JPH03188248A - Superelastic alloy wire for guide wire and its production - Google Patents

Superelastic alloy wire for guide wire and its production

Info

Publication number
JPH03188248A
JPH03188248A JP32551889A JP32551889A JPH03188248A JP H03188248 A JPH03188248 A JP H03188248A JP 32551889 A JP32551889 A JP 32551889A JP 32551889 A JP32551889 A JP 32551889A JP H03188248 A JPH03188248 A JP H03188248A
Authority
JP
Japan
Prior art keywords
wire
heat treatment
elastic modulus
low
superelastic alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32551889A
Other languages
Japanese (ja)
Inventor
Hirohisa Iwai
岩井 博久
Kaisuke Shiroyama
城山 魁助
Hisashi Nagai
久史 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP32551889A priority Critical patent/JPH03188248A/en
Publication of JPH03188248A publication Critical patent/JPH03188248A/en
Pending legal-status Critical Current

Links

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)

Abstract

PURPOSE:To produce a superelastic alloy wire for guide wire which has a part having a low elastic modulus and a part having a high elastic modulus alternately in a long wire by constituting this wire of an Ni-Ti alloy and alternately providing a part having a high apparent elastic modulus and a part having a low apparent elastic modulus in the longitudinal direction of the wire. CONSTITUTION:A wire 1 is subjected to low-temp. primary heat treatment in a flying furnace 2 and passed through dancer rollers 7, and tension is applied to this wire 1 by means of tension applying devices 8, 8' and high-temp. secondary heat treatment is exerted by means of a batch-type heater 6. In this manner, the wire is constituted of an Ni-Ti alloy and a part having a high apparent elastic modulus and a part having a low apparent elastic modulus are alternately provided in the longitudinal direction of the wire. The part having a high apparent elastic modulus and the part having a low apparent elastic modulus are regulated to 3500-8000kgf/mm<2> and 2500-4500kgf/mm<2>, respectively. The primary heat treatment is carried out at 250-450 deg.C for 1sec-25hr and the secondary heat treatment is carried out at 400-750 deg.C for 1sec-24hr intermittently. By this method, the wire simultaneously having flexibility and strength to bending deformation at the end and in the other part can be provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、カテーテル用ガイドワイヤーなどに使用する
線の先端部とその他の部分とで見かけの弾性係数が異な
る超弾性合金線およびその製造方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a superelastic alloy wire used for catheter guide wires, etc., in which the tip and other parts of the wire have different apparent elastic modulus, and a method for manufacturing the same. It is related to.

〔従来の技術とその課題〕[Conventional technology and its issues]

人体内に挿入して用いるカテーテル用ガイドワイヤーは
、ガイドワイヤーの操作性を良くするために少なくとも
先端部の柔軟性と先端部以外の部分の腰の強さ、いわゆ
る曲げ変形に対する十分な強度を有する2点の特性が同
時に要求されている。
A catheter guidewire used for insertion into the human body has at least flexibility at the tip and sufficient strength against bending deformation in areas other than the tip in order to improve the guidewire's operability. Two characteristics are required at the same time.

特に先端部は、テーパー加工して細くし、柔軟性を持た
せ挿入し易い様にしてあり、例えば0 、5 mrnφ
程度の線の先端部100〜200mの部分をテーパー加
工し、最先端部の径を0.12amφ程度に仕上げたも
のが用いられている。
In particular, the tip is tapered to make it thinner and flexible, making it easier to insert.For example, 0,5 mrnφ
A wire with a diameter of about 0.12 amφ is used by tapering a 100 to 200 m portion of the tip of the wire.

従来このテーパー加工は最初機械研摩により行なわれて
いたが、カテーテル用ガイドワイヤーとし通常用いられ
ているNi−Ti超弾性合金では、機械研摩を行なうと
超弾性が失われる欠点があり、最近では例えばCH,C
001192%、f(C/!048%の電解液に線を通
電しながら先端部を浸漬して電解研摩する方法が行なわ
れている。
Conventionally, this taper processing was first performed by mechanical polishing, but the Ni-Ti superelastic alloy commonly used for catheter guide wires has the disadvantage that its superelasticity is lost when mechanically polished. CH,C
A method of electrolytic polishing is carried out in which the tip is immersed in an electrolytic solution of 001192%, f(C/!048%) while energizing the wire.

しかし上記の電解研摩方法は、1本毎にハツチ方式で電
解研摩液に浸漬して上下しながら研摩するため、テーパ
ー加工部の形状にバラツキが大きく、また工数を多く要
し、コスト高になる問題があった。またユーザーにて2
次加工の樹脂のコーティングを行なう際、テーパ一部で
のコーティングが難しくコスト高であるという問題があ
る。
However, in the above electrolytic polishing method, each piece is immersed in electrolytic polishing solution using a hatch method and polished while moving up and down, resulting in large variations in the shape of the tapered part, and requires a large number of man-hours, resulting in high costs. There was a problem. In addition, the user
When coating with resin in the next process, there is a problem in that it is difficult to coat a part of the taper and the cost is high.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記の問題について検討の結果、例えばカテー
テル用ガイドワイヤーのように先端部と他の部分とに柔
軟性と曲げ変形に対する強度を同時に有するような、す
なわち部分的に高い弾性係数と低い弾性係数を交互に有
するガイドワイヤー用超弾性合金線およびその製造方法
を開発したものである。
As a result of studies on the above-mentioned problems, the present invention has been developed to provide a guide wire for catheters that has flexibility and strength against bending deformation at the tip and other parts at the same time, that is, partially has a high elastic modulus and a low elastic modulus. A superelastic alloy wire for guide wires having alternating coefficients and a method for manufacturing the same have been developed.

〔課題を解決するための手段および作用〕本発明は、N
 i −T i系合金からなり、線の長手方向に見かけ
の弾性係数の高い部分と低い部分とを交互に有すること
を特徴とするガイドワイヤー用超弾性合金線であり、ま
たNi−Ti系合金線を加工率10%以上で冷間加工し
た後、1次熱処理として温度250〜450℃1保持時
間1秒〜24時間の熱処理を施した後、2次熱処理とし
て温度400〜750’C(但し、1次熱処理温度は2
次熱処理温度より低いものとする)、保持時間1秒〜2
4時間の熱処理を線の長手方向の1部分に断続的に施す
ことを特徴とするガイドワイヤー用超弾性合金線の製造
方法である。
[Means and effects for solving the problem] The present invention has N
A superelastic alloy wire for a guide wire, which is made of an i-Ti alloy and has alternating portions with high and low apparent elastic modulus in the longitudinal direction of the wire, and is also made of a Ni-Ti alloy. After cold working the wire at a processing rate of 10% or more, heat treatment is performed at a temperature of 250 to 450°C for a holding time of 1 second to 24 hours as a first heat treatment, and then a temperature of 400 to 750'C is performed as a secondary heat treatment. , the primary heat treatment temperature is 2
lower than the next heat treatment temperature), holding time 1 second to 2
This is a method for manufacturing a superelastic alloy wire for a guide wire, which is characterized in that heat treatment for 4 hours is intermittently applied to one portion in the longitudinal direction of the wire.

ここで前記の線の柔軟性或いは腰の強さが材料の機械的
特性、特に応力−歪線図の見かけの弾性特性とどのよう
な関係があるかを説明するが、その前にこの弾性係数に
ついて定義した理由を説明する。第1図の超弾性合金の
応力−歪線図に示すように線に引張りの歪を加えると応
力は図の0点からA点に向って線形的に増加していき、
さらに歪を加えると応力はA点からほぼ一定の値を示し
ながらB点に達する。このB点で引張りの歪を止め除荷
していくと、0点、D点と通過して0点に戻る。(一般
にB点は4〜6%の歪みとなる)これが超弾性合金の応
力−歪線図である。
Here, we will explain how the flexibility or stiffness of the line is related to the mechanical properties of the material, especially the apparent elastic properties of the stress-strain diagram. Explain the reason for defining it. As shown in the stress-strain diagram of a superelastic alloy in Figure 1, when tensile strain is applied to the line, the stress increases linearly from point 0 to point A in the diagram.
When further strain is applied, the stress reaches point B while exhibiting a substantially constant value from point A. When the tensile strain is stopped at point B and the load is unloaded, it passes through point 0, point D, and returns to point 0. (Generally, the strain at point B is 4 to 6%.) This is a stress-strain diagram of a superelastic alloy.

さて第1図においてA点での応力σ、を歪ε。Now, in Figure 1, the stress σ at point A is the strain ε.

で除した値、すなわち平均弾性係数を見かけの弾性係数
と定義し、線の柔軟性或いは腰の強さを関係させると第
2図に示すように見かけの弾性係数が大きくなるにした
がって線材の腰の強さが強くなることが判る。
The average elastic modulus divided by It can be seen that the strength of

一方超弾性の記憶熱処理条件と見かけの弾性係数との関
係は第3図に示すように見かけの弾性係数は熱処理温度
が低いとき小さく、高いときに大きくなることが判った
On the other hand, regarding the relationship between the superelasticity memory heat treatment conditions and the apparent elastic modulus, as shown in FIG. 3, it was found that the apparent elastic modulus is small when the heat treatment temperature is low and becomes large when the heat treatment temperature is high.

本発明は上記の知見に基づいてなされたもので、10%
以上の冷間加工を施した長尺の線を最初に見かけの弾性
係数が小さい値をとるように低い温度で1次熱処理を施
しておき、柔軟性をもたせたい線の1部分を残したまま
、それ以外の部分の見かけの弾性係数(以下単に弾性係
数という)が高い値をとるように高い温度でさらに2次
熱処理を施すことにより、線の長手方向に弾性係数の高
い部分と低い部分とを交互に有する超弾性合金線が得ら
れるものである。
The present invention was made based on the above knowledge, and the 10%
The long wire that has undergone the above cold working is first subjected to primary heat treatment at a low temperature so that the apparent elastic modulus takes a small value, leaving one part of the wire where you want it to be flexible. By further performing secondary heat treatment at a high temperature so that the apparent elastic coefficient (hereinafter simply referred to as elastic coefficient) of the other parts takes a high value, parts with high and low elastic coefficients are separated in the longitudinal direction of the wire. A superelastic alloy wire having alternating .

しかして上記の弾性係数の高い部分は、3500〜80
00kgf / m4、低い部分は2500〜4500
kgf/−の弾性係数を有するものである。
However, the above-mentioned portion with a high elastic modulus is 3500 to 80
00kgf/m4, lower part 2500-4500
It has an elastic modulus of kgf/-.

また上記の弾性係数を有する超弾性合金としてはNi−
Ti合金またはNiとTiの一方または双方の1部をF
e、、Cr、■、Co、S i、Nb。
In addition, as a superelastic alloy having the above elastic modulus, Ni-
A part of Ti alloy or one or both of Ni and Ti is F
e, Cr, ■, Co, Si, Nb.

Al、Cu、Mo、Mnなどの1種または2種以上の元
素で置換したNi−Ti系合金が適用できる。
A Ni-Ti alloy substituted with one or more elements such as Al, Cu, Mo, and Mn can be used.

そして、その製造方法としては上記のNi−Ti合金線
を加工率10%以上で加工した後に1次熱処理として温
度250〜450’C1保持時間1秒〜24時の熱処理
を施した後、2次熱処理として温度400〜750℃(
但し1次熱処理温度は2次熱処理温度より低いものとす
る)、保持時間1秒〜24時間の熱処理を線の長手方向
の1部分に断続的に施ずものである。
The manufacturing method is to process the above-mentioned Ni-Ti alloy wire at a processing rate of 10% or more, and then perform a primary heat treatment at a temperature of 250 to 450'C for a holding time of 1 second to 24 hours, followed by a secondary heat treatment. Heat treatment at a temperature of 400 to 750℃ (
However, the temperature of the first heat treatment is lower than the temperature of the second heat treatment), and heat treatment is intermittently applied to one portion in the longitudinal direction of the wire for a holding time of 1 second to 24 hours.

上記の熱処理は連続式熱処理装置により連続的に行なっ
てもよく、またバッチ熱処理装置により行なうこともで
き、両者を併用して行なってもよい。
The above heat treatment may be carried out continuously using a continuous heat treatment apparatus, or may be carried out using a batch heat treatment apparatus, or both may be carried out in combination.

次に本発明を図面により、さらに詳しく説明する。Next, the present invention will be explained in more detail with reference to the drawings.

第4図に示すように線(1)に柔軟性、すなわち低い弾
性係数を持たせるために予め低い温度の走間炉(2)内
をサプライボビン(3)から供給された線(1)を通過
させ巻取りボビン(4)にて巻取り、1次熱処理を行な
う。次に第5図に示すように線(1)の所定の部分に適
当な張力をかけながら通電端子(5)、(5′)により
通電して2次熱処理を行なう。この2次熱処理の方法は
、第6図に示すように線の出し入れが可能なバッチ式ヒ
ーター(6)によって線(11に必要な部分に適当な温
度で2次熱処理を行なうこともできる。上記のバンチ式
熱処理においては定尺のバッチ式ヒーターを移動するこ
とができまた線を移動させてバッチ式ヒーター内に出し
入れすることが可能である。
As shown in Fig. 4, in order to give the wire (1) flexibility, that is, a low elastic modulus, the wire (1) is fed from the supply bobbin (3) through a running furnace (2) at a low temperature in advance. It is passed through and wound up on a winding bobbin (4), and subjected to primary heat treatment. Next, as shown in FIG. 5, a predetermined portion of the wire (1) is subjected to a secondary heat treatment by applying electricity through current terminals (5) and (5') while applying an appropriate tension. In this method of secondary heat treatment, as shown in FIG. 6, it is also possible to perform the secondary heat treatment on the required portion of the wire (11) at an appropriate temperature using a batch type heater (6) that allows the wire to be taken in and taken out. In the bunch type heat treatment, a fixed length batch type heater can be moved, and the wire can be moved in and out of the batch type heater.

上記の1次熱処理および2次熱処理を効率よく行なうに
は、第8図に示すように、線(1)をサプライボビン(
3)より供給し、走間炉(2)により低温の1次熱処理
を行ない、ダンサ−ロール(7)を通し、張力付加装置
(8)、(8′)により線に張力を付与し、パンチ式ヒ
ーター(6)により所定の部分に高温の2次熱処理を行
なう連続式熱処理装置により行なうとよい。
In order to efficiently perform the above-mentioned primary heat treatment and secondary heat treatment, as shown in Fig. 8, wire (1) must be connected to the supply bobbin
3), undergoes low-temperature primary heat treatment in a running furnace (2), passes through a dancer roll (7), applies tension to the wire using tensioning devices (8) and (8'), and punches the wire. It is preferable to use a continuous heat treatment apparatus that performs high-temperature secondary heat treatment on a predetermined portion using a type heater (6).

このようにして熱処理された線は、例えば第7図に示す
ように、高い弾性係数を有する部分と低い弾性係数を有
する部分が交互に所望の位置に所望の長さ存在するよう
な長尺の線が得られる。前記のカテーテル用ワイヤーに
使用するには上記の線を必要な高い弾性係数と低い弾性
係数のものを切断して用いればよい。
The wire heat-treated in this way is, for example, a long piece in which portions having a high elastic modulus and portions having a low elastic modulus are alternately located at desired positions and for a desired length, as shown in FIG. A line is obtained. In order to use the above-mentioned catheter wire, the above-mentioned wire may be cut into wires having a necessary high elastic modulus and a necessary low elastic modulus.

なお本発明のガイドワイヤー用超弾性合金線は、上記の
カテーテル用の他、同様の用途、特性が要求されるもの
に適用可能である。
The superelastic alloy wire for guide wires of the present invention can be applied not only to the above-mentioned catheters but also to other applications requiring similar characteristics.

〔実施例〕〔Example〕

以下に本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

線径0.48ma+φのNi51at%、残部TiのN
iTi合金線を50%の加工率で伸線した線を用い、第
8図に示す連続式熱処理装置により先ず全長にわたって
低い弾性係数を持たせる1次熱処理を下記の条件により
行なった。
Wire diameter 0.48ma + φ Ni 51at%, balance Ti N
Using an iTi alloy wire drawn at a processing rate of 50%, first heat treatment was performed under the following conditions to give the wire a low elastic modulus over its entire length using the continuous heat treatment apparatus shown in FIG.

■炉、114DO’C ■線速2m/min  (定速)、 ■炉長2mこれに
より得られた線材を第1図に示すような応力−歪線図を
とってA点におけるσ、/ε、を調べた結果、σA/ε
A=53kgf/d/1,5%で1.5%の歪までの弾
性係数は3550kgf/−であった。
■Furnace, 114DO'C ■Line speed 2m/min (constant speed) ■Furnace length 2m The stress-strain diagram of the obtained wire rod as shown in Figure 1 is taken, and σ and /ε at point A are As a result of examining , σA/ε
The elastic modulus up to 1.5% strain at A=53 kgf/d/1.5% was 3550 kgf/-.

次にこの線の必要な長さ(部分)だけに高い弾性係数を
持たせる2次熱処理を下記の条件で行なった。
Next, secondary heat treatment was performed under the following conditions to impart a high elastic modulus only to the necessary length (portion) of this wire.

■炉温550℃■保持時間2仔 ■炉長1.8m とし、第7図に示すように0.2mの未処理(この部分
はすでに低い弾性係数を持っている)部分を残して定尺
1,8m毎に熱処理した。
■ Furnace temperature: 550℃ ■ Holding time: 2 hours ■ Furnace length: 1.8 m, leaving 0.2 m of untreated part (this part already has a low elastic modulus) as shown in Figure 7. Heat treatment was performed every 1.8 m.

得られた線を上記と同様にして応力−歪線図をとってA
点のび、/ε4を調べた結果、σA/ε。
A stress-strain diagram is drawn from the obtained line in the same manner as above, and A
As a result of examining the point elongation, /ε4, σA/ε.

−48kgf/ mjlo、85%で0,85%の歪ま
での弾性係数は5650kgf/■シであった。このよ
うに1本の線で弾性係数の低い部分と高い部分を交互に
有する長尺の線が得られた。
-48kgf/mjlo, 85%, the elastic modulus up to 0.85% strain was 5650kgf/mjlo. In this way, a long wire having alternately low and high elastic modulus regions was obtained in one wire.

(効果〕 以上に説明したように本発明によれば、1本の長い線に
低い弾性係数と高い弾性係数を持つ部分を交互に有する
ガイドワイヤー用超弾性合金線が得られるもので工業上
顕著な効果を奏するものである。
(Effects) As explained above, according to the present invention, it is possible to obtain a superelastic alloy wire for guide wires having alternating portions with a low elastic modulus and a high elastic modulus in one long wire, which is industrially remarkable. This has the following effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超弾性合金線の応力−歪特性を示す線
図、第2図は同じ←腰の強さと擬弾性係数の関係を示す
線図、第3図は同しく擬弾性係数と熱処理温度の関係を
示す線図、第4図は本発明の一実施例に使用する熱処理
装置を示す側面図、第5図、第6図は本発明の一実施例
に使用する他の熱処理装置を示す斜視図、第7図は本発
明により得られた線の特性の分布を示す側面図、第8図
は本発明の一実施例に使用する他の熱処理装置の側面図
である。 1・・・線、 2・・・走間炉、 3・・・サプライボ
ビン、4・・・巻取ボビン、 5,5′・・・通電端子
、 6・・・バッチ式ヒーター  7・・・ダンサ−ロ
ール、  88′・・・張力付加装置。
Figure 1 is a diagram showing the stress-strain characteristics of the superelastic alloy wire of the present invention, Figure 2 is a diagram showing the relationship between stiffness and pseudo-elastic modulus, and Figure 3 is a diagram showing the relationship between the stiffness and pseudo-elastic modulus. Figure 4 is a side view showing the heat treatment apparatus used in one embodiment of the present invention, and Figures 5 and 6 are diagrams showing the relationship between heat treatment temperature and heat treatment temperature. FIG. 7 is a perspective view showing the apparatus, FIG. 7 is a side view showing the distribution of line characteristics obtained by the present invention, and FIG. 8 is a side view of another heat treatment apparatus used in one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Wire, 2... Running furnace, 3... Supply bobbin, 4... Winding bobbin, 5, 5'... Current-carrying terminal, 6... Batch type heater 7... Dancer roll, 88'... tension applying device.

Claims (3)

【特許請求の範囲】[Claims] (1)Ni−Ti系合金からなり、線の長手方向に見か
けの弾性係数の高い部分と低い部分とを交互に有するこ
とを特徴とするガイドワイヤー用超弾性合金線。
(1) A superelastic alloy wire for a guide wire, which is made of a Ni-Ti alloy and has alternating portions with high and low apparent elastic modulus in the longitudinal direction of the wire.
(2)見かけの弾性係数の高い部分が3500〜800
0kgf/mm^2、低い部分が2500〜4500k
gf/mm^2の弾性係数であることを特徴とする請求
項1記載のガイドワイヤー用超弾性合金線。
(2) The part with high apparent elastic modulus is 3500 to 800
0kgf/mm^2, low part 2500~4500k
The superelastic alloy wire for a guide wire according to claim 1, having an elastic modulus of gf/mm^2.
(3)Ni−Ti系合金線を加工率10%以上で冷間加
工した後、1次熱処理として温度250〜450℃、保
持時間1秒〜24時間の熱処理を施した後、2次熱処理
として温度400〜750℃(但し、1次熱処理温度は
2次熱処理温度より低いものとする)、保持時間1秒〜
24時間の熱処理を線の長手方向の1部分に断続的に施
すことを特徴とするガイドワイヤー用超弾性合金線の製
造方法。
(3) After cold working the Ni-Ti alloy wire at a processing rate of 10% or more, heat treatment is performed at a temperature of 250 to 450°C for a holding time of 1 second to 24 hours as a primary heat treatment, and then as a secondary heat treatment. Temperature: 400-750°C (however, the primary heat treatment temperature shall be lower than the secondary heat treatment temperature), holding time: 1 second ~
1. A method for producing a superelastic alloy wire for a guide wire, which comprises intermittently applying heat treatment for 24 hours to one portion in the longitudinal direction of the wire.
JP32551889A 1989-12-15 1989-12-15 Superelastic alloy wire for guide wire and its production Pending JPH03188248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32551889A JPH03188248A (en) 1989-12-15 1989-12-15 Superelastic alloy wire for guide wire and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32551889A JPH03188248A (en) 1989-12-15 1989-12-15 Superelastic alloy wire for guide wire and its production

Publications (1)

Publication Number Publication Date
JPH03188248A true JPH03188248A (en) 1991-08-16

Family

ID=18177773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32551889A Pending JPH03188248A (en) 1989-12-15 1989-12-15 Superelastic alloy wire for guide wire and its production

Country Status (1)

Country Link
JP (1) JPH03188248A (en)

Similar Documents

Publication Publication Date Title
US5230348A (en) Guide wire for a catheter
US7434437B2 (en) Method of making a metallic thin wire for a medical tool
US5080584A (en) Method for forming nickel/titanium braided arch wires
WO2000027462A1 (en) NiTi-TYPE MEDICAL GUIDE WIRE AND METHOD OF PRODUCING THE SAME
US20020174922A1 (en) Method for producing beta-titanium alloy wire
JPH04292174A (en) Superelastic guidance component
CN101238968A (en) Wire-stranded hollow coil body, a medical equipment made from the same and making method
PT1412549E (en) Bundle drawn stainless steel fibers
JPH03188248A (en) Superelastic alloy wire for guide wire and its production
JP5386088B2 (en) Guide wire core, method for manufacturing the core, and medical guide wire using the core
JPS6184361A (en) Manufacture of pseudoelastic spring
JP2001164348A (en) METHOD FOR MANUFACTURING HIGH ELASTICITY Ni-Ti ALLOY WIRE WITH WIDE RANGE OF STRAIN USED FOR GUIDE WIRE FOR MEDICAL TREATMENT, AND HIGH ELASTICITY Ni-Ti ALLOY WIRE WITH WIDE RANGE OF STRAIN MANUFACTURED BY THE SAME METHOD AND USED FOR GUIDE WIRE FOR MEDICAL TREATMENT
JPH05104181A (en) Method for correcting residual stress and straightness in metal wire rod
JP3595095B2 (en) Antenna material and manufacturing method
JP4057877B2 (en) Telescopic wire
JPS61106173A (en) Catheter guide wire
JP2799992B2 (en) Shape memory alloy wire for clothing
CN218127788U (en) Stay wire structure
JPS55115926A (en) Production of high strength coil spring
JP2003019530A (en) Wire cord, and wire cord manufacturing method
JP4301611B2 (en) Super elastic fiber material
JP2640461B2 (en) Medical guidewire and medical catheter
JP2013247991A (en) Medical wire, method of manufacturing the same, and medical instrument
JP2000204458A (en) Wide strain range high elasticity antenna
JPH07102230B2 (en) Catheter and guide wire