JPH03187693A - Encoder - Google Patents

Encoder

Info

Publication number
JPH03187693A
JPH03187693A JP1326163A JP32616389A JPH03187693A JP H03187693 A JPH03187693 A JP H03187693A JP 1326163 A JP1326163 A JP 1326163A JP 32616389 A JP32616389 A JP 32616389A JP H03187693 A JPH03187693 A JP H03187693A
Authority
JP
Japan
Prior art keywords
encoding
dpcm
circuit
sampled value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1326163A
Other languages
Japanese (ja)
Inventor
Yoshiki Ishii
芳季 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1326163A priority Critical patent/JPH03187693A/en
Publication of JPH03187693A publication Critical patent/JPH03187693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Color Television Systems (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

PURPOSE:To realize encoding with high efficiency by performing scan in an oblique direction when the DPCM(Differential Pulse Code Modulation) encoding of a sub-sampled sampled value is performed. CONSTITUTION:A pre-filter circuit 102, a subsampling circuit 103, a scan conversion circuit 104, and a DPCM encoder circuit 105 are provided, and the calculation of a predictor is performed by using a neighboring sampled value including the sampled value in a diagonal direction out of the sampled values after thinning, and encoding processing is progressed sequentially in the diagonal direction. Therefore, it is possible to use a preceding sampled value in the oblique direction instead ef the preceding sampled value in a horizontal direction in which distance between the sampled values is separated after thinning as the predictor, and also, band limitation by pre-filtering is applied in the oblique direction to prevent the folding of subsampling, and inter-sampled value correlation is heightened. In such a way, the DPCM encoding with high predictive efficiency can be realized.

Description

【発明の詳細な説明】 [産業上の利用分!!] 本発明は画像信号等の情報を圧縮符号化し、記録もしく
は伝送する符号化装置に関するものである。
[Detailed description of the invention] [Industrial use! ! ] The present invention relates to an encoding device that compresses and encodes information such as an image signal, and records or transmits the encoded information.

[従来の技術] 画像情報、音声情報などをデジタル化して伝送するに際
しては、伝送情報量を小さくするために符号化が行われ
る。
[Prior Art] When image information, audio information, etc. is digitized and transmitted, encoding is performed to reduce the amount of information to be transmitted.

符号化方法の1つに差分符号化(Differenti
alPulse Code Modulaton :以
下、DPCMという)があり、隣接する標本値間の相関
性を利用して情報量の圧縮を行なっている。具体的には
、符号化された標本値を一旦復号し、その復号値を用い
て次の標本値に対する予測値を求め、この予測値と入力
標本値との差分な量子化して符号化する方法がとられて
いる。
One of the encoding methods is differential encoding (Differential encoding).
There is a pulse code modulation (hereinafter referred to as DPCM), which compresses the amount of information by utilizing the correlation between adjacent sample values. Specifically, a method is to decode an encoded sample value, use that decoded value to obtain a predicted value for the next sample value, and then quantize the difference between this predicted value and the input sample value and encode it. is taken.

一方、データ圧縮の手段として視覚特性を利用した間引
き処理(サブサンプリング)が知られている。これは人
の視覚解像度が斜め方向に対して低い事を利用し、それ
に合わせた画素間引きによってデータ量を減らすもので
ある。これの代表的な間引きパターンとしては千鳥状に
間引くフィールドオフセット構造、lライン毎に間引き
位相を逆転するラインオフセット構造等が知られている
。上記2つの圧縮手段は併用する事が可能で、サブサン
プルされた画素に対してDPCM符号化を行い、復号時
にDPCM復号化された画素によって間引き画素を補間
し1画像を再生する画像符号化方式も知られている。
On the other hand, thinning processing (subsampling) using visual characteristics is known as a means of data compression. This takes advantage of the fact that human visual resolution is lower in diagonal directions, and reduces the amount of data by thinning out pixels accordingly. Typical thinning patterns include a field offset structure in which data is thinned out in a staggered manner, a line offset structure in which the thinning phase is reversed every 1 lines, and the like. The above two compression methods can be used together, and is an image encoding method that performs DPCM encoding on subsampled pixels, and when decoding, interpolates thinned out pixels using the DPCM-decoded pixels to reproduce one image. is also known.

[発明が解決しようとする課1g] 上記のような従来の符号化装置においては、DPCMに
間引き処理であるサブサンプリングを併用した場合1M
J引き処理後の水平方向の画素標本点間距離は、原画素
に比べて遠くなり画素間相関が低くなっているため、従
来の水平方向走査による前値予測を用いたDPCMでは
符号化効率が低下し1画質劣化をまねくという欠点があ
った。
[Issue 1g to be solved by the invention] In the conventional encoding device as described above, when subsampling, which is thinning processing, is used in combination with DPCM, 1M
The distance between pixel sample points in the horizontal direction after J-subtraction processing is longer than that of the original pixel, and the inter-pixel correlation is low, so the encoding efficiency is low in DPCM using previous value prediction using conventional horizontal scanning. There was a drawback that the image quality deteriorated and the image quality deteriorated.

この発明はかかる課題を解決するためになされたもので
、符号化効率が高く、画質劣化を防止することのできる
符号化装置を提供することを目的とする。
The present invention has been made to solve this problem, and it is an object of the present invention to provide an encoding device that has high encoding efficiency and can prevent image quality deterioration.

[課題を解決するための手段] 上記の目的を達成するために、この発明の符号化装置は
予測値の計算を、間引き後の標本値のうち対角線方向の
St木値を含めた近隣標本値を用いて行う手段と、該符
号化処理を上記対角線方向に逐時進行させて行く手段と
を有するものである。
[Means for Solving the Problems] In order to achieve the above object, the encoding device of the present invention calculates predicted values using neighboring sample values including St tree values in the diagonal direction among the sample values after thinning. and means for sequentially advancing the encoding process in the diagonal direction.

[作用] 本発明によれば、間引き処理後の標本値に対して斜め方
向の走査を行いながらDPCM符号化を行うことにより
構成の簡単な装置で前値予測を用いても、間引き後標本
値間距離の離れた水平方向の前標本値の換わりに斜め方
向の前標本値を予測値として用いることができ、なおか
つ斜め方向にはサブサンプリングの折り返し防止のため
にブリフィルタリングによる帯域制限が行われ、標本値
開相関が高くなっている為、予測効率の高いDPCM符
号化が実現できる。さらには復号時に間引き標本値補間
のためのフィルタリングが行われるためDPCM符号化
時゛に発生する創め方向の符号化雑音が平滑化されるの
で、画像信号の場合視覚的にも劣化の少ない圧縮符号化
が実現できる。
[Operation] According to the present invention, by performing DPCM encoding while performing diagonal scanning on sample values after thinning processing, even if a device with a simple configuration uses previous value prediction, the sample values after thinning The diagonal pre-sample value can be used as a predicted value instead of the horizontal pre-sample value, which is far apart, and band limiting is performed in the diagonal direction by brisfiltering to prevent aliasing of subsampling. , since the sample value open correlation is high, DPCM encoding with high prediction efficiency can be realized. Furthermore, since filtering for interpolation of thinned sample values is performed during decoding, the encoding noise in the creation direction that occurs during DPCM encoding is smoothed, so image signals are compressed with less visual deterioration. Encoding can be realized.

[実施例] 以下、本発明を図面を参照して詳細に説明する。[Example] Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の一実施例である符号化装置の概略構成
を示すブロック図である。第1図において、端子101
に供給された画像信号は、ブリフィルタ回路102では
、サブサンプル回路103によって画素の間引きが行わ
れた際、折り返し雑音が、発生しないように空間フィル
タリングが行われる。
FIG. 1 is a block diagram showing a schematic configuration of an encoding device that is an embodiment of the present invention. In FIG. 1, terminal 101
The image signal supplied to the sub-sampling circuit 102 performs spatial filtering to prevent aliasing noise from occurring when pixels are thinned out by the sub-sampling circuit 103.

第3図は千鳥状構造の間引きを行う場合のフィルタリン
グの例を示した図(但しり、は水平標本化周波数、■、
は垂直標本化周波数)で、同図(a)の斜線領域は方形
サンプリングである原信号の通過帯域を空間周波数領域
で表した図であり、同図(b)は千鳥状サンプリングに
際して、高い周波数成分の折り返し雑音防止のため、ブ
リフィルタ回路102でフィルタリングされた信号の通
過帯域を表した図である。第3図(b)から明らかなよ
うに斜め方向の帯域は同図(a)に比べ局になっている
が1人の視覚特性により、この差は大きな劣化とならな
いことが知られている。この様に、斜め方向は水平、垂
直方向より狭く帯域制限されるため、結果としてブリフ
ィルタ回路102の出力は水平、垂直方向より斜め方向
に強い画素間相関を有している。サブサンプル回路10
3では帯域制限された画像信号に例えば、第4図に示す
様に間引き処理を行う。間引きされた画像信号は走査変
換回路104によって例えば第5図(a)もしくは第5
図(b)に示す様に、斜め方向に走査変換される。ここ
で、第5図から明らかなように、サブサンプル回路10
3の間引き処理は、走査変換回路104での斜め方向飛
び越し走査によって実現することもできる。DPCM符
号化回路105ではDPCM符号化し符号化出力を端子
106に供給する。
Figure 3 shows an example of filtering when thinning out a staggered structure.
is the vertical sampling frequency), and the shaded area in figure (a) represents the passband of the original signal, which is rectangular sampling, in the spatial frequency domain, and figure (b) shows the high frequency 3 is a diagram showing a pass band of a signal filtered by a bris filter circuit 102 to prevent component aliasing noise. FIG. As is clear from FIG. 3(b), the band in the diagonal direction is more concentrated than that in FIG. 3(a), but it is known that this difference does not cause significant deterioration due to the visual characteristics of one person. In this way, since the band in the diagonal direction is narrower than in the horizontal and vertical directions, as a result, the output of the bris filter circuit 102 has a stronger inter-pixel correlation in the diagonal direction than in the horizontal and vertical directions. Sub sample circuit 10
3, the band-limited image signal is subjected to thinning processing as shown in FIG. 4, for example. The thinned image signal is processed by the scan conversion circuit 104, for example, as shown in FIG.
As shown in Figure (b), the scan is converted in the diagonal direction. Here, as is clear from FIG. 5, the sub-sample circuit 10
The thinning process of 3 can also be realized by diagonal interlaced scanning in the scan conversion circuit 104. The DPCM encoding circuit 105 performs DPCM encoding and supplies the encoded output to a terminal 106.

ここで、DPCM符号化方式に前値予測DPCMを用い
た場合の動作について第6図を用いて説明する0通常D
PCMでは復号時の量子化誤差の積分を防止するため、
入力画素値そのものではなく、符号化器中の局部復号器
において復号した値によって予測値を計算するが、ここ
では説明を簡単にするために、前画素値そのものから予
測を行うものとする。
Here, the operation when using the previous prediction DPCM as the DPCM encoding method will be explained using FIG.
In PCM, in order to prevent integration of quantization errors during decoding,
Although the predicted value is calculated not from the input pixel value itself but from the value decoded by the local decoder in the encoder, here, to simplify the explanation, it is assumed that prediction is performed from the previous pixel value itself.

今、第6図中の画素Bの予測値を「とすると本発明によ
れば第9図から明らかなように百=αA(αは予測係数
)となり、水平走査の場合の百=αCに比べ各画素間の
距離が近いので高い予測効率が実現できる。これには前
述のブリフィルタによる効果も寄与している。
Now, if the predicted value of pixel B in FIG. 6 is ``, then according to the present invention, as is clear from FIG. 9, 100 = αA (α is the prediction coefficient), compared to 100 = αC in the case of horizontal scanning. Since the distance between each pixel is short, high prediction efficiency can be achieved.The effect of the above-mentioned bris filter also contributes to this.

第2図は第1図の実施例に対する画像復号化装置の概略
構成を示すブロック図である。第2図において、端子2
01に供給された符号化入力は。
FIG. 2 is a block diagram showing a schematic configuration of an image decoding apparatus for the embodiment shown in FIG. In Figure 2, terminal 2
The encoded input supplied to 01 is:

DPCM復号化回路202によってDPCM復号され、
走査逆変換回路203によって斜め走査から通常の走査
に変換された後1間引、き補間回路204で間引かれた
画素値が補間される0通常、補間処理は、間引きされた
画素値をゼロとした画像信号に対し第3図(b)に示す
様な特性を持ったフィルタをかける事により行われる0
通常、DPCMでの符号化誤差は、非線形量子化によっ
て差分値の大きな所に発生するが、この補間フィルタの
特性によって本発明における斜め方向の差分値の大きな
すなわち斜めの空間周波数の高い領域で起きた誤差を視
覚的に抑えることができるのも本発明の効果の−っであ
る。
DPCM decoded by the DPCM decoding circuit 202,
After conversion from diagonal scanning to normal scanning by the scanning inverse conversion circuit 203, the thinned out pixel values are interpolated by the interpolation circuit 204. This is done by filtering the image signal with the characteristics shown in Figure 3(b).
Normally, encoding errors in DPCM occur in areas where the difference value is large due to nonlinear quantization, but due to the characteristics of this interpolation filter, in the present invention, coding errors occur in areas where the difference value in the diagonal direction is large, that is, in the area where the diagonal spatial frequency is high. Another advantage of the present invention is that it is possible to visually suppress errors caused by errors.

[発明の効果] 以上説明したように、本発明によれば、サブサンプルさ
れた標本値に対してDPCM符号化を行う際、斜め方向
に走査することによって、前値予測でも標本値間距離と
、斜め方向の帯域制限により標本値開相関の高い値を予
測に用いることができ、効率の高い符号化が実現できる
。又、復号時の間引き標本値補間に斜め方向の帯域制限
の特性を持つフィルタ演算を用いていることにより木刀
式で斜め方向の空間周波数の高い領域に発生するDPC
M符号化誤差を平滑化し1例えば画像信号の場合視覚的
に目立たなくすることもできる。
[Effects of the Invention] As explained above, according to the present invention, when performing DPCM encoding on subsampled sample values, by scanning in a diagonal direction, the distance between sample values can be adjusted even in previous value prediction. By limiting the band in the diagonal direction, a value with a high sample value open correlation can be used for prediction, and highly efficient encoding can be realized. In addition, by using a filter operation with diagonal band-limiting characteristics for interpolation of thinned sample values during decoding, DPC that occurs in the area of high spatial frequency in the diagonal direction with the wooden sword method is eliminated.
For example, in the case of an image signal, it is also possible to make the M encoding error visually unnoticeable by smoothing it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である符号化装置の概略構成
を示すブロック図、第2図は第1図の実施例に対する画
像復号化装置の概略構成を示すブロック図、第3図は千
鳥状構造の間引きを行う場合のフィルタリングの例を示
した図(但し、hsは水平標本化周波数、■、は垂直標
本化周波数)で、同図(a)の斜線領域は方形サンプリ
ングである原信号の通過帯域を空間周波数領域で表した
図、同図(b)は千鳥状サンプリングに際して高い周波
数成分の折り返し雑音防止のため、ブリフィルタ回路1
02でフィルタリングされた信号の通過帯域を表した図
、第4図はサブサンプル回路での画素の間引きパターン
の例を示す図、第5図(a)、(b)はそれぞれ走査変
換による走査方向を示す図、第6図は本発明による前値
予測DPCMを説明するための図である。 図中。 IO2:ブリフィルタ回路 103:サブサンプル回路 104:走査変換回路 105:DPCM符号化回路 202:DPCM復号化回路 203:走査変換回路 204・二間引き補間回路
FIG. 1 is a block diagram showing a schematic configuration of an encoding device that is an embodiment of the present invention, FIG. 2 is a block diagram showing a schematic configuration of an image decoding device for the embodiment of FIG. 1, and FIG. This figure shows an example of filtering when thinning out a staggered structure (where hs is the horizontal sampling frequency, and ■ is the vertical sampling frequency). A diagram showing the passband of a signal in the spatial frequency domain. Figure (b) shows the buri filter circuit 1 used to prevent aliasing noise of high frequency components during staggered sampling.
Figure 4 shows an example of the pixel thinning pattern in the sub-sample circuit, and Figures 5 (a) and (b) show the scanning direction by scan conversion. FIG. 6 is a diagram for explaining the previous value prediction DPCM according to the present invention. In the figure. IO2: Buri filter circuit 103: Sub-sample circuit 104: Scan conversion circuit 105: DPCM encoding circuit 202: DPCM decoding circuit 203: Scan conversion circuit 204/2-decimation interpolation circuit

Claims (1)

【特許請求の範囲】[Claims]  サブサンプルを施した標本値から入力標本値を予測し
、その予測値と入力標本値との差分値を量子化して伝送
する符号化装置であって前記予測値の計算を、間引き後
の標本値のうち対角線方向の標本値を含めた近隣標本値
を用いて行う手段と、該符号化処理を上記対角線方向に
逐時進行させて行く手段とを有することを特徴とする符
号化装置。
An encoding device that predicts an input sample value from a sample value subjected to subsampling, quantizes and transmits a difference value between the predicted value and the input sample value, and performs the calculation of the predicted value based on the sample value after thinning. An encoding device comprising means for performing the encoding process using neighboring sample values including sample values in the diagonal direction, and means for sequentially advancing the encoding process in the diagonal direction.
JP1326163A 1989-12-18 1989-12-18 Encoder Pending JPH03187693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1326163A JPH03187693A (en) 1989-12-18 1989-12-18 Encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1326163A JPH03187693A (en) 1989-12-18 1989-12-18 Encoder

Publications (1)

Publication Number Publication Date
JPH03187693A true JPH03187693A (en) 1991-08-15

Family

ID=18184759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1326163A Pending JPH03187693A (en) 1989-12-18 1989-12-18 Encoder

Country Status (1)

Country Link
JP (1) JPH03187693A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001864A1 (en) * 2009-07-01 2011-01-06 ソニー株式会社 Image processing device and image processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001864A1 (en) * 2009-07-01 2011-01-06 ソニー株式会社 Image processing device and image processing method
US8787691B2 (en) 2009-07-01 2014-07-22 Sony Corporation Image processing device and image processing method of images with pixels arrayed in a checkerboard fashion

Similar Documents

Publication Publication Date Title
US7864867B2 (en) Video coder employing pixel transposition
JPH02912B2 (en)
JP3864444B2 (en) Image signal processing apparatus and method
JPH03187693A (en) Encoder
JPH03187694A (en) Encoder
JP2904284B2 (en) Encoding method and apparatus
JP3797208B2 (en) Color moving image encoding apparatus, decoding apparatus, encoding method, decoding method, and color moving image code string transmission method
US5196932A (en) Image signal transmission apparatus
JP3906770B2 (en) Digital image signal processing apparatus and method
JP2590865B2 (en) High-efficiency encoded image signal decoding apparatus
JPS641997B2 (en)
JP2916719B2 (en) Encoding method, encoding device, and encoding / decoding device
JP3480461B2 (en) Digital image signal processing apparatus and processing method
JPH0530494A (en) Picture encoding and decoding device
JP2636851B2 (en) High-efficiency encoder for television signals.
JPH07162849A (en) Processor for digital image signal
JP3831960B2 (en) Interpolation apparatus and interpolation method for compressed high resolution video signal
JPH0622290A (en) Picture signal coder and decoder
JP3746305B2 (en) Image signal generating apparatus and method, and digital image signal processing apparatus and method
JPH066777A (en) Picture encoding device
JP2500627B2 (en) Image signal high efficiency encoder
JP3204286B2 (en) Image decoding method and apparatus
JPH01261096A (en) Color video signal processing method
WO2000057639A1 (en) A method and a device for encoding and decoding of interlaced video signals by a codec for progressive video signals
JPH01260992A (en) Color video signal processing method