JPH03187240A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JPH03187240A
JPH03187240A JP1325818A JP32581889A JPH03187240A JP H03187240 A JPH03187240 A JP H03187240A JP 1325818 A JP1325818 A JP 1325818A JP 32581889 A JP32581889 A JP 32581889A JP H03187240 A JPH03187240 A JP H03187240A
Authority
JP
Japan
Prior art keywords
wafer
electrostatic chuck
insulating film
chuck
organic insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1325818A
Other languages
Japanese (ja)
Inventor
Mamoru Nakasuji
護 中筋
Hiroyasu Shimizu
弘泰 清水
Shohei Suzuki
正平 鈴木
Kenji Morita
憲司 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP1325818A priority Critical patent/JPH03187240A/en
Publication of JPH03187240A publication Critical patent/JPH03187240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enable quick dismounting operation of an object to be sucked and to improve workability and handling performance of chuck by making a ventilation groove having one open end in the surface of an insulator. CONSTITUTION:A chuck body 21 has C-shaped top view and an arm insertion groove, having one end opened partially to the circumferential face and the other end extending toward the center of the body, is made radially in the chuck body. A plurality of thin grooves 23a-23f having proper width and depth are made radially in the upper face while an organic insulating film 26A composed of polyimide is formed on the upper face of electrodes 24a-24p and between the electrodes, and an inorganic insulating film 26b of alumina or the like is formed thereon. Consequently, mounting/dismounting operation of an object to be sucked can quickly be carried out in the vacuum as well as in the atmosphere, especially dismounting operation in the atmosphere can quickly be carried out, and suction of the object can immediately be released upon application of zero voltage.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体製造工程等に使用されシリコンウェハ等
の基板を静電的に平面度良く吸着保持する静電チャック
に係り、特に大気中および真空中の両領域において使用
して好適な静電チャックに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrostatic chuck that is used in semiconductor manufacturing processes, etc., and which electrostatically holds a substrate such as a silicon wafer with good flatness. The present invention relates to an electrostatic chuck suitable for use in both vacuum regions.

[従来の技術] 従来、大気中でシリコンウェハ(以下ウェハと称する)
等の基板を平面度よく保持固定する装置としては、真空
チャックあるいは機械的なチャック装置が用いられてい
る。
[Prior art] Conventionally, silicon wafers (hereinafter referred to as wafers) were manufactured in the atmosphere.
A vacuum chuck or a mechanical chuck device is used as a device for holding and fixing a substrate with good flatness.

一方、X!i露光装置によってウェハ上に集積回路パタ
ーンを転写したり、電子顕微鏡でウェハの表面観察を行
う場合等においては、真空中のため真空吸着によるウェ
ハのチャッキング(吸着保持〉を行うことができず、そ
のため従来より特開昭59−74624号公報に見られ
るような静電気力を利用した静電チャックが使用されて
いる。この静電チャックは絶縁材料からなる基板上にア
ルミニウム、チタン、クロム等を主成分とした合金を材
料とした2つの電極を形成し、この電極の表面に酸化処
理によって数μm〜30μm程度の厚みの薄膜絶縁層を
形成し、更にその上にピンホールによる耐圧低下を防ぐ
ため絶縁性の樹脂を塗布したものである。
On the other hand, X! When transferring an integrated circuit pattern onto a wafer using an exposure device or observing the surface of a wafer using an electron microscope, the wafer cannot be chucked (held by suction) due to the vacuum environment. Therefore, an electrostatic chuck that utilizes electrostatic force as seen in Japanese Patent Application Laid-Open No. 59-74624 has been used.This electrostatic chuck uses aluminum, titanium, chromium, etc. on a substrate made of an insulating material. Two electrodes are formed using an alloy as the main component, and a thin insulating layer with a thickness of several μm to 30 μm is formed on the surface of these electrodes by oxidation treatment, and furthermore, a thin film insulating layer with a thickness of several μm to 30 μm is formed on the surface of the electrode to prevent a drop in breakdown voltage due to pinholes. Therefore, it is coated with an insulating resin.

このような構成において、静電チャック上に被吸着物と
してのウェハを設置した後、2つの@極間に互いに逆符
号の高電圧(±50ボルト〜±200ボルト)を印加す
ると、ウェハの各電極と対向する面には、それぞれ電極
の極性とは逆極性の電荷が誘起され、これによって電極
が静電気力によりウェハを吸着固定し、ウェハ表面の反
り等を矯正し、高い平面性を得るようにしている。
In such a configuration, after placing a wafer as an object to be attracted on the electrostatic chuck, if high voltages (±50 volts to ±200 volts) with opposite signs are applied between the two @poles, each of the wafers Charges of opposite polarity to those of the electrodes are induced on the surfaces facing the electrodes, and this causes the electrodes to attract and fix the wafer by electrostatic force, correcting warpage on the wafer surface and achieving high flatness. I have to.

ここで、静電チャックによる静電吸着力(F)は次式に
よって与えられる。
Here, the electrostatic adsorption force (F) by the electrostatic chuck is given by the following equation.

但し、ε。は真空中での誘電率、clは絶縁物の比誘電
率、Sは電極の表面積、■は電極への印加電圧、dは絶
縁物の厚さである。
However, ε. is the dielectric constant in vacuum, cl is the dielectric constant of the insulator, S is the surface area of the electrode, ■ is the voltage applied to the electrode, and d is the thickness of the insulator.

したがって、1式がらε。、Sを一定とすれば「ε1l
V2 Fα d 」 となり、静電吸着力Fは印加電圧、換言すれば誘起され
る電荷量によって大きくすることができるまた、静電チ
ャックの他の従来例としてセラミックス製の基板上に単
一の電極を形成し、その上に別途薄く研磨したセラミッ
クス製薄板をガラス等によって融着し、被吸着物をアー
スするようにしたものがある。
Therefore, ε from equation 1. , if S is constant, ``ε1l
V2 Fα d '', and the electrostatic adsorption force F can be increased by changing the applied voltage, in other words, the amount of electric charge induced.Also, as another conventional example of an electrostatic chuck, a single electrode is placed on a ceramic substrate. There is one in which a separately polished ceramic thin plate is fused with glass or the like to ground the object to be attracted.

[発明が解決しようとする課題] ところで、上記した通りウェハの製造工程においては真
空中でのウェハの搬送、保持を静電チャックが担当し、
大気中での搬送、保持を真空チャックが担当しているた
め、2種類のチャックを必要とし、大気中でウェハを受
は取って真空中を搬送し、所定の場所へ移動設置させる
場合、チャック間での受は渡し操作が面倒であった。
[Problems to be Solved by the Invention] By the way, as mentioned above, in the wafer manufacturing process, an electrostatic chuck is responsible for transporting and holding the wafer in vacuum.
Since a vacuum chuck is responsible for transporting and holding the wafer in the atmosphere, two types of chucks are required. The handing operation was troublesome when receiving goods between stores.

特に、真空チャックの場合はウェハの着脱に気体の流れ
を伴わせる必要があり、また機械的な弁の開閉を行なう
必要があるので、迅速な着脱が困難であること、さらに
は真空配管、排気、給気ポンプが必要であるため、装置
自体が大がかりで、高価になるという問題があった。
In particular, in the case of a vacuum chuck, it is necessary to create a gas flow to attach and detach the wafer, and it is also necessary to open and close mechanical valves, making it difficult to attach and detach quickly. However, since an air supply pump is required, the device itself is large-scale and expensive.

また、機械的なチャックでは、着脱に時間がかかること
と、ウェハの複数の面、例えば、下面と、側面または下
面と表面周縁部を接触、加圧しなければならないため発
塵が多いといった問題があった。
Another problem with mechanical chucks is that it takes time to attach and detach the wafer, and that it generates a lot of dust because it requires contact and pressure between multiple surfaces of the wafer, such as the bottom surface, the side surface, or the bottom surface and the periphery of the surface. there were.

一方、電極表面の酸化処理により絶縁層を形成した上記
特開昭59−74624号公報による従来の静電チャッ
クにおいては、電極材料としてアルミニウム、チタン、
クロム等を主成分とする合金材料を使用しているため、
絶縁層自体は硬くて耐摩耗性に富むと云う大きな利点を
有するものの、酸化処理によって形成されたピンホール
による耐圧劣化を樹脂の含浸のみによっては、十分に阻
止することができないと云うI?FIgがあった。
On the other hand, in the conventional electrostatic chuck disclosed in JP-A-59-74624, in which an insulating layer is formed by oxidizing the electrode surface, aluminum, titanium,
Because it uses alloy materials whose main components are chromium etc.
Although the insulating layer itself has the great advantage of being hard and highly wear resistant, impregnation with resin alone cannot sufficiently prevent voltage resistance deterioration due to pinholes formed by oxidation treatment. There was a FIG.

一方、強誘電材料からなるセラミックス製薄板を絶縁層
とした静電チャックにおいては、絶縁層の耐摩耗性につ
いては問題ないが、静電吸着力(F)は電圧を印加する
時間の増加関数になる。したがって、電圧を印加した直
後は静電吸着力(F)が小さく、所定の吸着力を得るま
でに暫く待ち時間が必要になるばかりか、−度電圧を印
加すると永久分極を生じ、電圧を切っただけではウェハ
を取り除くことができず、ウェハの着脱操作を迅速に行
うためには、逆符号の電圧を所定時rMi(10秒以上
〉印加する必要があるといった問題があった。
On the other hand, in an electrostatic chuck with an insulating layer made of a ceramic thin plate made of ferroelectric material, there is no problem with the wear resistance of the insulating layer, but the electrostatic adsorption force (F) is an increasing function of the voltage application time. Become. Therefore, the electrostatic adsorption force (F) is small immediately after voltage is applied, and not only does it take some time to wait until the desired adsorption force is obtained, but permanent polarization occurs when -degree voltage is applied, and it is difficult to turn off the voltage. There is a problem in that the wafer cannot be removed solely by the wafer, and in order to quickly perform the wafer attachment/detachment operation, it is necessary to apply a voltage of the opposite sign for a predetermined time rMi (10 seconds or more).

したがって、本発明はこのような従来の問題点に鑑みて
なされたもので、その目的とするところは、簡単な工夫
を施すことにより、大気中、真空中を問わず被吸着物の
着脱操作、特に大気中での脱操作を迅速に行うことがで
き、また絶縁物の材質を代えることにより小さな電圧で
大きな吸着力が得られ、しかも電圧を印加すれば直ちに
吸着固定し、電圧をOにすれば直ちに吸着固定を解除す
ることができ、その上絶縁層表面の摩耗による耐圧劣化
あるいは静電吸着力の低下が少なく、また非吸湿性にも
優れた静電チャックを提供することにある。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and its purpose is to make it possible to attach and detach an adsorbed object in the air or in a vacuum by applying a simple device. In particular, the desorption operation in the atmosphere can be performed quickly, and by changing the material of the insulator, a large adsorption force can be obtained with a small voltage. It is an object of the present invention to provide an electrostatic chuck that can be immediately released from suction and fixation, has little deterioration in pressure resistance or decrease in electrostatic suction force due to abrasion of the surface of an insulating layer, and is also excellent in non-hygroscopicity.

[課題を解決するための手段] 本発明は上記目的を達成するためになされたもので、そ
の第1の目的は基板に形成した電極上に絶縁物を設けた
静電チャックにおいて、前記絶縁物の表面上に少なくと
も一端開放の通気溝が形成されているものである。
[Means for Solving the Problems] The present invention has been made to achieve the above objects, and its first object is to provide an electrostatic chuck in which an insulator is provided on an electrode formed on a substrate. A ventilation groove with at least one end open is formed on the surface of the holder.

また、第2の発明は」1記絶縁物として有機絶縁材料に
よる有機絶縁膜と、この有機絶縁膜の七に形成された無
機絶縁材料からなる無機絶縁膜とで構成したものである
In addition, the second invention is constructed of an organic insulating film made of an organic insulating material as the insulating material 1, and an inorganic insulating film made of an inorganic insulating material formed on the organic insulating film.

[作用] 大気中での使用において、被吸着物の被吸着面全体が静
電チャックの吸着面に密着していると、電圧をOにして
被チャック物のチャック状態を解除した際、大気圧が被
吸着面以外の面にのみかかり、被吸着面にはかからない
が、絶縁物上に通気溝を設けておくと、この清を介して
大気圧が被吸着面にも作用する。 有機絶縁膜を保護す
る無機絶縁膜は、有機絶縁材料に比べて硬くて耐摩耗性
に優れ、耐圧劣化あるいは吸着力の低下を防止する。ま
た、空気中の湿度の影響も受は難く、絶縁膜を水、湿気
等から保護する。
[Function] When used in the atmosphere, if the entire surface of the chucked object is in close contact with the suction surface of the electrostatic chuck, when the voltage is turned to O to release the chucked state of the chucked object, the atmospheric pressure However, if ventilation grooves are provided on the insulator, atmospheric pressure will also act on the suction surface through these channels. The inorganic insulating film that protects the organic insulating film is harder and more resistant to wear than organic insulating materials, and prevents deterioration of withstand voltage or decrease in suction power. Furthermore, it is not easily affected by humidity in the air, and protects the insulating film from water, moisture, and the like.

耐摩耗性に劣る有機絶縁膜は無機絶縁膜により保護され
ているため、有機絶縁膜としてポリイミドを考え、無機
絶縁膜としてアルミナを考えた場合、ポリイミドの厚み
(d)をアルミナの厚みに比して十分小さくする(1/
30〜l/300程度〉ことができる0例えば、1/3
0の厚みにすれば、比誘電率(ε*〉が小さい(1/3
程度)ことを考慮してもなお同じ静電吸着力(F)を得
るためには 上記式から明らかなように電圧(V)を1
710にすることができる。
An organic insulating film with poor wear resistance is protected by an inorganic insulating film, so when considering polyimide as an organic insulating film and alumina as an inorganic insulating film, the thickness (d) of polyimide is compared to the thickness of alumina. to make it sufficiently small (1/
30~l/300> 0 For example, 1/3
If the thickness is 0, the relative permittivity (ε*) is small (1/3
As is clear from the above formula, in order to obtain the same electrostatic adsorption force (F) even considering the
710.

また、有機絶縁材料は吸着力の印加時間依存性が少なく
、しかも電圧をOにすれば分極もOになり、永久分極や
残留分極を生じない。
In addition, organic insulating materials have less dependence of adsorption force on application time, and moreover, when the voltage is set to O, the polarization becomes O, and no permanent polarization or residual polarization occurs.

[実施例] 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
[Example] Hereinafter, the present invention will be described in detail based on an example shown in the drawings.

第1図は本発明に係る静電チャックと搬送アームの一実
施例を示す第2図のA−A’線断面図、第2図は第1図
の電極パターンを示すための第1図のB−B’線断面図
、第3図(a>から(d)は静電チャックと搬送アーム
を用いたウェハ搬送・チャック装置を示す概略構成図で
ある。
1 is a sectional view taken along the line AA' in FIG. 2 showing an embodiment of the electrostatic chuck and transfer arm according to the present invention, and FIG. 2 is a cross-sectional view of FIG. The cross-sectional view taken along line B-B' and FIGS. 3(a) to 3(d) are schematic configuration diagrams showing a wafer transfer/chucking device using an electrostatic chuck and a transfer arm.

先ず、第3図によりウェハ搬送・チャック装置の構成、
動作等を概略説明すると、第3図(a)に示した部材l
は多数の未処理ウェハ2を水平にかつ垂直方向に所定の
間隔をおいて収納保管してなるカセットで、このカセッ
ト1内のウェハ2は搬送アーム3によって取り出される
First, the configuration of the wafer transfer/chuck device is shown in FIG.
To briefly explain the operation etc., the member l shown in Fig. 3(a)
is a cassette in which a large number of unprocessed wafers 2 are stored horizontally and vertically at predetermined intervals, and the wafers 2 in this cassette 1 are taken out by a transfer arm 3.

前記搬送アーム3はウェハ2をカセット1から取り出す
と、搬送ロボット4によって水平面内にて所定量移動、
かつ所定角度回転されて、第3図(b)に示したように
、前記ウェハ2をx*g光装置5内に挿入し、静電チャ
・ツク6に受は渡す。
When the transfer arm 3 takes out the wafer 2 from the cassette 1, the transfer arm 3 is moved by a predetermined amount in a horizontal plane by the transfer robot 4.
After being rotated by a predetermined angle, the wafer 2 is inserted into the x*g optical device 5 and transferred to the electrostatic chuck 6, as shown in FIG. 3(b).

ウェハ2の受は渡しが終了して搬送アーム3が外部へ退
出すると、Xll露光装置5は真空排気され、大気圧に
近い所定の真空度に保持される。静電チャック6は高い
平面度を有する上面、すなわち吸着面によりウェハ2の
下面を、電圧の印加によって静電的に吸着保持し、ウェ
ハ2の平面度を矯正する。露光の準備が完了すると、X
線発生源より放出されたX線をレンズ系7によって絞り
ウェハ2の表面に形成されたレジストを照射して所定の
露光を行なう、露光終了後、静電チャック6が水平面内
で回転し、上記とは別の搬送アーム8がX線露光装置5
内に進入してウェハ2を静電チャック6から受は取る。
When the transfer of the wafer 2 is completed and the transfer arm 3 exits, the Xll exposure device 5 is evacuated and maintained at a predetermined degree of vacuum close to atmospheric pressure. The electrostatic chuck 6 electrostatically attracts and holds the lower surface of the wafer 2 with its upper surface having a high degree of flatness, that is, the suction surface, by applying a voltage, thereby correcting the flatness of the wafer 2 . When preparation for exposure is completed,
The resist formed on the surface of the aperture wafer 2 is irradiated with X-rays emitted from the radiation source by the lens system 7 to perform a predetermined exposure. After the exposure, the electrostatic chuck 6 rotates in a horizontal plane and the above-mentioned A transport arm 8 separate from the X-ray exposure device 5
The electrostatic chuck 6 receives the wafer 2 from the electrostatic chuck 6.

この時、静電チャック6への印加電圧を0にしてウェハ
2のチャッキングを解除する。
At this time, the voltage applied to the electrostatic chuck 6 is set to 0 to release the chucking of the wafer 2.

搬送アーム8はウェハ2を受は取ると、搬送ロボット9
によりXa!g光装W5から引き出され、次の工程であ
る不図示の現像装置ヘウエハ2を搬送する。現像処理後
、第3図(C)に示したように、さらに次の工程である
ドライエツチング装置10内にウェハ2を挿入し、該装
置内に配置されている静電チャック11にウェハ2を受
は渡す。
When the transfer arm 8 receives and picks up the wafer 2, the transfer robot 9
By Xa! The wafer 2 is pulled out from the g-optical device W5 and transported to a developing device (not shown), which is the next step. After the development process, as shown in FIG. 3(C), the wafer 2 is inserted into a dry etching device 10 which is the next step, and the wafer 2 is placed on an electrostatic chuck 11 disposed in the device. Pass the uke.

ドライエツチング装WlOは、放電用電源12によって
放電電極13に所定の電圧を印加してガス供給装置F1
4によって供給されるフッ化キセノン等の反応ガスをイ
オン化させ、これをウェハ2上のレジストに衝突させる
ことによりエツチングを行なう、そのため、内部が真空
排気され放電し易い低圧力の雰囲気に保たれている。ウ
ェハ2を大気中から低圧力の雰囲気中の静電チャック1
1に受は渡すには、−度ドライエツチング装210(X
線露光装置も同様)の内部圧力を大気圧まで高めウェハ
2の受は渡し後、真空排気して低圧力に戻すか、予備室
を設け、この予備室の圧力制御により行なうようにすれ
ばよい。
The dry etching device WlO applies a predetermined voltage to the discharge electrode 13 by the discharge power source 12, and the gas supply device F1
Etching is performed by ionizing the reactive gas such as xenon fluoride supplied by 4 and colliding with the resist on the wafer 2. Therefore, the inside is evacuated and kept in a low-pressure atmosphere that facilitates discharge. There is. Electrostatic chuck 1 holding wafer 2 in a low pressure atmosphere
To pass the receiver to 1, use -degree dry etching equipment 210 (X
The internal pressure of the line exposure equipment (the same applies to the line exposure equipment) can be raised to atmospheric pressure, and after the wafer 2 is transferred, it can be evacuated and returned to low pressure, or a preliminary chamber can be provided and the pressure controlled in this preliminary chamber. .

エツチング処理が終了すると、上記とは別の搬送ロボッ
ト15により搬送アーム16がドライエツチング装21
0内に挿入されてウェハ2を静電チャック11から受は
取り、第3図(d)に示すように、別のカセット17に
挿入保管する。
When the etching process is finished, the transport arm 16 is moved to the dry etching device 21 by a transport robot 15 different from the one described above.
The wafer 2 is removed from the electrostatic chuck 11 and inserted into another cassette 17 for storage, as shown in FIG. 3(d).

次に、と記静電チャック6(11)および搬送アーム3
(8,16)の構成等を第1図および第2図に基づいて
詳細に説明する。なお、第2図においては厚み方向の寸
法を拡大して示している。
Next, the electrostatic chuck 6 (11) and the transport arm 3 are
The configuration etc. of (8, 16) will be explained in detail based on FIGS. 1 and 2. In addition, in FIG. 2, the dimensions in the thickness direction are shown enlarged.

第2図に示したように、静電チャック6は適宜板厚く2
關)を有するセラミックス製のチャック本体21を備え
ている。第■図に示したように、チャック本体21は平
面視C字状に形成されることにより、一端が一部周面に
開放しく図では上方)、他端が本体中央に延在する半径
方向のアーム挿入溝22を有し、また上面には適宜な溝
幅および深さを有する複数間の細溝23a〜23fが放
射状に形成されている。そして、本体21の上面にはニ
ッケルの無電界メツキあるいはクロムのスパッタリング
によって扇型をなす複数個の電極24a〜24pが互い
に絶縁されて周方向に並列形成されていると共に、電極
24a〜24pの上面および電極間にはポリイミド等の
有機絶縁材料からなる有機絶縁膜26Aが形成され、さ
らにその上にアルアルミナ等の無機絶縁材料からなる無
機絶縁膜26Bが形成されている(第1図、第2図参照
)。
As shown in FIG. 2, the electrostatic chuck 6 has an appropriate thickness of 2
A chuck body 21 made of ceramics is provided. As shown in FIG. The arm insertion groove 22 has an arm insertion groove 22, and a plurality of narrow grooves 23a to 23f having appropriate groove widths and depths are radially formed on the upper surface. On the upper surface of the main body 21, a plurality of fan-shaped electrodes 24a to 24p are formed in parallel in the circumferential direction and insulated from each other by electroless plating of nickel or sputtering of chromium. An organic insulating film 26A made of an organic insulating material such as polyimide is formed between the electrodes, and an inorganic insulating film 26B made of an inorganic insulating material such as alumina is further formed thereon (FIGS. 1 and 2). (see figure).

前記細溝23は断面形状がV字状の溝からなり、その一
端が前記チャック本体21の外周面に、他端が前記アー
ム挿入溝22にそれぞれ開放されている。したがって、
本体21上の溝23a〜23f上にスパッタされた電極
24c、24e、24h、24k、24m、240は溝
23a〜23fに倣って蒸着され、その表面にV字状の
溝が形成されるから、その上に有機絶縁膜26Aを介し
て積み重ねられた無機絶縁膜26Bの表面にもV字状の
溝が形成される。
The narrow groove 23 has a V-shaped cross section, and one end thereof is open to the outer peripheral surface of the chuck body 21, and the other end thereof is open to the arm insertion groove 22. therefore,
The electrodes 24c, 24e, 24h, 24k, 24m, and 240 sputtered onto the grooves 23a to 23f on the main body 21 are deposited following the grooves 23a to 23f, and a V-shaped groove is formed on the surface thereof. A V-shaped groove is also formed on the surface of the inorganic insulating film 26B stacked thereon with the organic insulating film 26A interposed therebetween.

前記電極24a〜24Pは前記アーム挿入溝22の中心
線を挟んで対向するもの同士がそれぞれ対(24a−2
4p、24b−24o、24cm24n、24d−24
m、24e−24,&、24f−24に、24g−24
j、24h−24i)をなしている、このような電極2
4の形成に際しては予め電極24を分離するための細い
テープをチャック本体21の上面に接着し、この状態で
ニッケルの無電界メツキあるいはクロムのスパッタリン
グを行い、しかる後テープを収り除けばよい。
The electrodes 24a to 24P are arranged in pairs (24a to 24P), which face each other across the center line of the arm insertion groove 22.
4p, 24b-24o, 24cm24n, 24d-24
m, 24e-24, &, 24f-24, 24g-24
j, 24h-24i), such an electrode 2
4, a thin tape for separating the electrodes 24 is adhered to the upper surface of the chuck body 21 in advance, electroless nickel plating or chromium sputtering is performed in this state, and the tape is then removed.

多電f[!24a〜24pは全て厚みが3μm程度とさ
れ、その一端部から本体21の周縁部まで引き出し線が
それぞれ形成され、この引き出し線を介して不図示の電
源に接続されている。なお、既に述べたが、1f極24
の表面で前記細溝23に対応する部分はV字状の溝を形
成し、その両端がチャック本体21の内、外周面に開放
している。
Multi-electronic f [! 24a to 24p all have a thickness of about 3 μm, and a lead wire is formed from one end thereof to the peripheral edge of the main body 21, and is connected to a power source (not shown) via the lead wire. As already mentioned, the 1f pole 24
A portion of the surface corresponding to the narrow groove 23 forms a V-shaped groove, and both ends thereof are open to the inner and outer peripheral surfaces of the chuck body 21.

有機絶縁膜26Aとしては、具体的には、電極24の上
にポリイミド(東し製セミコファイン5P−910)を
塗布し、約1,0OOr、p、mの回転速度でスピンコ
ードし、その後80°Cで1時間(200°Cでは30
分、35°Cでは1時間〉ベーキング処理を行うことに
より厚さ10μm程度の丈夫なポリイミド層を得た。
Specifically, as the organic insulating film 26A, polyimide (SEMICOFINE 5P-910 manufactured by Toshi) is coated on the electrode 24, spin coded at a rotation speed of about 1,0 OOr, p, m, and then 80 1 hour at °C (30
By performing baking treatment for 1 hour at 35°C, a durable polyimide layer with a thickness of about 10 μm was obtained.

無機絶縁膜26Bは前記有機絶縁JII26Aを保護す
るもので、具体的には、例えばアルミナ(Af120s
 >を前記有機絶縁膜26Aの上にスバ・ツタリングす
ることにより形成され、その厚みは1μm程度とされる
The inorganic insulating film 26B protects the organic insulating JII 26A, and is specifically made of, for example, alumina (Af120s).
> on the organic insulating film 26A, and its thickness is about 1 μm.

このようにして無機絶縁膜26B上に形成されたV字状
の通気溝は、ウェハ2の被吸着面に大気圧を作用させる
ようにしている。この通気溝も前記細溝23上に薄膜を
積み重ねることにより形成される以上、その一端が静電
チャック6の外周面に、他端が前記アーム挿入溝22に
それぞれ開放されていることは当然である。
The V-shaped ventilation groove thus formed on the inorganic insulating film 26B allows atmospheric pressure to act on the suction surface of the wafer 2. Since this ventilation groove is also formed by stacking thin films on the narrow groove 23, it is natural that one end thereof is open to the outer peripheral surface of the electrostatic chuck 6, and the other end is open to the arm insertion groove 22. be.

この場合1通気溝(細溝23〉を放射状に形成して、そ
の両端を静電チャック6の内、外周面に開放させたが、
これに限らず一端のみを開放させたり、あるいはまた環
状に形成し、チャック本体21に貫通形成した貫通孔に
よりチャック本体の下面側に開放させるようにしてもよ
いことは勿論である。
In this case, one ventilation groove (narrow groove 23) was formed radially, and both ends thereof were opened to the inner and outer peripheral surfaces of the electrostatic chuck 6.
Of course, the present invention is not limited to this, and only one end may be opened, or it may be formed in an annular shape and opened to the lower surface side of the chuck body through a through hole formed through the chuck body 21.

但し、放射状の溝は、有機絶縁材料26Aの膜をスピン
コードにより形成する際、溝が有機絶縁材料の半径方向
への移動を邪魔することなく、むらが生じないという利
点はある。
However, the radial grooves have the advantage that when forming the film of the organic insulating material 26A using a spin cord, the grooves do not hinder the movement of the organic insulating material in the radial direction, and unevenness does not occur.

このような構成からなる静電チャック6は無機絶縁M2
6B上にウェハ2を設置し、互いに対をなす電Vi24
a〜24pに逆符号の電圧(例えば±200V)を順次
印加することにより動作され、しかして有機絶縁膜26
Aに電荷が発生することでウェハ2が静電的に吸着固定
される。
The electrostatic chuck 6 having such a configuration is made of inorganic insulation M2.
Place the wafer 2 on the wafer 6B,
It is operated by sequentially applying voltages of opposite signs (for example, ±200 V) to a to 24p, and the organic insulating film 26
As a charge is generated on A, the wafer 2 is electrostatically attracted and fixed.

この場合、電圧印加のシーケンスは制御装置からの制御
信号によってスイッチを動作させることにより行なわれ
る。シーケンスの一例として、先ず電極24a、24p
に+200V、−200Vを印加し、次に電極24b、
24o、さらに次に′!X極24c、24n、・・・・
そして最後に電極24h、24Lに+200V、−20
0Vを印加した。
In this case, the voltage application sequence is performed by operating a switch in response to a control signal from a control device. As an example of the sequence, first, the electrodes 24a and 24p
+200V and -200V are applied to the electrodes 24b,
24o, and then '! X poles 24c, 24n,...
And finally, +200V and -20V to electrodes 24h and 24L.
0V was applied.

なお、ウェハ2の吸着保持を解除する場合は、電圧を全
電極同時にOFFにすればよいが、より短時間に脱にす
るため、逆符号の電圧を短時間印加するとよい。
Note that to release the suction and holding of the wafer 2, it is sufficient to turn off the voltage to all the electrodes at the same time, but in order to release the electrodes in a shorter time, it is preferable to apply a voltage of the opposite sign for a short time.

ウェハ2を前記静電チャック6に受は渡したりあるいは
また静電チャック6からウェハ2を受は取ったりする搬
送アーム3は前記静電チャック6のアーム挿入溝22に
挿入され得る幅を有するアーム本体31を備えている。
The transfer arm 3 that receives and transfers the wafer 2 to the electrostatic chuck 6 or receives and takes the wafer 2 from the electrostatic chuck 6 has a width that allows it to be inserted into the arm insertion groove 22 of the electrostatic chuck 6. It has a main body 31.

アーム本体31の上面にはV字状の細溝32a〜32d
が刻設されると共に、ニッケルの無電界メツキあるいは
クロムのスパッタリングによって電[i 33 a、3
3bが互いに絶縁されて形成されている。電極33a、
33bの表面には本体31の細溝32a〜32dに倣っ
たV字状の細溝が形成される。
The upper surface of the arm body 31 has V-shaped narrow grooves 32a to 32d.
is engraved and electroplated by electroless nickel plating or chromium sputtering.
3b are formed insulated from each other. electrode 33a,
V-shaped narrow grooves that follow the narrow grooves 32a to 32d of the main body 31 are formed on the surface of the main body 33b.

前記細溝32は適宜な深さと溝幅を有し、両端がアーム
本体31の側面に開放されている。
The narrow groove 32 has an appropriate depth and groove width, and both ends are open to the side surfaces of the arm body 31.

前記電133a、33bは絶縁物34によって被覆され
ている。絶縁物34は、有機絶縁材料からなる有機絶縁
膜34Aにより被覆されると共に、両軍Ii 33 a
、33bの間は膜34Aにより絶縁されている。有機絶
縁膜34Aは無機絶縁材料からなる無機絶縁膜34Bで
被覆保護されている。
The electrodes 133a and 33b are covered with an insulator 34. The insulator 34 is covered with an organic insulating film 34A made of an organic insulating material, and
, 33b are insulated by a film 34A. The organic insulating film 34A is covered and protected by an inorganic insulating film 34B made of an inorganic insulating material.

したがって、静電チャック6について述べたと同様に、
無機絶縁膜34Bの表面にも細溝32a、32bに対応
した細溝35a、35bが形成される。前記有機絶縁膜
34Aとしては、ポリイミドからなり、スピンコードに
よって塗布し、その後ベーキング処理することによって
形成され、その厚さは10μm程度とされる。無機絶縁
膜34Bは1例えばアルミナを前記有機絶縁11134
Aの上にスパッタリングすることにより形成され、その
厚みは1μm程度とされる。
Therefore, similarly to the electrostatic chuck 6,
Narrow grooves 35a and 35b corresponding to the narrow grooves 32a and 32b are also formed on the surface of the inorganic insulating film 34B. The organic insulating film 34A is made of polyimide and is formed by coating with a spin code and then baking, and has a thickness of about 10 μm. The inorganic insulating film 34B is made of alumina, for example, as the organic insulating film 11134.
It is formed by sputtering on A, and its thickness is about 1 μm.

なお、電極33a、33b、有11M縁膜34Aおよび
無機絶縁膜34Bの前記細溝32a、32bに対応する
部分にはV字状の溝が形成され、特に無機絶縁膜34B
の溝はウェハ2の被吸着面に大気圧を作用させるための
通気溝35を形成している。そして、通気溝35a、3
5bはその両端が該搬送アーム3の側面に開放されてい
る。
Incidentally, V-shaped grooves are formed in the portions of the electrodes 33a, 33b, the 11M edge film 34A, and the inorganic insulating film 34B corresponding to the narrow grooves 32a, 32b.
The grooves form ventilation grooves 35 for applying atmospheric pressure to the surface of the wafer 2 to be attracted. And ventilation grooves 35a, 3
Both ends of 5b are open to the sides of the transfer arm 3.

このような構成からなる搬送アーム3は前記静電チャッ
ク6と平面形状および電[!33a、33bの数のみが
異なるだけで、その他の構成および製作方法は全く同様
であり、したがって実質的に静電チャック6と同じ静電
チャックを構成している。
The transport arm 3 having such a configuration has a planar shape and an electric [!] relationship with the electrostatic chuck 6. The only difference is the number of 33a and 33b, and the other configurations and manufacturing methods are completely the same, so that the electrostatic chuck is substantially the same as the electrostatic chuck 6.

このような搬送アーム3によるウェハ2の吸着保持に際
しては、静電チャック6と同様各電極33a、33bに
互いに逆符号の電圧(例えば±200V)を印加すれば
よい、搬送アーム3によって保持されたウェハ2を静電
チャック6に受は渡す場合は、搬送アーム3をアーム挿
入溝22に挿入して@極33の電圧を0にしてチャ・フ
キングを解除し、代わりに静電チャック6の電極24a
〜24Pに電圧を印加してウェハ2を静電的に吸引保持
すればよい0反対に、静電チャック6がら搬送アーム3
に受は渡す場合は、上記とは反対に電極24a〜24p
の電圧をOにして静電チャック6によるチャッキングを
解除し、1lfi33a、33bに電圧を印加すればよ
い。
When holding the wafer 2 by suction by the transfer arm 3, it is sufficient to apply voltages with opposite signs (for example, ±200 V) to the electrodes 33a and 33b, similar to the electrostatic chuck 6. When transferring the wafer 2 to the electrostatic chuck 6, insert the transfer arm 3 into the arm insertion groove 22, set the voltage of the @ pole 33 to 0 to release the chuck, and transfer the wafer 2 to the electrostatic chuck 6 instead. 24a
The wafer 2 can be electrostatically attracted and held by applying a voltage to ~24P.On the other hand, the electrostatic chuck 6 can be used to hold the wafer 2 on the transfer arm 3
If the receiver is to be passed to the
It is sufficient to set the voltage to O to release the chucking by the electrostatic chuck 6, and then apply the voltage to 1lfi 33a and 33b.

なお、ウェハ2の受は渡し操作に際しては、ウェハ2と
静電チャック6または搬送アーム3との間に摩擦が生じ
ないように、適宜な昇降機構によってこれらチャックを
相対的に上下動させればよい 上記構成からなる静電チャック6(搬送アーム3も同様
)においては、従来の静電チャックと比較して大気中で
のウェハ2の着脱操作が容易であるという大きな利点を
有する。すなわち、ウェハ2の下面全体が静電チャック
6に密着していると、大気圧が上からしかかかっていな
いため、なかなか収り外せないが、本発明においては静
電チャック6の吸着面に通気溝28を設けてウェハ2の
下面側にも大気圧が作用するようにしているので、簡単
に取り外すことができる。
When transferring the wafer 2, the wafer 2 and the electrostatic chuck 6 or the transfer arm 3 may be moved up and down relative to each other using an appropriate lifting mechanism to prevent friction between the chuck 6 and the transfer arm 3. The electrostatic chuck 6 (the same applies to the transfer arm 3) having the above structure has a great advantage in that it is easier to attach and detach the wafer 2 in the atmosphere compared to conventional electrostatic chucks. In other words, if the entire lower surface of the wafer 2 is in close contact with the electrostatic chuck 6, atmospheric pressure is applied only from above, making it difficult to remove the wafer. However, in the present invention, the suction surface of the electrostatic chuck 6 is ventilated. Since the groove 28 is provided so that atmospheric pressure also acts on the lower surface of the wafer 2, the wafer 2 can be easily removed.

また、真空チャックでは1kg/C112という大きな
圧力がウェハ2に掛かるが、静電チャック6では10〜
500g/cm2程度のウェハ搬送に十分な圧力に制御
できるので、ウェハ2と静電チャック6間での摩耗によ
るゴミ発生を著しく押さえることができる。さらに、真
空中、大気中を問わず静電チャック6単独でウェハ2の
搬送、受は渡し、吸引保持を行なうと、電気配線と電源
だけでよく、構造が簡単で真空チャックを用いる場合に
比べて遥かに経済的である。
In addition, with the vacuum chuck, a large pressure of 1 kg/C112 is applied to the wafer 2, but with the electrostatic chuck 6, a pressure of 1 kg/C112 is applied to the wafer 2.
Since the pressure can be controlled to be sufficient to transport a wafer of about 500 g/cm2, generation of dust due to wear between the wafer 2 and the electrostatic chuck 6 can be significantly suppressed. Furthermore, if the electrostatic chuck 6 alone is used to transport, receive, and hold the wafer 2 in vacuum or in the atmosphere, only electrical wiring and a power source are required, and the structure is simpler than when using a vacuum chuck. It is much more economical.

また、静電チャック6の有機絶縁lI26Aを形成する
ポリイミドはその厚み(d)が10μmで、単に電極上
にアルミナからなる絶縁物を形成した従来の場合と比較
して上述した通り厚みを著しく小さく(1,/20〜1
/30)することができるので、比誘電率(ε*〉が小
さい〈1/3程度〉ことを考慮してもなお同じ吸着力(
F)を得るためには電圧(V)を1/10程度に小さく
することができる。また、同じ電圧であれば大きな吸着
力を得ることができる。さらにまた、有機絶縁材料は電
圧をOにすると分極もOになり、永久分極や残留分極を
生じないため、吸着力の印加時間依存性が少なく、ウェ
ハ2の着脱操作を短時間で行える。さらに、ポリイミド
の絶縁耐力はアルミナの絶縁耐力が15.7Kv/■−
であるのに対して、317Kv/−■と著しく大きいと
いう利点を有している。
In addition, the thickness (d) of the polyimide forming the organic insulating lI26A of the electrostatic chuck 6 is 10 μm, which is significantly smaller than the conventional case in which an insulator made of alumina is simply formed on the electrode, as described above. (1,/20~1
/30), so even if we take into account that the relative dielectric constant (ε*) is small (about 1/3), the same adsorption force (
In order to obtain F), the voltage (V) can be reduced to about 1/10. Further, if the voltage is the same, a large adsorption force can be obtained. Furthermore, when the voltage is set to O, the polarization of the organic insulating material becomes O, and no permanent polarization or residual polarization occurs. Therefore, the dependence of the adsorption force on the application time is small, and the attachment and detachment of the wafer 2 can be carried out in a short time. Furthermore, the dielectric strength of polyimide is 15.7Kv/■-
However, it has the advantage of being extremely large at 317 Kv/-■.

ところが、ポリイミドは表面の硬度が小さく、耐摩耗性
に欠ける嫌いがあるため、絶縁物26をポリイミド単体
で形成した場合には表面が摩擦によって粗面になると、
耐圧劣化あるいは静電吸着力の低下を生じる。またポリ
イミドは耐湿性に欠けるため、大気中でも吸着力が要求
される場合には、空気中の水蒸気を吸収して表面抵抗が
低下すると、沿面漏れ電流が流れ、静電吸着力が劣化す
る。
However, polyimide has a low surface hardness and tends to lack wear resistance, so if the insulator 26 is made of polyimide alone, the surface will become rough due to friction.
This will cause deterioration of withstand voltage or decrease in electrostatic adsorption force. Furthermore, since polyimide lacks moisture resistance, when adsorption power is required even in the atmosphere, when water vapor in the air is absorbed and the surface resistance decreases, creepage current flows and the electrostatic adsorption power deteriorates.

この点、本発明では硬くて耐摩耗性に優れ、また非吸湿
性、安定性、耐候性等に優れたアルミナからなる無機絶
縁膜26Bによって前記ポリイミドからなる有機絶縁膜
26Aを被覆保護しているので、上記したポリイミドの
欠点をカバーすることができる。また、有機絶縁膜26
Aによって絶縁を図っているため、無機絶縁膜26B自
体の厚みを1μm程度と、非常に薄くすることができる
In this regard, in the present invention, the organic insulating film 26A made of polyimide is covered and protected by an inorganic insulating film 26B made of alumina, which is hard and has excellent wear resistance, as well as non-hygroscopicity, stability, and weather resistance. Therefore, the drawbacks of polyimide mentioned above can be covered. In addition, the organic insulating film 26
Since insulation is achieved by A, the thickness of the inorganic insulating film 26B itself can be made very thin, about 1 μm.

例えば、本実施例の無機絶縁膜26Bは、アルミナ単体
により厚い絶縁膜を形成した場合の1/300程度でし
かないので、強誘電体にも拘らず、印加時間の依存性を
1/300程度にまで低減することができる。
For example, the inorganic insulating film 26B of this embodiment is only about 1/300 of the thickness of a thick insulating film made of alumina alone, so even though it is a ferroelectric material, the dependence on the application time is about 1/300. It can be reduced to

また、厚みを薄くできれば、低電圧でウェハ2の着脱が
可能になるため、ドライエツチング装置内部のごとき放
電し易い装置内での使用が可能である。
Furthermore, if the thickness can be reduced, the wafer 2 can be attached and detached with a low voltage, so that it can be used in an apparatus where electric discharge is likely to occur, such as inside a dry etching apparatus.

[発明の効果] 以上説明したように本発明に係る静電チャックによれば
、電極上に形成される絶縁物の表面に通気溝を形成し、
被吸着物の被吸着面に大気圧が作用するように構成した
ので、大気中での使用に際して、被吸着物の脱操作を迅
速に行うことができ、作業性およびチャックの取扱性を
向上させる。したがって、真空チャックの代わりに使用
し得る。
[Effects of the Invention] As explained above, according to the electrostatic chuck according to the present invention, ventilation grooves are formed on the surface of the insulator formed on the electrode,
Since it is configured so that atmospheric pressure acts on the surface of the adsorbed object, it is possible to quickly remove the adsorbed object when used in the atmosphere, improving workability and handling of the chuck. . Therefore, it can be used instead of a vacuum chuck.

また、絶縁物は有機絶縁膜と、この有機絶縁膜上に′f
I−戒された無機絶縁膜とで構成されているので2耐摩
耗性に浸れ、耐圧劣化或は吸着力の低下が少なく、また
非吸湿性に優れているため空気中でも水、水蒸気等によ
る劣化が少なく、耐久性を向上させることができる。
In addition, the insulator includes an organic insulating film and a 'f' on this organic insulating film.
Since it is composed of a certified inorganic insulating film, it is highly wear resistant, with little pressure deterioration or decrease in adsorption power, and has excellent non-hygroscopic properties, so it does not deteriorate even in the air due to water, water vapor, etc. , and durability can be improved.

また、有機絶縁材料からなる絶縁膜は電圧を印加しても
遅れがなく所定の吸着力が得られるので、被吸着物の着
脱操作を迅速に行うことができ、作業性を向上させる。
Further, since the insulating film made of an organic insulating material can obtain a predetermined adsorption force without delay even when a voltage is applied, it is possible to quickly attach and detach the object to be adsorbed, thereby improving workability.

さらにまた、長時間被吸着物を吸着固定したまま放置し
ておいても吸着力は増加しないので、脱着時に外れない
等の事故が起こらず、信頼性の高い静電チャ・ツクを提
供することができる。また、有機絶縁膜と無機絶縁膜と
を薄く形成できるので、印加時間依存性に悪影響を及ぼ
すことがなく、低い電圧で大きな静電吸着力が得られ、
ドライエ・・lチング装置のように放電を起こし易い装
置内での使用が可能で、大気中と真空中の両領域に使用
して好適であるなど、その効果は大である。
Furthermore, since the adsorption force does not increase even if an object to be adsorbed is left adsorbed and fixed for a long time, accidents such as not coming off when attaching and detaching do not occur, and it is an object of the present invention to provide a highly reliable electrostatic chuck. I can do it. In addition, since the organic insulating film and the inorganic insulating film can be formed thinly, there is no adverse effect on the application time dependence, and a large electrostatic adsorption force can be obtained at a low voltage.
It has great effects, such as being able to be used in equipment that easily generates electrical discharges, such as dry etching equipment, and being suitable for use in both the atmosphere and vacuum.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る静電チャックと搬送アームの一実
施例を示す第2図のA−A’線断面図、第2図は第1図
の電極パターンを示すための第1図のB−B“線断面図
、第3図は静電チャックと搬送アームを用いたウェハ搬
送−チャック装置を示す概略構成図である。 2・・・ウェハ、3.8・・・搬送アーム、6.8.1
6・・・静電チャック、21・・・チャック本体、22
・・・アーム挿入溝、24.24a〜24p・・・電極
、26・・・絶縁物、26A・・・有機絶縁膜26.2
6B・・・無機絶縁膜、28・・・通気溝、33a、3
3b・・・電極、34・・・絶縁物、34A・・・有機
絶縁膜、34B・・・無機絶縁膜、35・・・通気溝。
1 is a sectional view taken along the line AA' in FIG. 2 showing an embodiment of the electrostatic chuck and transfer arm according to the present invention, and FIG. 2 is a cross-sectional view of FIG. A cross-sectional view taken along the line B-B", FIG. 3 is a schematic configuration diagram showing a wafer transfer-chuck device using an electrostatic chuck and a transfer arm. 2... Wafer, 3.8... Transfer arm, 6 .8.1
6... Electrostatic chuck, 21... Chuck body, 22
...Arm insertion groove, 24.24a-24p...electrode, 26...insulator, 26A...organic insulating film 26.2
6B... Inorganic insulating film, 28... Ventilation groove, 33a, 3
3b... Electrode, 34... Insulator, 34A... Organic insulating film, 34B... Inorganic insulating film, 35... Ventilation groove.

Claims (2)

【特許請求の範囲】[Claims] (1)基板に形成した電極上に絶縁物を設けた静電チャ
ックにおいて、 前記絶縁物の表面上に少なくとも一端を開放された通気
溝が形成されていることを特徴とする静電チャック。
(1) An electrostatic chuck in which an insulator is provided on an electrode formed on a substrate, characterized in that a ventilation groove with at least one end open is formed on the surface of the insulator.
(2)請求項1記載の静電チャックにおいて、前記絶縁
物は、有機絶縁材料による有機絶縁膜と、この有機絶縁
膜上に形成された無機絶縁材料による無機絶縁膜とで構
成されていることを特徴とする静電チャック。
(2) In the electrostatic chuck according to claim 1, the insulator is composed of an organic insulating film made of an organic insulating material and an inorganic insulating film made of an inorganic insulating material formed on the organic insulating film. An electrostatic chuck featuring:
JP1325818A 1989-12-18 1989-12-18 Electrostatic chuck Pending JPH03187240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1325818A JPH03187240A (en) 1989-12-18 1989-12-18 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1325818A JPH03187240A (en) 1989-12-18 1989-12-18 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JPH03187240A true JPH03187240A (en) 1991-08-15

Family

ID=18180940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1325818A Pending JPH03187240A (en) 1989-12-18 1989-12-18 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JPH03187240A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321176A (en) * 1994-05-20 1995-12-08 Hitachi Ltd Substrate carrying method
US5751538A (en) * 1996-09-26 1998-05-12 Nikon Corporation Mask holding device and method for holding mask
JP2012175104A (en) * 2011-02-18 2012-09-10 Asml Netherlands Bv Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing substrate holder
US9442395B2 (en) 2012-02-03 2016-09-13 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964245A (en) * 1982-09-30 1984-04-12 Fujitsu Ltd Electrostatic holder
JPS60261377A (en) * 1984-06-08 1985-12-24 Nippon Telegr & Teleph Corp <Ntt> Electrostatic chuck and manufacture thereof
JPS61257733A (en) * 1986-05-21 1986-11-15 Tokuda Seisakusho Ltd Electrostatic chuck
JPS6395644A (en) * 1986-10-13 1988-04-26 Nippon Telegr & Teleph Corp <Ntt> Electrostatic chuck

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964245A (en) * 1982-09-30 1984-04-12 Fujitsu Ltd Electrostatic holder
JPS60261377A (en) * 1984-06-08 1985-12-24 Nippon Telegr & Teleph Corp <Ntt> Electrostatic chuck and manufacture thereof
JPS61257733A (en) * 1986-05-21 1986-11-15 Tokuda Seisakusho Ltd Electrostatic chuck
JPS6395644A (en) * 1986-10-13 1988-04-26 Nippon Telegr & Teleph Corp <Ntt> Electrostatic chuck

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321176A (en) * 1994-05-20 1995-12-08 Hitachi Ltd Substrate carrying method
US5751538A (en) * 1996-09-26 1998-05-12 Nikon Corporation Mask holding device and method for holding mask
US10018924B2 (en) 2011-02-18 2018-07-10 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
JP2012175104A (en) * 2011-02-18 2012-09-10 Asml Netherlands Bv Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing substrate holder
US9256139B2 (en) 2011-02-18 2016-02-09 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
JP2014225669A (en) * 2011-02-18 2014-12-04 エーエスエムエル ネザーランズ ビー.ブイ. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing substrate holder
US10245641B2 (en) 2012-02-03 2019-04-02 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US9737934B2 (en) 2012-02-03 2017-08-22 Asml Netherlands B.V. Substrate holder and method of manufacturing a substrate holder
US9507274B2 (en) 2012-02-03 2016-11-29 Asml Netherlands B.V. Substrate holder and method of manufacturing a substrate holder
US9442395B2 (en) 2012-02-03 2016-09-13 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US10875096B2 (en) 2012-02-03 2020-12-29 Asml Netherlands B.V. Substrate holder and method of manufacturing a substrate holder
US10898955B2 (en) 2012-02-03 2021-01-26 Asme Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US11235388B2 (en) 2012-02-03 2022-02-01 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US11376663B2 (en) 2012-02-03 2022-07-05 Asml Netherlands B.V. Substrate holder and method of manufacturing a substrate holder
US11628498B2 (en) 2012-02-03 2023-04-18 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US11754929B2 (en) 2012-02-03 2023-09-12 Asml Netherlands B.V. Substrate holder and method of manufacturing a substrate holder
US11960213B2 (en) 2012-02-03 2024-04-16 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder

Similar Documents

Publication Publication Date Title
US8929052B2 (en) Methods of processing semiconductor substrates, electrostatic carriers for retaining substrates for processing, and assemblies comprising electrostatic carriers having substrates electrostatically bonded thereto
KR102369706B1 (en) Electrostatic chuck and method of making same
US4665463A (en) Electrostatic chuck
JP4951677B2 (en) Wafer transfer device
US20100136218A1 (en) Cleaning of a substrate support
KR101573665B1 (en) Dielectric film formation device and dielectric film formation method
US6522519B1 (en) Electrostatic chucking device and methods for holding microlithographic sample
JPH0227748A (en) Electrostatic chucking device and forming method therefor
US20130070384A1 (en) High Surface Resistivity Electrostatic Chuck
US20060108231A1 (en) Installation for processing a substrate
TW201917817A (en) Electrostatic carrier for die bonding applications
WO2021111732A1 (en) Attracting-and-holding device and object surface machining method
JPH0652758B2 (en) Electrostatic check
JPH03187240A (en) Electrostatic chuck
JPH04367247A (en) Ceramic electrostatic chuck
WO2014162627A1 (en) Carrier for semiconductor process
JPH0422153A (en) Electrostatic attraction equipment
JP5959069B2 (en) Semiconductor process carrier
JP2006066857A (en) Bipolar electrostatic chuck
JPH10209256A (en) Electrostatic chuck device and its manufacture
CN107534002A (en) Apparatus and method for substrate to be statically secured to mobile vehicle
KR101895128B1 (en) Chucking method and system for substrte by bipolar charging
JPH03152953A (en) Electrostatic chuck
TWI600112B (en) Method of affixing a substrate to a chuck plate, Method of disengaging a substrate and a chuck plate, Method of locking a substrate, and System for locking a substrate and a system for fixing a substrate
JPH07321186A (en) Electrostatic attraction device