JPH0318749A - Method for measuring moisture permeability - Google Patents
Method for measuring moisture permeabilityInfo
- Publication number
- JPH0318749A JPH0318749A JP15519989A JP15519989A JPH0318749A JP H0318749 A JPH0318749 A JP H0318749A JP 15519989 A JP15519989 A JP 15519989A JP 15519989 A JP15519989 A JP 15519989A JP H0318749 A JPH0318749 A JP H0318749A
- Authority
- JP
- Japan
- Prior art keywords
- electrodes
- polymer electrolyte
- moisture permeability
- moisture
- permeable membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000035699 permeability Effects 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims description 9
- 239000005518 polymer electrolyte Substances 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims description 11
- 239000010409 thin film Substances 0.000 claims description 3
- 230000002123 temporal effect Effects 0.000 claims description 2
- 239000012528 membrane Substances 0.000 abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 13
- 239000011248 coating agent Substances 0.000 abstract description 6
- 238000000576 coating method Methods 0.000 abstract description 6
- 239000003792 electrolyte Substances 0.000 abstract description 4
- 238000010494 dissociation reaction Methods 0.000 abstract description 3
- 230000005593 dissociations Effects 0.000 abstract description 3
- 238000010521 absorption reaction Methods 0.000 abstract description 2
- 238000010276 construction Methods 0.000 abstract 1
- 229920006254 polymer film Polymers 0.000 abstract 1
- 229920005597 polymer membrane Polymers 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- LTMQZVLXCLQPCT-UHFFFAOYSA-N 1,1,6-trimethyltetralin Chemical compound C1CCC(C)(C)C=2C1=CC(C)=CC=2 LTMQZVLXCLQPCT-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- KFDVPJUYSDEJTH-UHFFFAOYSA-N 4-ethenylpyridine Chemical compound C=CC1=CC=NC=C1 KFDVPJUYSDEJTH-UHFFFAOYSA-N 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 241001428214 Polyides Species 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
透湿性の測定方法に関し、
高分子材料の透湿性を小さな試料面積で精度よく測定す
ることを目的とし、
絶縁基板上に膜形成した一対の電極を含む領域を高分子
電解質層で被覆した後、更に透湿性を測定する材料の薄
膜で基板上を被覆して湿度既知の〔産業上の利用分野]
本発明は透湿性の測定方法に関する。[Detailed Description of the Invention] [Summary] Regarding a method for measuring moisture permeability, the purpose is to accurately measure the moisture permeability of a polymeric material using a small sample area. The present invention relates to a method for measuring moisture permeability by coating a substrate with a polymer electrolyte layer and then coating the substrate with a thin film of a material whose moisture permeability is to be measured so that the humidity is known.
近年、高分子化学の進歩によって各種の高分子材料が開
発されると共にあらゆる部門に亙って使用されている。In recent years, advances in polymer chemistry have led to the development of various polymer materials, which are now being used in all fields.
特に、ポリエチレン,ポリ塩化ビニリデンなど高分子膜
は包装用に使用され防湿効果を挙げているが、食品工業
や繊維産業などにおいて、高分子膜の透湿性の測定は水
の透過による物質の変化の防止や装着感の改良などのた
めに重要な測定項目になっている。In particular, polymer membranes such as polyethylene and polyvinylidene chloride are used for packaging and have a moisture-proofing effect. However, in the food and textile industries, the moisture permeability of polymer membranes is measured because of changes in substances due to water permeation. This is an important measurement item for prevention and improvement of wearing comfort.
(従来の技術〕
高分子膜について従来より行われている方法は第4図に
示すように湿度が既知の容器1と乾燥容器2とを透湿性
を測定する高分子膜3を介し、Oリングを用いて密着さ
せ、一定時間毎に湿度センサ4により湿度の変化を測定
し、その変化率から透湿速度を求めるものである。(Prior art) As shown in FIG. 4, the conventional method for polymer membranes is to connect a container 1 whose humidity is known and a drying container 2 through a polymer membrane 3 whose moisture permeability is to be measured. The humidity sensor 4 measures changes in humidity at regular intervals, and determines the rate of moisture permeation from the rate of change.
然し、迅速に且つ精密に透湿速度を求めようとすると試
料面積を大きくすることが必要であるが、高分子膜には
膜厚の変動があり、またピンホールが存在し易いなどの
ことから正確に透湿速度を求めることは困難であった。However, in order to quickly and accurately determine the moisture permeation rate, it is necessary to increase the sample area, but this is because polymer membranes have variations in film thickness and are prone to pinholes. It was difficult to accurately determine the moisture permeation rate.
[発明が解決しようとする課題]
以上記したように従来の測定法で迅速に透湿速度を測定
するには大面積の高分子膜を必要とし、この場合には膜
厚の均質性やピンホールの存在などの問題がある。[Problems to be Solved by the Invention] As described above, in order to quickly measure the moisture permeation rate using the conventional measurement method, a large area polymer membrane is required, and in this case, it is necessary to use a polymer membrane with a large area. There are problems such as the existence of holes.
そのため、小面積の高分子膜を用いて迅速に透湿速度を
求める方法を実用化することが課題である。Therefore, it is a challenge to put into practical use a method for quickly determining the moisture permeation rate using a small-area polymer membrane.
上記の課題は絶縁基板上に膜形成した一対の電極を含む
領域を高分子電解質層で被覆した後、更に透湿性を測定
する材料の薄膜で基板上を被覆して湿度既知の環境下に
置き、電極間の電導度の時間的変化の測定から透湿性を
評価することにより解決することができる。The above problem was solved by coating the region containing a pair of electrodes formed on an insulating substrate with a polymer electrolyte layer, then coating the substrate with a thin film of the material whose moisture permeability is to be measured, and placing it in an environment with known humidity. This problem can be solved by evaluating moisture permeability by measuring temporal changes in conductivity between electrodes.
〔作用]
本発明は湿度センサを構或する水蒸気透過膜の代わりに
透湿性を測定する高分子材料を用いるものである。[Function] The present invention uses a polymeric material for measuring moisture permeability instead of a water vapor permeable membrane constituting a humidity sensor.
湿度センサには各種のものがあるが、本発明に関係のあ
る湿度センサは第1図に示すようにシリコン(Si)或
いはガラスのような絶縁基板5の上に包丁型の電極6.
6′を対向させて膜形或し、この電極6.6′の上を橋
渡しする形で高分子電解質からなる複数条の高分子電解
質層7を作り、更にこの上を水蒸気透過膜8で覆った構
造をとるものである。There are various types of humidity sensors, but the humidity sensor related to the present invention has a knife-shaped electrode 6 on an insulating substrate 5 made of silicon (Si) or glass, as shown in FIG.
A plurality of polymer electrolyte layers 7 made of polymer electrolyte are formed in a membrane shape or in a bridging manner over the electrodes 6 and 6', and this is further covered with a water vapor permeable membrane 8. It has a similar structure.
この湿度センサの動作原理は水が湿気の形で水蒸気透過
膜8を通って高分子電解質層7に侵入すると、透過水分
量に正比例して電解質或分の解離が起こるため、この下
の絶縁基板5の上に設けてある電極6.6′間に電圧を
印加しておくと吸湿量に比例して導電率が変化するのを
利用して湿度の測定が行われている。The operating principle of this humidity sensor is that when water enters the polymer electrolyte layer 7 through the water vapor permeable membrane 8 in the form of moisture, a certain amount of electrolyte dissociates in direct proportion to the amount of permeated water. Humidity is measured by applying a voltage between electrodes 6 and 6' provided on the top of the sensor 5, and the conductivity changes in proportion to the amount of moisture absorbed.
こ覧で、従来の水蒸気透過膜8はシリコーンゴム(例え
ばシリコー ンRTV − KE−341T,信越シ
リコーン@)など透湿性の材料を用いて形威されている
が、本発明はこの水蒸気透過膜8を透湿性を測定する高
分子膜で形戒するもので、透湿性の違いにより高分子電
解質層7の解離度が違い、導電率に差が生ずるのを利用
して吸湿性を測定するものである。As can be seen, the conventional water vapor permeable membrane 8 is made of a moisture permeable material such as silicone rubber (for example, Silicone RTV-KE-341T, Shin-Etsu Silicone@), but the present invention is based on this water vapor permeable membrane 8. This method uses a polymer membrane to measure moisture permeability, and uses the fact that the degree of dissociation of the polymer electrolyte layer 7 differs depending on the moisture permeability, which causes a difference in conductivity to measure moisture absorption. be.
なお、高分子電解質としては次のような材料が知られて
いる。The following materials are known as polymer electrolytes.
ポリアクリル酸とその塩,ポリメタクリル酸とその塩,
ポリスチレンスルホン酸とその塩,部分スルホン化ボリ
スチレン,ポリエチレンスルホン酸塩,ポリビニル硫酸
塩,ポリ−4(2)一ビニルピリジンとその塩,イオネ
ンボリマー,N− }リアルキルアごノメチルポリス
チレンなと、
〔実施例〕
I: (透湿性測定用センサの形成例)5mmX10m
m,厚さlff!fflのガラス基板IOを二枚用意し
、この上にそれぞれスパッタ法により白金(Pt)をマ
スクを通じて約1000人の厚さに膜形成し、pt電極
11.11’を形威した。Polyacrylic acid and its salts, polymethacrylic acid and its salts,
Polystyrene sulfonic acid and its salts, partially sulfonated polystyrene, polyethylene sulfonate, polyvinyl sulfate, poly-4(2) monovinylpyridine and its salts, ionene polymer, N- }realkylagonomethylpolystyrene, [Implementation] Example] I: (Example of formation of sensor for moisture permeability measurement) 5mm x 10m
m, thickness lff! Two ffl glass substrates IO were prepared, and a platinum (Pt) film was formed on each of them to a thickness of about 1000 mm by sputtering through a mask to form PT electrodes 11 and 11'.
こ\で、包丁型をした電極の幅はそれぞれl mm長さ
は6IIIllまた相互の間隔は0.5mraである。Here, the knife-shaped electrodes each have a width of 1 mm, a length of 6IIIll, and a mutual spacing of 0.5 mra.
(以上第2図Aおよび同図D関連)
次に、高分子電解質としてポリ−(4−ビニルーN−エ
チルビリジンプロマイド)を用い、pt電極1111’
を含む方形の領域を窓開けしたガラス基板lO上のレジ
スト膜の上に高分子電解質の10%水溶液をスピンコー
トし、リフトオフ法により厚さが50μmの高分子電解
質層l2を形威した。(The above is related to FIG. 2A and FIG. 2D) Next, using poly-(4-vinyl-N-ethylpyridine bromide) as the polymer electrolyte, the pt electrode 1111'
A 10% aqueous solution of a polymer electrolyte was spin-coated onto a resist film on a glass substrate 10 with a window opened in a rectangular region containing 100 μm, and a 50 μm thick polymer electrolyte layer 12 was formed by a lift-off method.
なお、高分子電解質層l2は幅が200μm,間隔20
0μmの縞状に形威されているが、これは表面積を増す
ためである。(以上同図Bと同図E)次に、か\る高分
子電解質層12を備えたガラス基板10の上にスピンコ
ート法を用い、透湿性を測定する材料として一方の基板
にはネガ型レジスト(OMR−83,東京応化■)を、
また他方の基板にはポリイξド樹脂をそれぞれ20μm
の厚さに塗布し水蒸気透過膜13を形威した。Note that the polymer electrolyte layer l2 has a width of 200 μm and an interval of 20 μm.
Although it is shaped like stripes of 0 μm, this is to increase the surface area. (The above are B and E in the same figure) Next, a spin coating method was used on the glass substrate 10 provided with the polymer electrolyte layer 12, and one substrate was coated with a negative type as a material for measuring moisture permeability. Resist (OMR-83, Tokyo Ohka ■),
In addition, polyide ξ resin was applied to the other substrate with a thickness of 20 μm each.
The water vapor permeable membrane 13 was formed by coating it to a thickness of .
III(透湿性の測定)
このようにして作った湿度センサを温度30’C湿度9
0%RHの恒温恒湿容器に入れ、両電極間にIKHzの
交番電界を加え、インピーダンスの時間変化を測定した
。III (Measurement of moisture permeability) The humidity sensor made in this way was heated to a temperature of 30'C and a humidity of 9.
The sample was placed in a constant temperature and humidity container at 0% RH, and an alternating electric field of IKHz was applied between both electrodes to measure the change in impedance over time.
第3図はこの結果を示すもので、水蒸気透過膜をポリイ
ミド樹脂で形威したものに較べ、ネガ型レジストで形成
したものは透湿性が格段に良いことが判る。FIG. 3 shows the results, and it can be seen that the water vapor permeable membrane formed from a negative resist has much better moisture permeability than that formed from a polyimide resin.
なお、水蒸気透過膜を透湿率が既知の材料で形威し、導
電率を比較測定すれば未知の材料の透湿率を求めること
ができる。Note that the moisture permeability of an unknown material can be determined by forming a water vapor permeable membrane with a material whose moisture permeability is known and comparing and measuring the conductivity.
〔発明の効果]
本発明の実施により少量の試料で透湿性を簡単且つ迅速
に測定することが可能になり、これにより材料の開発研
究が容易になった。[Effects of the Invention] By carrying out the present invention, it has become possible to measure moisture permeability easily and quickly with a small amount of sample, which has facilitated material development research.
第1図は湿度センサの平面図(A)と断面図(B)。
第2図は湿度センサの製造工程を示す断面図(A)〜(
C)と平面図(D),(E)、第3図は透湿性の測定例
、
第4図は従来の透湿性測定方法の説明図、である。
図において、
4は湿度センサ、 6,6′は電極、7は高分
子電解質層、 8は水蒸気透過膜、である。
(A)
冴,要せ冫ブの平面回cA)と断面!T(B)第1図
;星爽セ冫サの2占賢ε塩工程L示す旨h一丘ロ”z6
4)〜(C)と千の2(D),(三)第2図FIG. 1 is a plan view (A) and a cross-sectional view (B) of the humidity sensor. Figure 2 is a sectional view (A) to (A) showing the manufacturing process of a humidity sensor.
C), plan views (D) and (E), FIG. 3 is an example of moisture permeability measurement, and FIG. 4 is an explanatory diagram of a conventional moisture permeability measurement method. In the figure, 4 is a humidity sensor, 6 and 6' are electrodes, 7 is a polymer electrolyte layer, and 8 is a water vapor permeable membrane. (A) Plane rotation cA) and cross section of Sae and Kaname Kanamebu! T (B) Diagram 1; Hoshi Sousesa's 2 divine wisdom ε salt process L indicates h 1 hill ro" z6
4) ~ (C) and 1,000 2 (D), (3) Figure 2
Claims (1)
子電解質層で被覆した後、更に透湿性を測定する材料の
薄膜で基板上を被覆して湿度既知の環境下に置き、前記
電極間の電導度の時間的変化を測定することを特徴とす
る透湿性の測定方法。After covering a region including a pair of electrodes formed on an insulating substrate with a polymer electrolyte layer, the substrate is further coated with a thin film of a material whose moisture permeability is to be measured and placed in an environment with known humidity. A method for measuring moisture permeability, characterized by measuring temporal changes in electrical conductivity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15519989A JPH0318749A (en) | 1989-06-15 | 1989-06-15 | Method for measuring moisture permeability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15519989A JPH0318749A (en) | 1989-06-15 | 1989-06-15 | Method for measuring moisture permeability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0318749A true JPH0318749A (en) | 1991-01-28 |
Family
ID=15600667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15519989A Pending JPH0318749A (en) | 1989-06-15 | 1989-06-15 | Method for measuring moisture permeability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0318749A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010197218A (en) * | 2009-02-25 | 2010-09-09 | Shinshu Univ | Device and method for measuring water vapor permeability of barrier film |
-
1989
- 1989-06-15 JP JP15519989A patent/JPH0318749A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010197218A (en) * | 2009-02-25 | 2010-09-09 | Shinshu Univ | Device and method for measuring water vapor permeability of barrier film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Humidity sensitive properties of crosslinked and quaternized poly (4-vinylpyridine-co-butyl methacrylate) | |
US4562725A (en) | Moisture sensor and a process for the production thereof | |
Kang et al. | A high-speed capacitive humidity sensor with on-chip thermal reset | |
Mu et al. | A robust flexible electrochemical gas sensor using room temperature ionic liquid | |
US7270002B2 (en) | Humidity sensor element, device and method for manufacturing thereof | |
JP2014516165A (en) | Humidity sensor and sensor element therefor | |
US20170184530A1 (en) | Sensing water vapour | |
US4865717A (en) | Electrochemical micro sensor | |
JPH0318749A (en) | Method for measuring moisture permeability | |
Han et al. | Zwitterionic sulfobetaine-containing polyelectrolyte for controlling humidity-sensitivity | |
Buchhold et al. | Mechanical stress in micromachined components caused by humidity-induced in-plane expansion of thin polymer films | |
JPH0547777B2 (en) | ||
Su et al. | Self-assembly of polyelectrolytic multilayer thin films of polyelectrolytes on quartz crystal microbalance for detecting low humidity | |
JPH0215820B2 (en) | ||
JPS6218856B2 (en) | ||
RU207275U1 (en) | Flexible humidity sensor | |
Chiang et al. | Ellipsometric determination of the structure of surface-stabilized bilayer lipid membranes on silver metal | |
JPH04218B2 (en) | ||
Su et al. | A microfabricated amperometric moisture sensor | |
JPH0419553A (en) | Electrostatic capacity type humidity sensor | |
JPS60143755A (en) | Humidity sensor | |
JPS6052756A (en) | Resistance type humidity sensor | |
JPH11264808A (en) | Gas sensor unit | |
JPS59182334A (en) | Cell for measuring gas component | |
JPH04318450A (en) | Electrostatic capacitance-type humidity sensor |