JPH03188630A - Manufacture of semiconductor substrate - Google Patents

Manufacture of semiconductor substrate

Info

Publication number
JPH03188630A
JPH03188630A JP32784389A JP32784389A JPH03188630A JP H03188630 A JPH03188630 A JP H03188630A JP 32784389 A JP32784389 A JP 32784389A JP 32784389 A JP32784389 A JP 32784389A JP H03188630 A JPH03188630 A JP H03188630A
Authority
JP
Japan
Prior art keywords
polishing
wafer
layer
island
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32784389A
Other languages
Japanese (ja)
Inventor
Muneharu Shimanoe
島ノ江 宗治
Hiroshi Sato
弘 佐藤
Akira Nieda
贄田 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP32784389A priority Critical patent/JPH03188630A/en
Publication of JPH03188630A publication Critical patent/JPH03188630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To improve the film thickness precision of an island type semiconduc tor region by inserting two wafers, which are mutually stuck, between two polishing surface plates in the manner in which a polish reference surface is put in a natural state, and polishing one surface only. CONSTITUTION:A laminated wafer formed by sticking a wafer of an Si layer 5 on a wafer wherein a silicon layer 1A, an SiO2 layer 3 and a flattened layer 4 are stacked is inserted between the upper surface plate 12 and the lower surface plate 14 of a both-surface polishing machine 15 so as to be in a natural state. By a hard cloth 11 of the surface plate 12 and a soft cloth 13 of the surface plate 14, both-surface polishing is performed, and, practically, single- surface polishing is performed by the cloth 11. Thickness irregularity of the layer 1A is gradually corrected by the flatness correction effect of the above both-surface polishing. When polishing is continued until the layer 3 is exposed, an island type semiconductor region of a residual part of the layer 1A is formed with excellent film thickness precision.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基板上に絶縁膜を介して半導体領域が形成さ
れでなる半導体基板・、所謂S OJ (silico
nOn−insulator)基板の製法に関し、特に
段差を有する半導体基板の貼り合せにより、複数の島状
半導体領域を有せしめたSO■基板の製法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a semiconductor substrate in which a semiconductor region is formed on a substrate through an insulating film, so-called SOJ (silico
The present invention relates to a method for manufacturing an (on-insulator) substrate, and particularly to a method for manufacturing an SO2 substrate having a plurality of island-shaped semiconductor regions by bonding semiconductor substrates having steps.

〔発明の概要〕[Summary of the invention]

本発明は、絶縁膜で分離された複数の島状半導体領域を
有する半導体基板の製法において、2枚のウェーハを貼
り合せた後、この貼り合せた2枚のウェーハを2つの研
磨定盤間にその研磨基準面を自然状態にして挟むと共に
、一方のウェーハのみを上記絶縁膜で仕切られた上記複
数の島状半導体領域が露出するまで研磨することにより
、複数の島状半導体領域における夫々の膜厚に関するば
らつきを低減化して、島状半導体領域の膜厚の精度を良
好にさせると共に、半導体基板の高品質化並びに該基板
上に形成されるデバイスの高歩留り化を図るようにした
ものである。
The present invention is a method for manufacturing a semiconductor substrate having a plurality of island-shaped semiconductor regions separated by an insulating film, in which two wafers are bonded together, and then the two bonded wafers are placed between two polishing surface plates. By sandwiching the polishing reference surfaces in a natural state and polishing only one wafer until the plurality of island-shaped semiconductor regions partitioned by the insulating film are exposed, each film in the plurality of island-shaped semiconductor regions is polished. This is intended to reduce variations in thickness, improve the accuracy of the film thickness of the island-shaped semiconductor region, and improve the quality of the semiconductor substrate and the yield of devices formed on the substrate. .

〔従来の技術〕[Conventional technology]

近時、絶縁膜上に薄膜半導体シリコン層を形成してなる
所謂SOI基板を用いて超LSIを作製する開発が進め
られている。各種のSol基板の作製方法の中でも最も
結晶性が良く、特性面でも優れている(例えば、寄生容
量やキンク現象の低減など)と考えられているものに貼
り合せ方式がある。
2. Description of the Related Art Recently, progress has been made in the development of manufacturing VLSIs using so-called SOI substrates in which a thin semiconductor silicon layer is formed on an insulating film. Among the various methods for producing Sol substrates, the bonding method is considered to have the best crystallinity and superior properties (for example, reduction of parasitic capacitance and kink phenomenon).

貼り合せ方式とは、一方の鏡面シリコンウェーハの主面
に段差を設けて、酸化し、更に例えばSiL層、多結晶
ンリコン層等の平坦化用の層で段差を埋め込んでその平
坦化用の層を平坦化し、別の鏡面シリコンウェーハと貼
り合せたのち、一方のシリコンウェーハを薄膜になるま
で選択研摩して複数の島状半導体領域(素子形成領域)
を形成する方法である。そして、上記選択研磨の際、第
10図に示すように、2枚のウェーハを貼り合せた後の
貼り合せウェーハ(41)をイコライズ機構付加圧プレ
ート(42)の下面に設けられたテンプレート(43)
内に装着したのち、加圧プレート(42)に荷重を加え
ることによって、貼り合せウェーハ(41)の−主面を
研摩定盤(44)に押当てて研摩(片面研摩)を行なう
ようにしている。
The bonding method involves creating a step on the main surface of one mirror-finished silicon wafer, oxidizing it, and then filling the step with a planarizing layer such as a SiL layer or a polycrystalline silicon wafer. After planarizing the silicon wafer and bonding it to another mirror-finished silicon wafer, one silicon wafer is selectively polished until it becomes a thin film, forming multiple island-shaped semiconductor regions (device formation regions).
This is a method of forming. During the selective polishing, as shown in FIG. 10, the bonded wafer (41) after bonding the two wafers is attached to the template (43) provided on the lower surface of the equalizing mechanism pressure plate (42). )
After the bonded wafer (41) is mounted inside the wafer, the main surface of the bonded wafer (41) is pressed against the polishing surface plate (44) by applying a load to the pressure plate (42) to perform polishing (single-sided polishing). There is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般に、選択研摩前の貼り合せウェーハク41)の状態
は、第11図に示すように、5iO7膜(51)上のン
リコン層(52)の厚さに関し、約3〜4μmの厚みむ
らが生じている( a −b = 3〜4μm)。従っ
て、従来の如くウェーハ(41)をテンプレート(43
)に装着して、ウェーハ(41)の研磨面を研摩定盤(
44)に押し当てたとき、加圧プレート(42)がイコ
ライズ機構となっていることから、研摩面の傾斜に合せ
て加圧プレー) (42)も基準位置(軸方向、−点鎖
線で示す)に対して傾斜し、加圧プレー) (42)に
荷重を加えた際、ンリコン層(52)の研摩面全面がほ
ぼ同じ加圧状態となる。この状態で研磨を行なうと、第
12図に示すように、その研摩途中において、ンリコン
層(52)の厚みから(c−d)は、研磨前の厚みむら
(a −b = 3〜4μm)を踏襄するため、ンリコ
ン層(52)の薄い部分において早く5102膜(51
)が露出する。シリコン層(52)を全て無くするため
に更に研摩を行なっていくと、第13図に示すように、
すでに5in2膜(51)が露出した部分において、そ
のパターン内のシリコン層(島状半導体領域) (53
−1)、 (53−)  もわずかに研摩が進み(/リ
コン層(52)との研磨レート比−1710〜1/20
)、研磨終了と同時にシリコン層(52)が無くなった
部分での島状半導体領域(53,)、 (532) の
上面と8102膜(51)の上面とはほぼ同一平面上に
揃うこととなるが、早(Sin2膜(51)が露出した
部分での島状半導体領域(5:L−+)、(+3.) 
 の上面は、Sin□膜(51)の上面より下方に落ち
込んだ状態となってしまい、ウェーハ(41)面内にお
いての島状半導体領域(53,)〜(53゜)の各膜厚
に非常に大きなばらつきが生じ、SOI基板の品質上重
要な島状半導体領域(53,)〜(53n)  の膜厚
に精度(所定膜厚に対する精度や上面の平坦精度)がで
ないという不都合がある。
In general, the state of the bonded wafer 41) before selective polishing is such that, as shown in FIG. (a-b = 3-4 μm). Therefore, as in the past, the wafer (41) is attached to the template (43).
) and place the polished surface of the wafer (41) on the polishing surface plate (
44), since the pressure plate (42) has an equalizing mechanism, the pressure plate (42) is also set at the reference position (axial direction, indicated by the - dotted line) according to the slope of the polished surface. ), and when a load is applied to the pressure play (42), the entire surface of the polishing surface of the silicone layer (52) is under almost the same pressure. When polishing is performed in this state, as shown in FIG. 12, during the polishing, the thickness of the silicon layer (52) (c-d) becomes uneven before polishing (a-b = 3 to 4 μm). 5102 film (51
) is exposed. When further polishing is performed to completely remove the silicon layer (52), as shown in FIG.
In the part where the 5in2 film (51) has already been exposed, the silicon layer (island-shaped semiconductor region) (53
-1) and (53-) are also slightly polished (polishing rate ratio with recon layer (52) -1710 to 1/20
), the top surface of the island-shaped semiconductor region (53,), (532) and the top surface of the 8102 film (51) are almost on the same plane at the part where the silicon layer (52) is removed as soon as the polishing is completed. However, the island-shaped semiconductor region (5:L-+) at the exposed part of the Sin2 film (51), (+3.)
The upper surface is depressed below the upper surface of the Sin□ film (51), and the thickness of each of the island-shaped semiconductor regions (53,) to (53°) in the plane of the wafer (41) is extremely large. There is a problem that large variations occur in the film thickness of the island-shaped semiconductor regions (53,) to (53n), which are important for the quality of the SOI substrate, and that there is no precision (accuracy with respect to a predetermined film thickness and accuracy with which the top surface is flat).

これは、ウェーハ(41)の裏面自体が研磨基準面とな
ること、及び該研摩基準面が加圧プレー) (42)に
固定されていることから起因するものであり、最悪の場
合、島状半導体領域が全く存在しなくなるという事態が
生じてしまい、デバイス作製上、歩留りの低下を引起こ
すという不都合がある。
This is due to the fact that the back surface of the wafer (41) itself becomes the polishing reference surface, and that the polishing reference surface is fixed to the pressure plate (42). A situation arises in which no semiconductor region exists at all, which is disadvantageous in that it causes a decrease in yield in terms of device fabrication.

本発明は、このような点に鑑み成されたもので、その目
的とするところは、複数の島状半導体領域における夫々
の膜厚に関するばらつきを低減化することができ、島状
半導体領域の膜厚の精度を良好にさせることができると
共に、S○工基板の高品質化並びに該SOI基板上に形
成されるデバイスの高歩留り化をも図ることができる半
導体基板の製法を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to be able to reduce variations in film thickness in a plurality of island-shaped semiconductor regions, and to reduce film thickness variations in the island-shaped semiconductor regions. An object of the present invention is to provide a method for manufacturing a semiconductor substrate that can improve thickness accuracy, improve the quality of the SOI substrate, and increase the yield of devices formed on the SOI substrate. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体基板の製法は、絶縁膜(3)で分離され
た複数の島状半導体領域(7,)〜(7゜)を有する半
導体基板(8)の製法において、2枚のウェーハ(1)
及び(5)を貼り合せた後の貼り合せウェーハ(6)を
2つの研摩定盤(12)及び(14)間にその研摩基準
面を自然状態にして挟むと共に、一方のウェーハ(1)
のみを絶縁膜(3)で仕切られた複数の島状半導体領域
(71)〜(7o)が露出するまで研磨する。
The method for manufacturing a semiconductor substrate of the present invention is a method for manufacturing a semiconductor substrate (8) having a plurality of island-shaped semiconductor regions (7,) to (7°) separated by an insulating film (3). )
The bonded wafer (6) after bonding and (5) is sandwiched between two polishing plates (12) and (14) with the polishing reference surface in a natural state, and one wafer (1)
Polishing is performed until a plurality of island-shaped semiconductor regions (71) to (7o) partitioned by insulating films (3) are exposed.

〔作用〕[Effect]

上述の本発明の製法によれば、貼り合せウェーハ(6)
を2つの研磨定盤(12)及び(14)間に配し、その
研磨基準面を自然状態に保持しながら一方のウェ−ハ(
1)のみを研磨するようにしたので、研磨時に平坦度補
正効果(凸部を優先的に研磨する効果)が働き、シリコ
ン層(IA)の厚い部分が優先的に研磨され、研磨途中
において、研磨前のシリコン層(IA)の厚みむら(a
〜b)が徐々に補正され、シリコン層(IA)を全て研
磨したときには、各島状半導体領域(7,)〜(7n)
の膜厚に関するばらつきが低減化されて、該膜厚の精度
(所定膜厚に対する精度や上面の平坦精度)が良好とな
り、半導体基板(S○■基板)(8)の高品質化並びに
デバイスの高歩留り化を実現させることができる。
According to the manufacturing method of the present invention described above, the bonded wafer (6)
is placed between two polishing surface plates (12) and (14), and one wafer (
Since only 1) is polished, the flatness correction effect (the effect of polishing the convex parts preferentially) works during polishing, and the thick part of the silicon layer (IA) is preferentially polished, and during polishing, Thickness unevenness (a) of silicon layer (IA) before polishing
~b) is gradually corrected and when the silicon layer (IA) is completely polished, each island-shaped semiconductor region (7,) ~ (7n)
The variation in film thickness is reduced, and the accuracy of the film thickness (accuracy for a predetermined film thickness and top surface flatness accuracy) is improved, which improves the quality of the semiconductor substrate (S○■ substrate) (8) and improves the quality of the device. High yield can be achieved.

〔実施例〕〔Example〕

以下、第1図〜第9図を参照しながら本発明の詳細な説
明する。
Hereinafter, the present invention will be explained in detail with reference to FIGS. 1 to 9.

第1図は、本実施例に係るSol基板の製法を示す工程
図である。以下順を追ってその工程を説明する。
FIG. 1 is a process diagram showing a method for manufacturing a Sol substrate according to this embodiment. The steps will be explained step by step below.

まず、第1図Aに示すように、両面が鏡面加工されたシ
リコンウェーハ(1)の主面にフォトリングラフィ技術
を用いて複数の厚さ1000人程度O5部(2)が形成
されるように所定パターンの段差を形成する。
First, as shown in FIG. 1A, a plurality of O5 parts (2) with a thickness of approximately 1,000 layers are formed on the main surface of a silicon wafer (1) whose both sides are mirror-finished using photolithography technology. A predetermined pattern of steps is formed.

次に、第1図Bに示すように段差を有するシリコンウェ
ーハ(1)の主面上に厚さ1μm程度の熱酸化及びCV
D (化学気相成長)法によるSin、膜(3)を形成
し、更にこれらの段差を埋めるように例えばSin2層
又は多結晶シリコン層等の平坦化用の1(4)を厚さ5
μm程度堆積したのち、この層(4)に対し平坦化研磨
を行なって表面を平坦化する。
Next, as shown in FIG.
D (Chemical Vapor Deposition) method is used to form a Sin film (3), and then a planarizing film (4) such as a Sin2 layer or a polycrystalline silicon layer is formed to a thickness of 5 to fill these steps.
After depositing about μm, this layer (4) is polished to flatten the surface.

次に、第1図Cに示すように、平坦化された面mに別の
鏡面加工されたシリコンウェーハ(5〕を貼り合せて貼
り合せウェーハ(6)となす。
Next, as shown in FIG. 1C, another mirror-finished silicon wafer (5) is bonded to the flattened surface m to form a bonded wafer (6).

次に、第1図りに示すように、一方のシリコンウェーハ
(1)をその裏面より選択研磨してS10゜膜(3)で
互いに分離された複数の島状シリコン領域(7,)。
Next, as shown in the first diagram, one silicon wafer (1) is selectively polished from its back surface to form a plurality of island-shaped silicon regions (7,) separated from each other by an S10 film (3).

(72)〜(7,、)を形成して本例に係るsor基板
(8)を得る。この選択研磨加工に用いられる研摩定盤
としては、第2図に示すように、下面に硬質クロス(1
1)を設けた上定盤(12)と上面に軟質クロス(13
)を設けた下定盤(14)をその研磨クロス(11)及
び(13)を相対向させて配設した所謂両面研磨機(1
5)を用いる。上定盤(12)は、その上部においてイ
コライズ機構付加圧プレー) (16)に固定され、回
転軸(17)を介して例えば時計回りに回転するように
なされている。一方、下定盤(14)は、回転軸(18
)を介して例えば反時計回りに回転するようになされて
いる。また、上定盤(12)と下定盤(14)の間には
、第3図に示すように、外形が平歯車状でその偏心位置
に貼り合せウェーハ(6)の外径よりもわずかに大きい
径を有する穴(20)が設けられてなるテンブレー) 
(21)が複数個配され、更に上定盤(12)と下定盤
(14)間の外周部分においてテンプレート(21)の
歯と噛み合う内歯車(22)が設けられると共に、上定
盤(12)と下定盤(14)間の中心部分においてテン
プレート(21)の歯と噛み合う平歯車(23)が設け
られる。内歯車(22)は、ホルダ(24)を介して回
転軸(25)に連結され、この回転軸(25)の回転に
よって例えば時計回りに回転するようになされている。
(72) to (7,,) are formed to obtain a SOR substrate (8) according to this example. As shown in Fig. 2, the polishing surface plate used for this selective polishing process has a hard cloth (1
1) with the upper surface plate (12) and the soft cloth (13) on the top surface.
) A so-called double-sided polishing machine (1
5) is used. The upper surface plate (12) is fixed to the equalizing mechanism (applied pressure plate) (16) at its upper part, and is configured to rotate, for example, clockwise via a rotating shaft (17). On the other hand, the lower surface plate (14) has a rotary shaft (18
), for example, in a counterclockwise direction. In addition, between the upper surface plate (12) and the lower surface plate (14), as shown in Fig. 3, a spur gear-like outer shape is located at an eccentric position slightly smaller than the outer diameter of the bonded wafer (6). (Tenbrae provided with a hole (20) having a large diameter)
(21) are disposed, and an internal gear (22) that meshes with the teeth of the template (21) is provided at the outer peripheral portion between the upper surface plate (12) and the lower surface plate (14). ) and the lower surface plate (14) is provided with a spur gear (23) that meshes with the teeth of the template (21). The internal gear (22) is connected to a rotating shaft (25) via a holder (24), and is configured to rotate clockwise, for example, by rotation of the rotating shaft (25).

一方、内歯車(22)は、回転軸(26)を介して例え
ば反時計回りに回転するようになされている。
On the other hand, the internal gear (22) is configured to rotate, for example, counterclockwise via the rotation shaft (26).

従って、時計回りに回転する内歯車(22)と反時計回
りに回転する平歯車(23)によって各テンブレー) 
(21)は、夫々強制的に時計回りに回転するようにな
される。そして、この両面研磨機(15)を使って貼り
合せウェーハ(6)を研あするときは、ウェーハ(6)
を上定盤(12)と下定盤(14)間に配したテンブレ
ー) (21)の穴(20)内に装着して行なう。尚、
このとき研磨液が注入される。研磨液は、シリコンと化
学反応し、5102と化学反応しないアルカリ系溶液(
例えばエチレンジアミンや水酸化カリウムの水溶液)が
用いられる。この両面研磨機(15)による研磨の場合
、ウェーハ(6)に対し両面から研磨を行なうため、ウ
ェーハ(6)の研■定盤(12)及び(14)への固定
がなく、ウェーハ(6)の表面又は裏面の凹凸状態によ
って、研磨基準面がウェーハ(6)の表面又は裏面に変
化する。このように、研磨基準面が自然状態に保持され
なからウェーノ買ωの両面がフリーな状態で研磨される
ため、研磨時に平坦度補正効果(凸部を優先的に研磨す
る効果)が働き、第4図に示すように、選択研磨前にお
いて3102膜(3)上のシリコン層(ウェーハ) (
IA)に3〜4μmの厚みむら(a〜b=3〜4μm)
が生じていても、その研磨途中において、研磨前のシリ
コン層(1八)の厚みむら(a−b)が徐々に補正され
、第5図においては、その厚みむら(c −d )が1
〜2μmに低減化し、シリコン層(IA)を全て研磨し
てSin、膜(3)を露出させたときには、第1図Cに
示すように、島状シリコン領域(71)〜(7o)の上
面とSiO□膜(3)の上面とがほぼ同一平面上に揃う
。これは、上記両面からの研Mによる平坦度補正効果に
より、7937層(IA)の屡一部分から研磨が進み、
/リコンr= (IA)の薄い部分でわずかながら研磨
が進みながらもシリコンr= (IA)の厚い部分が薄
い部分とそのシリコン層(IA)の厚みがほぼ同じにな
るまでシリコン層(1人)の薄し1部分が見かけ上その
研磨を侍っている状態になるからと考えられる。
Therefore, each tensile wheel is rotated by an internal gear (22) that rotates clockwise and a spur gear (23) that rotates counterclockwise.
(21) are each forced to rotate clockwise. When polishing the bonded wafer (6) using this double-sided polisher (15), the wafer (6)
This is done by installing it into the hole (20) of the tension plate (21) placed between the upper surface plate (12) and the lower surface plate (14). still,
At this time, polishing liquid is injected. The polishing liquid is an alkaline solution (which chemically reacts with silicon but does not chemically react with 5102).
For example, an aqueous solution of ethylenediamine or potassium hydroxide) is used. In the case of polishing using this double-sided polishing machine (15), since the wafer (6) is polished from both sides, the wafer (6) is not fixed to the polishing plates (12) and (14), and the wafer (6) is polished from both sides. ) The polishing reference surface changes to the front or back surface of the wafer (6) depending on the unevenness of the front or back surface of the wafer (6). In this way, since the polishing reference surface is not held in its natural state, both sides of the wafer are polished in a free state, so the flatness correction effect (the effect of polishing the convex parts preferentially) is activated during polishing. As shown in Figure 4, the silicon layer (wafer) on the 3102 film (3) before selective polishing (
IA) thickness unevenness of 3 to 4 μm (a to b = 3 to 4 μm)
Even if this occurs, the thickness unevenness (a-b) of the silicon layer (18) before polishing is gradually corrected during the polishing process, and in FIG. 5, the thickness unevenness (c-d) becomes 1.
When the silicon layer (IA) is completely polished to expose the Si film (3), the upper surfaces of the island-shaped silicon regions (71) to (7o) are reduced to ~2 μm, as shown in FIG. 1C. and the upper surface of the SiO□ film (3) are almost on the same plane. This is due to the flatness correction effect of the polishing M from both sides, and polishing often progresses from a portion of the 7937 layer (IA).
/ Recon r = While polishing progresses slightly on the thin part of (IA), the silicon layer (1 person This is thought to be because the thinned part of ) appears to be attending to the polishing.

上記両面研磨機(15)による選択研磨においては、ウ
ェーハ(6)の両面に研磨が行なわれる。しかし、本例
では、第1図B及びCに示すように、一方のウェーハ(
1)に対する研磨のみを行なうことから、上述したよう
に、上定盤(12)には研磨レートが大きい硬質クロス
(11)を用い、下定盤(14)には研磨レートが小さ
い軟質クロス(13)を用いる。このようにすれば、一
方のウェーハ(1)に対する研磨が終了した時点におい
て、他方のウェーハ(5)に対する研磨はわずかで済む
In selective polishing by the double-sided polisher (15), both sides of the wafer (6) are polished. However, in this example, as shown in FIGS. 1B and C, one wafer (
1), as mentioned above, the upper surface plate (12) uses a hard cloth (11) with a high polishing rate, and the lower surface plate (14) uses a soft cloth (13) with a low polishing rate. ) is used. In this way, when polishing of one wafer (1) is completed, only a small amount of polishing is required for the other wafer (5).

両面研磨機(15)で一方のウェーハ(1)のみを研磨
する方法としては、第6図に示すように、他方のウェー
ハ(5)の端面に予め耐研磨用保護膜(27)を形成し
ておく。この保護膜(27)としては、選択研磨時に供
給されるアルカリ系の研碧液では化学反応しない例えは
S1口、膜が用いられる。この膜(27)を予め他方の
ウェーハ(5)に形成しておけば、上定盤(12)及び
下定盤(14)共にその研磨クロス(11)及び(13
)として硬質クロスを用いることができる。
As shown in Fig. 6, a method of polishing only one wafer (1) with a double-sided polisher (15) is to form a polishing-resistant protective film (27) on the end surface of the other wafer (5) in advance. I'll keep it. As this protective film (27), for example, an S1 film is used, which does not chemically react with the alkaline polishing liquid supplied during selective polishing. If this film (27) is formed on the other wafer (5) in advance, the polishing cloths (11) and (13) can be applied to both the upper surface plate (12) and the lower surface plate (14).
) can be used as a hard cloth.

上述の如く、本例によれば、第1図Cで示す選択研磨時
に両面研@機(15)を用いて一方のウェーハ(1)の
みを研磨するようにしたので、研磨時に平坦度補正効果
が慟き、シリコン層(IA)の厚い部分から優先的に研
磨され、シリコン層(IA)を全て研磨して島状シリコ
ン領域(7,)、(7□)〜(7,、)を形成したとき
には、各島状シリコン領域(7,)〜(7h)の上面と
S r 02 M C3)の上面とがほぼ面一となり、
ウェーハ(5)面内における島状シリコン領域(71)
〜く7゜)の膜厚に関するばらつきが低減化される。従
って、各島状シリコン領域(7,)〜(7o)の膜厚を
ウェーハ(5)面内において所定の厚さにする精度とそ
の上面を平坦にする精度が良好と成り、SOI基板(8
)の高品質化並びに該Sol基板(8)上に形成される
デバイスの高歩留り化を実現させることができる。
As mentioned above, according to this example, only one wafer (1) is polished using the double-sided polishing machine (15) during the selective polishing shown in FIG. The thicker parts of the silicon layer (IA) are polished first, and the entire silicon layer (IA) is polished to form island-shaped silicon regions (7,), (7□) to (7,,). When this happens, the top surface of each island-shaped silicon region (7,) to (7h) and the top surface of S r 02 MC3) become almost flush,
Island-shaped silicon region (71) in the wafer (5) plane
-7°) variations in film thickness are reduced. Therefore, the accuracy of making the film thickness of each island-like silicon region (7,) to (7o) a predetermined thickness in the plane of the wafer (5) and the precision of making the upper surface flat are excellent, and the SOI substrate (8,
) as well as a high yield of devices formed on the Sol substrate (8).

上記選択研磨後の島状シリコン領域(71)〜(7o)
の上面は、選択研磨時のアルカリ系溶液のエツチング作
用により、表面粗さが劣化し、研磨ダメージも残った状
態となる。そこで通常は、砥粒入り研ツ液で3500人
厚の島状シリコン領域(通常の場合、選択研窟後、ダメ
ージ除去及び面粗さの低減化を目的とする後述する2回
目の研Mが行なわれるため、予め第1図、へにおいて、
3500人の凸部(2)を形成するようにしている) 
(7,)〜(7n)の上面を再度研磨するが、この研磨
は、ウェーハ間とウェーハ面内においてその研磨代に関
し、ばらつきが生じる。この原因は、研磨盤のウェーハ
(5)に対する圧力分布や研磨液中の砥粒分布のばらつ
きによるものと考えられる。即ち、上記通常の研磨方法
で島状シリコン領域(71)〜(7o)に対し2000
人程度研磨して面粗さ及びダメージを改善しようとして
も、第7図に示すように、1枚目のウェーハ(5A)で
は1400人研磨されたり、2枚目のウェーハ(5B)
では2600人研磨されたりするなど、ウェーハ(5A
)及び(5B)間で研磨代に関し、ばらつきが生じる。
Island-shaped silicon regions (71) to (7o) after the above selective polishing
Due to the etching effect of the alkaline solution during selective polishing, the surface roughness of the upper surface of the substrate deteriorates and polishing damage remains. Therefore, a polishing solution containing abrasive grains is used to polish an island-shaped silicon area with a thickness of 3,500 mm (normally, after selective polishing, a second polishing M, which will be described later, is carried out for the purpose of removing damage and reducing surface roughness). In order to be carried out, in advance in Fig. 1,
It is designed to form a convex part (2) of 3,500 people)
The upper surfaces of (7,) to (7n) are polished again, but this polishing causes variations in the polishing allowance between wafers and within the wafer surface. This is thought to be caused by variations in the pressure distribution of the polishing disk against the wafer (5) and the abrasive grain distribution in the polishing liquid. That is, the island-shaped silicon regions (71) to (7o) were polished at a polishing rate of 2000 by the above-mentioned normal polishing method.
Even if an attempt is made to improve the surface roughness and damage by polishing by several people, as shown in Figure 7, the first wafer (5A) is polished by 1,400 people, and the second wafer (5B) is polished by 1,400 people.
wafers (5A) were polished by 2,600 people.
) and (5B) in terms of polishing allowance.

また、第8図に示すように、1枚のウェーハ(5)面内
において、1800人研磨されたり、220OA研磨さ
れたりするなど1枚のウェーハ(5)面内で研磨代に関
し、ばらつきが生じる。従って、選択研磨時、島状シリ
コン領域(7,)〜(7゜)の上面を5in2膜(3〕
の上面と面一にしたとしても、次の面粗さ及びダメージ
の低減化を目的とする2回目の研磨でその研磨代のばら
つきにより、島状シリコン領域(7I)〜(7n)のい
くつかがその膜厚に関し品質規格外となってしまい、S
○工基板(8)の品質を著しく劣化させるという不都合
が生じる。
In addition, as shown in Figure 8, variations occur in the polishing allowance within one wafer (5), such as polishing by 1800 people or polishing at 220 OA within one wafer (5). . Therefore, during selective polishing, the upper surface of the island-like silicon region (7,) to (7°) is covered with a 5in2 film (3).
Even if it is made flush with the top surface, some of the island-like silicon regions (7I) to (7n) may be removed due to variations in the polishing amount during the second polishing aimed at reducing surface roughness and damage. However, the film thickness exceeded the quality standards, and S
○ This causes the inconvenience of significantly deteriorating the quality of the engineered board (8).

そこで、本例では、第9図Aに示すように、島状ンリコ
ン領域(7,)〜(7o)が露出する面に対し、熱酸化
を施して全面に8102の熱酸化膜(31)を形成する
。このとき、各島状シリコン領域(71)〜(7o)に
おいては、深さ約1000研磨度を熱酸化する。
Therefore, in this example, as shown in FIG. 9A, thermal oxidation is applied to the surface where the island-like silicon regions (7,) to (7o) are exposed to form a thermal oxide film (31) of 8102 on the entire surface. Form. At this time, each island-like silicon region (71) to (7o) is thermally oxidized to a depth of about 1000 polishing degree.

次に、第9−8に示すように、島状ンリコン領域(71
)〜(7o)上の熱酸化膜(31)が完全に除去される
までHF溶液にて全面の熱酸化膜(31)をエツチング
除去する。このとき、島状ンリフン領域(7,)〜(7
o)間を分離する5in2膜(3)が無くならない程度
にエツチング除去する。即ち、島状ンリコン領域(7,
)〜(7,)の各シリコン面が露出した段階でエンチン
グをストップする。熱酸化膜(31)は、SiO□膜(
3)と比べその厚みが大きく異なるため、エツチングス
トップの制御がし易い。
Next, as shown in No. 9-8, an island-like licon region (71
) - (7o) The thermal oxide film (31) on the entire surface is etched away using an HF solution until the thermal oxide film (31) is completely removed. At this time, the island-like Nrifun regions (7,) to (7
o) Etch and remove to the extent that the 5in2 film (3) separating the two is not lost. That is, the island-like region (7,
Etching is stopped at the stage when each silicon surface of ) to (7, ) is exposed. The thermal oxide film (31) is a SiO□ film (
Since the thickness is significantly different from that of 3), it is easier to control the etching stop.

このように、島状ンリコン領域(71)〜(7o)の上
面に対して一旦熱酸化を施したのち、島状ンリコン領域
(71)〜(7o)上に形成された熱酸化膜(31)を
エツチング除去するようにしたので、選択酸化時に生じ
た研磨ダメージを熱酸化膜(31)と共に除去すること
ができ、面粗さも良好となる。また、第11八において
、予めウェーハ(1)の段差(凸部(2)の厚み)を素
子形成領域として必要な厚み(1000人)と熱酸化の
深さ(1000人)を考慮して2000人としておけば
、最終工程(第9図B)で島状シリコン領域(7,)〜
(7o)の厚みをウェーハ(5)全面に関して所望する
厚み(1000人)で均一化させることができると共に
、島状ンリコン領域(71)〜(7n)の面粗さ及び研
磨ダメージを低減化させることができる。
In this way, after thermal oxidation is once applied to the upper surfaces of the island-shaped silicon regions (71) to (7o), a thermal oxide film (31) is formed on the island-like silicon regions (71) to (7o). Since it is removed by etching, polishing damage caused during selective oxidation can be removed together with the thermal oxide film (31), and the surface roughness can be improved. In addition, in the 118th step, the height difference (thickness of the convex portion (2)) of the wafer (1) was taken into account in advance the thickness (1000 layers) required as an element formation area and the depth of thermal oxidation (1000 layers). If it is treated as a person, in the final process (Fig. 9B), the island-shaped silicon region (7,) ~
The thickness of (7o) can be made uniform to the desired thickness (1000 layers) over the entire surface of the wafer (5), and the surface roughness and polishing damage of the island-like silicon regions (71) to (7n) can be reduced. be able to.

〔発明の効果〕〔Effect of the invention〕

本発明に係る半導体基板の製法は、2枚のウェーハを貼
り合せた後、この貼り合せた2枚のウェーハを2つの研
磨定盤間にその研磨基準面を自然状態にして挟むと共に
、一方のウェーハのみを絶縁膜で仕切られた複数の島状
半導体領域が露出するまで研磨するようにしたので、複
数の島状半導体領域における夫々の膜厚に関するばらつ
きを低減化させることができ、島状半導体領域の膜厚の
精度(所定膜厚に対する精度や平坦精度)を良好にさせ
ることができると共に、半導体基板の高品質化並びに該
基板上に形成されるデバイスの高歩留り化を図ることが
できる。
The method for manufacturing a semiconductor substrate according to the present invention involves bonding two wafers together, and then sandwiching the bonded two wafers between two polishing plates with their polishing reference surfaces in a natural state; Since only the wafer is polished until the plurality of island-shaped semiconductor regions partitioned by insulating films are exposed, it is possible to reduce variations in film thickness in the plurality of island-shaped semiconductor regions, and the island-shaped semiconductor It is possible to improve the accuracy of the film thickness of the region (accuracy for a predetermined film thickness and flatness accuracy), and also to improve the quality of the semiconductor substrate and the yield of devices formed on the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例に係る半導体基板の製法を示す工程図
、第2図は本実施例に係る研磨定盤を示す構成図、第3
図は上定盤と下定盤間を示す平面図、第4図は選択研磨
前のウェーハの状態を示す断面図、第5図は選択研磨途
中のウェーハの状態を示す断面図、第6図は一方のウェ
ーハのみを研磨する方法の一例を示す説明図、第7図は
2回目の研磨におけるウェーハ間でのばろつきを示す説
明図、第8図は2回目の研磨におけるウェー71面内で
のばろつきを示す説明図、第9図は面粗さ及び研房ダメ
ージの低減化の方法を示す工程図、第10図は従来の研
磨定盤を示す構成図、第11図は従来における選択研磨
前のウェーハの状態を示す断面図、第12図は従来にお
ける選択研磨途中のウェーハの状態を示す断面図、第1
3図は従来における選択研■後のウェーハの状態を示す
断面図である。 (1)、  (5)はシリコンウエーノ\、(2)は凸
部、(3)はSin、膜、(4)は平坦化用の層、(6
)は貼り合せウェーハ、(71)〜(7o)は島状シリ
コン領域、(8)はSOI基板、 (11)は硬質クロス、(12)は上定盤、(13)は
軟質クロス、(14)は下定盤、(15)は両面研磨機
、(16)は加圧プレート、(17)、 (18)、 
(25)、 (26)  は回転軸、(21)はテンプ
レート、(22)は内歯車、(23)は平歯車である。 代  理  人 松  隈  秀  盛 回内1研磨機 21テンアし一ト 第 図 第 8 区 手続補正書
FIG. 1 is a process diagram showing a method for manufacturing a semiconductor substrate according to this embodiment, FIG. 2 is a configuration diagram showing a polishing surface plate according to this embodiment, and FIG.
The figure is a plan view showing the space between the upper surface plate and the lower surface plate, FIG. 4 is a cross-sectional view showing the state of the wafer before selective polishing, FIG. 5 is a cross-sectional view showing the state of the wafer during selective polishing, and FIG. An explanatory diagram showing an example of a method of polishing only one wafer, Fig. 7 is an explanatory diagram showing variations between wafers in the second polishing, and Fig. 8 is an explanatory diagram showing variations within the wafer 71 plane in the second polishing. An explanatory diagram showing variation, Fig. 9 is a process diagram showing a method for reducing surface roughness and laboratory damage, Fig. 10 is a configuration diagram showing a conventional polishing surface plate, and Fig. 11 is a conventional selective polishing. FIG. 12 is a cross-sectional view showing the state of the wafer before selective polishing; FIG.
FIG. 3 is a sectional view showing the state of a wafer after conventional selective polishing. (1), (5) are silicon wafers, (2) are convex parts, (3) are Sin, film, (4) are flattening layers, (6
) is a bonded wafer, (71) to (7o) are island-like silicon regions, (8) is an SOI substrate, (11) is a hard cloth, (12) is an upper surface plate, (13) is a soft cloth, (14) ) is the lower surface plate, (15) is the double-sided polisher, (16) is the pressure plate, (17), (18),
(25) and (26) are rotating shafts, (21) is a template, (22) is an internal gear, and (23) is a spur gear. Deputy Hide Hitomatsu Kuma 1st polishing machine 21 1st part Figure 8 Section procedural amendment

Claims (1)

【特許請求の範囲】 絶縁膜で分離された複数の島状半導体領域を有する半導
体基板の製法において、 2枚のウェーハを貼り合せた後に、この貼り合された2
枚のウェーハを2つの研磨定盤間にその研磨基準面を自
然状態にして挟むと共に、一方のウェーハのみを上記絶
縁膜で仕切られた上記複数の島状半導体領域が露出する
まで研磨することを特徴とする半導体基板の製法。
[Claims] In a method for manufacturing a semiconductor substrate having a plurality of island-shaped semiconductor regions separated by an insulating film, after bonding two wafers, the bonded two
A wafer is sandwiched between two polishing plates with the polishing reference surface in a natural state, and only one wafer is polished until the plurality of island-shaped semiconductor regions partitioned by the insulating film are exposed. Characteristic semiconductor substrate manufacturing method.
JP32784389A 1989-12-18 1989-12-18 Manufacture of semiconductor substrate Pending JPH03188630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32784389A JPH03188630A (en) 1989-12-18 1989-12-18 Manufacture of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32784389A JPH03188630A (en) 1989-12-18 1989-12-18 Manufacture of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH03188630A true JPH03188630A (en) 1991-08-16

Family

ID=18203604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32784389A Pending JPH03188630A (en) 1989-12-18 1989-12-18 Manufacture of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH03188630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104153A (en) * 1992-03-16 1994-04-15 American Teleph & Telegr Co <Att> Manufacture of semiconductor integrated circuit
WO2001082354A1 (en) * 2000-04-24 2001-11-01 Sumitomo Mitsubishi Silicon Corporation Method of manufacturing semiconductor wafer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104153A (en) * 1992-03-16 1994-04-15 American Teleph & Telegr Co <Att> Manufacture of semiconductor integrated circuit
WO2001082354A1 (en) * 2000-04-24 2001-11-01 Sumitomo Mitsubishi Silicon Corporation Method of manufacturing semiconductor wafer
US7589023B2 (en) 2000-04-24 2009-09-15 Sumitomo Mitsubishi Silicon Corporation Method of manufacturing semiconductor wafer
DE10196115B4 (en) * 2000-04-24 2011-06-16 Sumitomo Mitsubishi Silicon Corp. Method for polishing a semiconductor wafer
US8283252B2 (en) 2000-04-24 2012-10-09 Sumitomo Mitsubishi Silicon Corporation Method of manufacturing semiconductor wafer

Similar Documents

Publication Publication Date Title
JPH10223497A (en) Manufacture of laminated substrate
JP2662495B2 (en) Method for manufacturing bonded semiconductor substrate
JP2000348992A (en) Manufacture of semiconductor substrate
JP5750877B2 (en) Wafer single-side polishing method, wafer manufacturing method, and wafer single-side polishing apparatus
JPH03188630A (en) Manufacture of semiconductor substrate
US5686364A (en) Method for producing substrate to achieve semiconductor integrated circuits
JPH02267950A (en) Semiconductor substrate
CN113436960B (en) Method for improving polishing thickness uniformity of film CMP
JPH06252109A (en) Manufacture of semiconductor device
JPH03183130A (en) Manufacture of semiconductor substrate
JP2002057309A (en) Method of forming soi substrate
JP2915419B2 (en) Semiconductor device and manufacturing method thereof
JPH02177433A (en) Manufacture of semiconductor substrate
JPH07297193A (en) Method of flattening integrated circuit
JP2000349148A (en) Manufacture of substrate having semiconductor layer
JPH0396216A (en) Manufacture of semiconductor substrate
JPH09270398A (en) Method of forming soi substrate
JP2762503B2 (en) Semiconductor substrate manufacturing method
JP2000252354A (en) Production of substrate having buried insulation film
JPH07226433A (en) Manufacture of semiconductor device
JP3518083B2 (en) Substrate manufacturing method
JPH0387012A (en) Adhered wafer and manufacture thereof
JPH02237066A (en) Manufacture of semiconductor device
JPH02309636A (en) Manufacture of semiconductor substrate
JPS63266830A (en) Flattening method for surface