JPH03187026A - Galvanomirror - Google Patents

Galvanomirror

Info

Publication number
JPH03187026A
JPH03187026A JP32761889A JP32761889A JPH03187026A JP H03187026 A JPH03187026 A JP H03187026A JP 32761889 A JP32761889 A JP 32761889A JP 32761889 A JP32761889 A JP 32761889A JP H03187026 A JPH03187026 A JP H03187026A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
stator core
magnet
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32761889A
Other languages
Japanese (ja)
Inventor
Tsugio Ide
次男 井出
Mitsuhiro Horikawa
堀川 満広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP32761889A priority Critical patent/JPH03187026A/en
Publication of JPH03187026A publication Critical patent/JPH03187026A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obviate the disconnection of feeders and to facilitate assembly by using a permanent magnet subjected to radial multiple magnetization as a rotor and providing braking adjustment mechanisms. CONSTITUTION:The permanent magnet 4 subjected to the multiple magnetization in the radial direction is the rotor supported by bearings 3, 9. A mirror 1 is fixed to the front end of a supporting shaft 2. Driving mechanisms 5, 6 and the braking adjustment mechanisms 7, 8 are disposed by having a specified distance from the magnet 4. The state in which the tooth 10 of a stator core 5 for driving faces the boundary position between the N pole and S pole of the magnet 4 is the oscillation center of the rotor. While the stator core 7 for braking is so fixed that the position of the tooth equals to the stator core for driving, this position may be shifted by half the pitch of the magnetization pitch of the magnet 4. The rotor generates a rotational displacement in both directions from the oscillation center by the current direction of the coil 6 for driving, by which the optical axis of the incident laser beam on the mirror 1 is oscillated.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、光メモリ装置のレーザビームのトラッキング
制御に用いる磁石可動型のガルバノミラ−(以下GMと
記す)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a movable magnet type galvanomirror (hereinafter referred to as GM) used for tracking control of a laser beam of an optical memory device.

[従来技術] 従来、光メモリ装置の光学ヘッドに用いられるGMは、
例えば特開昭63−12334号公報等に見られるよう
に可動部がコイルで、可動部を弾性部材を用いて結合す
る構成のものが多かった。
[Prior Art] Conventionally, the GM used in the optical head of an optical memory device is
For example, as seen in Japanese Unexamined Patent Application Publication No. 63-12334, there were many configurations in which the movable part was a coil and the movable part was connected using an elastic member.

[発明が解決しようとする課題] しかし従来技術では、可動コイルへの給電線の断線や、
コイルの過熱による接着不良及びそれに伴うコイルの熱
変形が起こり易いという課題を有する。また、給電線の
接続処理は複雑で手間のかかるもので、給電方式によっ
ては給電線そのものが可動部の高速での動作に悪影響を
及ぼす、また弾性部材による高次共振が発生し高速動作
の妨げになる。従って、光ディスクの回転数が上げられ
ずデータの転送速度が制限されることになる。更に弾性
部材は加工精度を厳しく管理しないと動特性のバラツキ
がきわめて大きくなり、経時変化も大きいため安定した
特性が得られにくい。
[Problems to be solved by the invention] However, in the conventional technology, disconnection of the power supply line to the moving coil,
There is a problem that poor adhesion due to overheating of the coil and accompanying thermal deformation of the coil are likely to occur. In addition, the process of connecting the power supply line is complicated and time-consuming, and depending on the power supply method, the power supply line itself may have an adverse effect on the high-speed operation of the moving parts, and high-order resonance due to the elastic member may occur, hindering high-speed operation. become. Therefore, the rotational speed of the optical disc cannot be increased, and the data transfer speed is limited. Furthermore, unless the processing accuracy of elastic members is strictly controlled, there will be extremely large variations in dynamic characteristics, and changes over time will also be large, making it difficult to obtain stable characteristics.

そこで本発明はこのような課題を解決するためのもので
、その目的とするところは、可動部の高次共振が発生し
にくく、可動部へ給電する必要のない組立容易な構造と
することにより、高速動作性の優れたGMを提供すると
ころにある。これにより、信頼性が高くデータ転送速度
の速い光メモリ装置の実現が可能となる。
The present invention is intended to solve these problems, and its purpose is to provide an easy-to-assemble structure in which high-order resonance in the movable parts is less likely to occur and there is no need to supply power to the movable parts. , provides a GM with excellent high-speed operation. This makes it possible to realize an optical memory device with high reliability and high data transfer speed.

[課題を解決するための手段] 本発明のGMは、光メモリ装置のレーザビームのトラッ
キング制御手段として永久磁石を可動部の一部とする構
造のGMにおいて、 ミラーが固定されラジアル着磁を多極に施した円筒状の
永久磁石よりなるロータと、前記永久磁石の外周面と一
定の空隙を介して前記永久磁石の磁極対数の歯を有し鉄
索が励磁コイルにより同極に励磁される構造のステータ
コア、更に前記ロータに非接触の制動調整機構を有する
ことを特徴とする。
[Means for Solving the Problems] The GM of the present invention has a structure in which a permanent magnet is part of a movable part as a tracking control means for a laser beam of an optical memory device, in which a mirror is fixed and radial magnetization is multipolarized. A structure in which a rotor is made of a cylindrical permanent magnet applied to a rotor, and an iron cable is excited to the same polarity by an excitation coil, which has teeth equal to the number of magnetic poles of the permanent magnet through a constant gap with the outer peripheral surface of the permanent magnet. The stator core is further provided with a non-contact braking adjustment mechanism on the rotor.

[作用] 本発明の上記の構成によれば、ラジアル多極着磁された
永久磁石とステータコアの歯の間に働く磁気力によって
可動部の中立保持及び微小回転が可能である。また、非
接触の制動調整機構により高次共振を気にすることなし
に一次共振点を調整することができる。
[Function] According to the above configuration of the present invention, the movable part can be kept neutral and rotated minutely by the magnetic force acting between the radially multipolar magnetized permanent magnet and the teeth of the stator core. Furthermore, the non-contact damping adjustment mechanism allows the primary resonance point to be adjusted without worrying about higher-order resonance.

[実施例] 以下本発明を実施例に基づき詳細に説明する。[Example] The present invention will be described in detail below based on examples.

第1図は、本発明のGMの一実施例を示す断面図である
。4はラジアル方向に多極着磁された円筒状の永久磁石
でベアリング3,9で支持されたロータとなっている。
FIG. 1 is a sectional view showing an embodiment of the GM of the present invention. A rotor 4 is a cylindrical permanent magnet magnetized with multiple poles in the radial direction and supported by bearings 3 and 9.

支持軸2の先端はミラーホルダとなっておりミラー1が
固定されている。駆動機構5,6と制動調整機構7.8
が永久磁石より一定の距離をもって配されている。第2
図に示すように駆動用ステータコア5の歯10が永久磁
石のN極とS極め境界位置に対向している状態がロータ
の揺動中心となる0図中永久磁石に表示されている極は
、円筒外周面に現われる極である。以下の図に於いても
同様である。制動用ステータコア7は歯の位置が駆動用
ステータコアと等しくなるように固定されているが、永
久磁石の着磁ピッチの半ピッチ分ずらしてもよい、この
制動用ステータコアの歯の数、長さ、面積を変えること
によって揺動のバネ定数を調整することができる。また
制動用ステータコアに巻かれた制動用コイル8の仕様を
変えることによってダンピング性能を調整することがで
きる。ここで制動用コイルは駆動回路に接続されていな
い、ロータは駆動用コイル6の電流方向によって揺動中
心から両方向に回転変位を生じ、ミラーに入射したレー
ザビームの光軸を振ることができる。第3図(a)、(
b)、(c)に歯と永久磁石の対向状態を示す、 (a
)は中立状態で駆動用コイルに電流が流れていない状態
である。 (b)はコイル電流を流した場合で、コイル
電流によって発生するトルクと、永久磁石がステータコ
アの歯と引き合う力が一致する位置で安定する。 (C
)はコイル電流を増やした場合で、これ以上電流を増や
すと次の中立状態に移動してしまうので必要に応じて揺
動部の回転角を規制するストッパを設けることによって
この中立状態の移動を防ぐことができる。尚永久磁石の
着磁極数は、必要な揺動角や駆動感度に応じて決定する
ことができ、第3図に示した例に制限されない。
The tip of the support shaft 2 serves as a mirror holder to which the mirror 1 is fixed. Drive mechanism 5, 6 and brake adjustment mechanism 7.8
are placed at a certain distance from the permanent magnet. Second
As shown in the figure, the rotor's oscillation center is when the teeth 10 of the driving stator core 5 face the boundary between the north and south poles of the permanent magnet.The poles shown on the permanent magnet in the figure are: These are the poles that appear on the outer peripheral surface of the cylinder. The same applies to the following figures. The braking stator core 7 is fixed so that the tooth position is equal to that of the driving stator core, but it may be shifted by a half pitch of the magnetization pitch of the permanent magnet. The spring constant of oscillation can be adjusted by changing the area. Furthermore, the damping performance can be adjusted by changing the specifications of the braking coil 8 wound around the braking stator core. Here, the braking coil is not connected to the drive circuit, and the rotor generates rotational displacement in both directions from the center of swing depending on the current direction of the drive coil 6, making it possible to swing the optical axis of the laser beam incident on the mirror. Figure 3 (a), (
b) and (c) show the facing state of the tooth and the permanent magnet, (a
) is a neutral state in which no current flows through the drive coil. (b) shows the case where a coil current is applied, and the motor becomes stable at a position where the torque generated by the coil current and the force of attraction between the permanent magnet and the teeth of the stator core match. (C
) is the case when the coil current is increased.If the current is increased any further, the coil will move to the next neutral state, so if necessary, a stopper that regulates the rotation angle of the swinging part can be provided to prevent the movement of the neutral state. It can be prevented. The number of magnetized poles of the permanent magnet can be determined depending on the required swing angle and drive sensitivity, and is not limited to the example shown in FIG. 3.

第4図に制動調整機構のもう一つの例を示す。FIG. 4 shows another example of the brake adjustment mechanism.

永久磁石4の磁極に対して二つのヨーク11が対向し、
そのヨークを制動用磁石12が結合している。この制動
機構と永久磁石4の距離を変えることにより、バネ定数
を調整可能である。
Two yokes 11 face the magnetic poles of the permanent magnet 4,
A braking magnet 12 couples the yoke. By changing the distance between this braking mechanism and the permanent magnet 4, the spring constant can be adjusted.

次に、本実施例で用いられた永久磁石について述べる。Next, the permanent magnet used in this example will be described.

高い磁気性能の異方性磁石が生産性よく製造できるSm
−Go系樹脂結合型磁石が非常に有利である。更にこの
永久磁石は軽Iでかつ高い寸法精度を容易に出すことが
できる0本実施例では、Sm−Co系樹脂結合型圧縮成
形磁石を用いたが、磁石材料ならびに成形方法はこれに
限られない、最初に組成がS m (CO@、872c
 u s、ss F eし22Zr 192・) @、
zsとなるように原料を誘導炉で溶解する。そのインゴ
ットをArガス雰囲気中で1120〜1180°Cで5
時間溶体化処理を行ない、その後850°Cで4時間時
効処理を行なった。
Sm allows for highly productive production of anisotropic magnets with high magnetic performance.
-Go resin-bonded magnets are very advantageous. Furthermore, this permanent magnet has a light I and can easily achieve high dimensional accuracy. In this example, an Sm-Co resin bonded compression molded magnet was used, but the magnet material and molding method are not limited to this. No, initially the composition is S m (CO@, 872c
u s, ss Feshi22Zr 192・) @,
The raw material is melted in an induction furnace so that it becomes zs. The ingot was heated at 1120 to 1180°C for 5 minutes in an Ar gas atmosphere.
A time solution treatment was performed, followed by an aging treatment at 850°C for 4 hours.

このようして得られた2−17系希土類金属間合金を、
平均粒径が20μm(フィッシャーサブシーブサイダー
による)となるように粉砕し、この粉末98!量%に熱
硬化性である2液性工ポキシ樹脂2重量%を結合材とし
て加え混合した磁石組成物を、粉末成形磁場プレス装置
で磁場中で配向させ円筒形状に成形した後、キュア処理
を行なった。これにラジアル方向の多極着磁を施した。
The 2-17 rare earth intermetallic alloy thus obtained is
The powder was ground to an average particle size of 20 μm (according to Fischer subsieve cider). A magnetic composition prepared by adding 2% by weight of a thermosetting two-component engineered poxy resin as a binder to the 2% by weight was oriented in a magnetic field using a powder molding magnetic field press machine and formed into a cylindrical shape, followed by a curing treatment. I did it. This was subjected to multi-pole magnetization in the radial direction.

このようにして得られた永久磁石を用いた本発明のGM
を光学ヘッドに搭載し、対物レンズに入射するレーザビ
ームの角度を微小に振ることでトラッキングを行なった
。動特性は非常に優れた高速応答性を示した0本発明は
、可動部の中立保持にバネなどを用いないため組立が容
易で、従来問題となっていた高次共振が避けられる。ま
た可動部°と非接触の制動調節機構を設けたため高次共
振などを心配することなく一次共振点の周波数やピーク
量を調整でき、光ディスクの回転数の異なる装置への対
応が容易となる。
GM of the present invention using the permanent magnet thus obtained
was mounted on an optical head, and tracking was performed by slightly changing the angle of the laser beam incident on the objective lens. The dynamic characteristics showed very good high-speed response.The present invention is easy to assemble because it does not use springs to maintain the movable part neutral, and high-order resonance, which has been a problem in the past, can be avoided. Furthermore, since a braking adjustment mechanism is provided that does not make contact with the movable part, the frequency and peak amount of the primary resonance point can be adjusted without worrying about higher-order resonance, making it easy to adapt to devices with different rotational speeds of optical discs.

[発明の効果] 以上示したように本発明によれば、ラジアル多極着磁さ
れた永久磁石を可動部に用い、制動調整機構を設置する
ことにより以下のような利点を生ずる。
[Effects of the Invention] As described above, according to the present invention, the following advantages are produced by using a radially multipolar magnetized permanent magnet in the movable part and installing a brake adjustment mechanism.

(1)給電線の断線が無い。(1) There is no disconnection in the power supply line.

(2)給電線の接続処理が無いので組立が容易である。(2) Assembly is easy because there is no connection process for power supply lines.

(3)コイルの熱変形と接着不良の心配が無い。(3) There is no need to worry about thermal deformation of the coil or poor adhesion.

(4)支持バネが無い。(4) There is no support spring.

(5)−次共振点を容易に変えられる。(5) The -order resonance point can be easily changed.

従って高速応答性に優れ信頼性が高いGMが得られる。Therefore, a GM with excellent high-speed response and high reliability can be obtained.

本発明のGMは、コンピュータメモリ、光デイスクファ
イル、CD、CD−ROM% LVDなどの光メモリ装
置に応用することが可能で、装置の高性能化や小型化な
どの多大な効果を有するものである。
The GM of the present invention can be applied to optical memory devices such as computer memories, optical disk files, CDs, CD-ROM% LVDs, etc., and has great effects such as improving the performance and miniaturizing the devices. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のGMの一実施例を示す断面図。 第2図は、ステータコアと磁極の関係を示す図。 第3図は、揺動中立状態の説明図。 第4図は、制動調整機構のもう一つの例を示す図。 1・・・・・ミラー 4・・・・・永久磁石 5・・・・・駆動用ステータコア 6・・・・・駆動用コイル 7・・・・・制動用ステータコア 8・・・・・制動用コイル O・・・・・歯(ステータコアの一部)1・・・・・ヨ
ーク 2・・・・・制動用磁石 以上
FIG. 1 is a sectional view showing an embodiment of the GM of the present invention. FIG. 2 is a diagram showing the relationship between the stator core and magnetic poles. FIG. 3 is an explanatory diagram of the swinging neutral state. FIG. 4 is a diagram showing another example of the brake adjustment mechanism. 1...Mirror 4...Permanent magnet 5...Stator core for drive 6...Coil for drive 7...Stator core for braking 8...For braking Coil O: Teeth (part of stator core) 1: Yoke 2: Braking magnet or higher

Claims (1)

【特許請求の範囲】[Claims] (1)光メモリ装置のレーザビームのトラッキング制御
手段として永久磁石を可動部の一部とする構造のガルバ
ノミラーにおいて、 ミラーが固定されラジアル着磁を多極に施した円筒状の
永久磁石よりなるロータと、前記永久磁石の外周面と一
定の空隙を介して前記永久磁石の磁極対数の歯を有し該
歯が励磁コイルにより同極に励磁される構造のステータ
コア、更に前記ロータに非接触の制動調整機構を有する
ことを特徴とするガルバノミラー。
(1) In a galvano mirror that uses a permanent magnet as part of the movable part as a tracking control means for the laser beam of an optical memory device, the mirror is fixed and the rotor is made of a cylindrical permanent magnet that is radially magnetized into multiple poles. and a stator core having a structure in which teeth are arranged in pairs with the magnetic poles of the permanent magnet with a certain gap between them and the outer peripheral surface of the permanent magnet, and the teeth are excited to the same polarity by an excitation coil; A galvanometer mirror characterized by having an adjustment mechanism.
JP32761889A 1989-12-18 1989-12-18 Galvanomirror Pending JPH03187026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32761889A JPH03187026A (en) 1989-12-18 1989-12-18 Galvanomirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32761889A JPH03187026A (en) 1989-12-18 1989-12-18 Galvanomirror

Publications (1)

Publication Number Publication Date
JPH03187026A true JPH03187026A (en) 1991-08-15

Family

ID=18201067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32761889A Pending JPH03187026A (en) 1989-12-18 1989-12-18 Galvanomirror

Country Status (1)

Country Link
JP (1) JPH03187026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050071868A (en) * 2004-01-05 2005-07-08 정인철 High speed laser beam deflection mirror apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050071868A (en) * 2004-01-05 2005-07-08 정인철 High speed laser beam deflection mirror apparatus

Similar Documents

Publication Publication Date Title
US5062095A (en) Actuator and method of manufacturing thereof
US5604390A (en) Permanent magnet motor with radically magnetized isotropic permanent magnet cylindrical yoke
JPH0294126A (en) Object lens driving device
JPH03187026A (en) Galvanomirror
JPH0470712A (en) Galvanomirror
JPH02301023A (en) Lens focusing actuator
JPS5972973A (en) Ultrafine rotary actuator
JPH02301024A (en) Galvanomirror
JPH0249223A (en) Galvanomirror
JPH02308433A (en) Lens focusing actuator
JPH0388136A (en) Lens focusing actuator
JPH02183418A (en) Optical head
JP3128352B2 (en) Rotating polygon mirror scanning device
JP4070498B2 (en) Objective lens drive
JPH02267741A (en) Optical head
JPH01102424A (en) Galvanomirror
JPH01102420A (en) Galvanomirror
JPS6337830A (en) Movable magnet type two-dimensional actuator
KR930000041B1 (en) Lenz operating device for optical recording
JPH0352130A (en) Objective lens driver
JPH02130731A (en) Lens focusing actuator
JPH01102748A (en) Separable optical head
JPH01137224A (en) Galvanomirror
JPH02130732A (en) Lens focusing actuator
JPH01102423A (en) Galvanomirror