droplets of the reaction decomposition liquid 6 are collected into a micropipette while being rolled on the surface thereof.

ウェハー5ごとにマイクロピペットに回収した反応分解
液6は計量した後に試料溶液とされる。この試料溶液に
よってウェハー5の表面側酸化膜のCu等の微量金属不
純物の分析が行われる。
The reaction decomposition liquid 6 collected into a micropipette for each wafer 5 is measured and then used as a sample solution. Using this sample solution, trace metal impurities such as Cu in the oxide film on the front side of the wafer 5 are analyzed.

本実施例による方法では、マイクロピペットに回収され
た反応分解液6についてはウェハー5の表面側のものだ
けであるので、ウェハー5の表面側薄膜の微量金属不純
物を正確に分析することができる。しかも分解液には弗
酸の他に硝酸が含められている上に、反応分解液5の回
収時に更にウェハー5の表面に硝酸希釈液を滴下するよ
うな方法が採られているので、微量金属不純物も分析す
ることが可能である。本室例では微量金属不純物を従来
より一桁高い10 ”atms/ cm2〜109at
ms/ cm2程度にまで検出することが可能となった
In the method according to this embodiment, since the reaction decomposition liquid 6 collected by the micropipette is only from the surface side of the wafer 5, trace metal impurities in the thin film on the surface side of the wafer 5 can be accurately analyzed. In addition, the decomposition solution contains nitric acid in addition to hydrofluoric acid, and a method is adopted in which a diluted nitric acid solution is further dropped onto the surface of the wafer 5 when the reaction decomposition solution 5 is recovered, so trace metals can be removed. It is also possible to analyze impurities. In our laboratory example, trace metal impurities were reduced to 10”atms/cm2~109at, which is an order of magnitude higher than conventional methods.
It has become possible to detect up to about ms/cm2.

更に、テフロン製蒸発用ビーカ2内の混酸3を加熱させ
て混酸ガスbを発生させるとともに、混酸ガスbを窒素
ガスbによりウェハー5側に速やかに導くような方法が
採られているので、エツチングに要する時間を極めて短
かくすることができ、本案例では120分から30分に
短縮することができた。
Furthermore, a method is adopted in which the mixed acid gas 3 in the Teflon evaporation beaker 2 is heated to generate the mixed acid gas b, and the mixed acid gas b is quickly guided to the wafer 5 side by the nitrogen gas b. The time required for this can be extremely shortened, and in this example, it was possible to shorten the time from 120 minutes to 30 minutes.

〈発明の効果〉 以上、本発明の第1請求項にかかる半導体薄膜の超微量
元素分析におけるエツチング方法による場合には、分解
液蒸発用ビーカから蒸発した分解ガスとの化学反応によ
り半導体基板の表面側薄膜が分解すると、反応分解液の
液滴が半導体基板の表側面上に溜まり、溜まったものを
試料溶液として採取するような方法が採られているので
、半導体基板の表面側薄膜の反応分解液のみを試料溶液
とすることができる。それ故、半導体基板の表面側薄膜
の微量金属不純物を正確に分析することができ、超大規
模集積回路等の高性能化を推進する上で大きなメリット
がある。
<Effects of the Invention> As described above, in the case of the etching method for ultratrace elemental analysis of semiconductor thin films according to the first aspect of the present invention, the surface of the semiconductor substrate is When the side thin film decomposes, droplets of the reaction decomposition liquid accumulate on the front side of the semiconductor substrate, and the collected droplets are collected as a sample solution. Only the liquid can be used as the sample solution. Therefore, it is possible to accurately analyze trace metal impurities in the thin film on the surface side of a semiconductor substrate, which is a great advantage in promoting higher performance of ultra-large scale integrated circuits and the like.

本発明の第2請求項にかかる半導体薄膜の超微量元素分
析におけるエツチング方法による場合には、分解液蒸発
用ビーカ内の分解液を加熱させて分解ガスを発生させる
とともに、分解ガスを密閉容器内に流したキャリアガス
により半導体基板側に導くような方法が採られているの
で、エツチングに要する時間を極めて短かくすることが
できる。
In the case of the etching method for ultratrace elemental analysis of semiconductor thin films according to the second aspect of the present invention, the decomposition liquid in the beaker for evaporating the decomposition liquid is heated to generate decomposition gas, and the decomposition gas is placed in a closed container. Since a method is adopted in which the carrier gas is introduced to the semiconductor substrate side, the time required for etching can be extremely shortened.

それ故、半導体基板の薄膜の微量金属不純物の分析を効
率よく行う上で非常に大きなメリットがある。
Therefore, there is a great advantage in efficiently analyzing trace metal impurities in thin films of semiconductor substrates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる半導体薄膜の超微量元素分析に
おけるエツチング方法の一実施例を説明するための図で
あってエツチング装置の断面図である。第2図は従来法
を説明するための図であって第1図に対応する図である
。 ・混酸 ・ウェハー ・反応分解液 ・窒素ガス ・混酸ガス
FIG. 1 is a diagram for explaining an embodiment of the etching method for ultratrace elemental analysis of semiconductor thin films according to the present invention, and is a sectional view of an etching apparatus. FIG. 2 is a diagram for explaining the conventional method and corresponds to FIG. 1.・Mixed acid・Wafer・Reaction decomposition liquid・Nitrogen gas・Mixed acid gas

Claims (2)

【特許請求の範囲】[Claims] (1)分解液蒸発用ビーカを内蔵した密閉容器の内部に
半導体基板を水平に配置し、前記分解液蒸発用ビーカか
ら蒸発した分解ガスと前記半導体基板の表面側薄膜との
化学反応により当該薄膜を分解させ、前記半導体基板の
表面上に溜まった反応分解液の液滴を採取したことを特
徴とする半導体薄膜の超微量元素分析におけるエッチン
グ方法。
(1) A semiconductor substrate is placed horizontally inside a closed container containing a beaker for evaporating decomposition liquid, and the thin film is formed by a chemical reaction between the decomposition gas evaporated from the beaker for evaporating decomposition liquid and the thin film on the surface side of the semiconductor substrate. 1. An etching method for ultratrace elemental analysis of a semiconductor thin film, characterized in that droplets of the reaction decomposition liquid collected on the surface of the semiconductor substrate are collected.
(2)分解液蒸発用ビーカを内蔵した密閉容器の内部に
半導体基板を配置し、前記分解液蒸発用ビーカ内の分解
液を加熱して分解ガスを発生させ、前記密閉容器内にキ
ャリアガスを流して前記分解ガスを半導体基板側に導き
、当該分解ガスと前記半導体基板上の薄膜との化学反応
により当該薄膜を分解させたことを特徴とする半導体薄
膜の超微量元素分析におけるエッチング方法。
(2) A semiconductor substrate is placed inside a closed container containing a beaker for evaporating a decomposition liquid, the decomposition liquid in the beaker for evaporating a decomposition liquid is heated to generate a decomposition gas, and a carrier gas is introduced into the closed container. 1. An etching method for ultratrace elemental analysis of a semiconductor thin film, characterized in that the decomposed gas is introduced to the semiconductor substrate side, and the thin film is decomposed by a chemical reaction between the decomposed gas and the thin film on the semiconductor substrate.
JP32925089A 1989-12-18 1989-12-18 Etching method for ultramicro element analysis of thin film semiconductor Pending JPH03188642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32925089A JPH03188642A (en) 1989-12-18 1989-12-18 Etching method for ultramicro element analysis of thin film semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32925089A JPH03188642A (en) 1989-12-18 1989-12-18 Etching method for ultramicro element analysis of thin film semiconductor

Publications (1)

Publication Number Publication Date
JPH03188642A true JPH03188642A (en) 1991-08-16

Family

ID=18219341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32925089A Pending JPH03188642A (en) 1989-12-18 1989-12-18 Etching method for ultramicro element analysis of thin film semiconductor

Country Status (1)

Country Link
JP (1) JPH03188642A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325730A (en) * 1991-09-12 1994-07-05 Taiwan Semiconductor Manufacturing Company Thin film sampler for film composition quantitative analysis
WO2003036706A1 (en) * 2001-10-24 2003-05-01 Sumitomo Mitsubishi Silicon Corporation Method and apparatus for etching silicon wafer and method for analysis of impurities

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325730A (en) * 1991-09-12 1994-07-05 Taiwan Semiconductor Manufacturing Company Thin film sampler for film composition quantitative analysis
WO2003036706A1 (en) * 2001-10-24 2003-05-01 Sumitomo Mitsubishi Silicon Corporation Method and apparatus for etching silicon wafer and method for analysis of impurities
US7686973B2 (en) 2001-10-24 2010-03-30 Sumitomo Mitsubishi Silicon Corporation Silicon wafer etching method and apparatus, and impurity analysis method

Similar Documents

Publication Publication Date Title
US20050208674A1 (en) Method for analyzing impurities
CN110186994A (en) The processing analysis method and processing unit of heavy metal in a kind of silicon wafer
EP0137409A2 (en) Resolution device for semiconductor thin films
JP3473699B2 (en) Silicon wafer etching method and apparatus and impurity analysis method
JPH03188642A (en) Etching method for ultramicro element analysis of thin film semiconductor
JP3933090B2 (en) Method for recovering metal impurities from silicon substrate
JP2002368052A (en) Method for desorbing silicon and method for analyzing impurities in silicon wafer
JP3753805B2 (en) Semiconductor sample decomposition apparatus and sample decomposition method
JP3286215B2 (en) Surface analysis method for silicon wafer
JP2004212261A (en) Method of analyzing metal impurities on silicon substrate surface
JPH01189558A (en) Analyzing method of surface of si semiconductor substrate
JP3477216B2 (en) Etching method for ultra-trace metal analysis on silicon wafer surface
JPH01280248A (en) Surface analysis of si semiconductor substrate
JP2001108583A (en) Method for measuring concentration of impurity in silicon wafer
JP3345121B2 (en) Method and apparatus for analyzing trace components of solid sample
JPH11190730A (en) Method for analyzing metallic impurity at surface of and inside of semiconductor substrate
JPH02271253A (en) Surface analysis of silicon semiconductor substrate
JPH05211223A (en) Analyzing method of impurity on semiconductor substrate surface
JPH07193035A (en) Recovering method of impurity element on surface of silicon wafer
JP2011018781A (en) Method for evaluating silicon wafer
JPH05149847A (en) Analysis of impurity in graphite
JPH01189559A (en) Analyzing method of surface of si semiconductor substrate
JPH06160256A (en) Method and apparatus for decomposing sample
JPH0198944A (en) Surface analysis of silicon semiconductor substrate
KR100530846B1 (en) A method of detecting metal contamination in buried oxide of SOI wafer